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Fast quantification of gut bacterial species in cocultures using
flow cytometry and supervised classification
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A bottleneck for microbial community experiments with many samples and/or replicates is the fast quantification of individual taxon
abundances, which is commonly achieved through sequencing marker genes such as the 16S rRNA gene. Here, we propose a new
approach for high-throughput and high-quality enumeration of human gut bacteria in a defined community, combining flow
cytometry and supervised classification to identify and quantify species mixed in silico and in defined communities in vitro. We
identified species in a 5-species in silico community with an F1 score of 71%. In addition, we demonstrate in vitro that our method
performs equally well or better than 16S rRNA gene sequencing in two-species cocultures and agrees with 16S rRNA gene sequencing
data on the most abundant species in a four-species community. We found that shape and size differences alone are insufficient to
distinguish species, and that it is thus necessary to exploit the multivariate nature of flow cytometry data. Finally, we observed that
variability of flow cytometry data across replicates differs between gut bacterial species. In conclusion, the performance of supervised
classification of gut species in flow cytometry data is species-dependent, but is for some combinations accurate enough to serve as a

faster alternative to 16S rRNA gene sequencing.
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INTRODUCTION

Microbial communities play an important role in global and
industrial biochemical processes [1] and human health and
disease [2-4]. Understanding their structure and functionality is
key in manipulating microbial communities such that they carry
out specific functions such as, among others, fuel production [5],
plastic degradation [6], or human microbiota modulation [7].

A commonly encountered bottleneck in microbial community
experiments, especially if they involve a large number of
replicates, is quantifying the abundance of the different species.
Conventional enumeration methods based on colony-forming
units (CFU, e.g., [8]) assume that species are culturable and can be
differentiated based on biochemistry or morphology. In culture-
independent approaches, microbial abundance is commonly
estimated by sequencing marker genes such as the 16S rRNA
gene or by counting shotgun metagenomic reads mapped to
genomes and reference genes [9-11]. Despite ongoing automa-
tion efforts, the entire process from DNA extraction to sequencing
is still time-consuming. Varying 16S rRNA gene copy numbers,
nucleic acid extraction and amplification efficiencies as well as PCR
primer selectivity introduce biases that need to be corrected
[12, 13]. Moreover, some form of normalization is required to
adjust for different sequencing depths. The resulting relative taxon
abundances do not allow accurate assessment of whether taxa
change or stay constant in relation to other taxa, necessitating

specific data transformation or network construction techniques
to compute associations from 16S rRNA gene sequencing data
[14, 15]. Additional measurements are needed to convert relative
abundances to count data (e.g., quantitative PCR, quantitative
sequencing spike-ins and flow cytometry [16-19]).

Flow cytometry (FC) is a single-cell technique that records
optical characteristics for thousands of cells [20] and is becoming
an alternative approach to sequencing for the exploration of
microbial communities [21, 22]. Several tools have been devel-
oped to partly or fully automatically cluster events in FC data into
groups [23-25]. In analogy to operating taxonomic units (OTUs) in
sequencing data, alpha and beta diversity can be estimated based
on the number of these groups [26] and differences in FC groups
between samples have served as disease markers [27]. The change
of FC groups over time has also been monitored to assess
resistance and resilience [28] as well as neutrality [29]. However,
FC groups have a disadvantage compared to OTUs: it is difficult to
identify the taxa forming these groups.

Since several characteristics are measured per cell, FC data are
inherently multivariate. This multivariate nature can be exploited
to train a classifier on monocultures which can then be applied to
assign cells in communities to different species. Thus, supervised
classification techniques have the potential to deliver species-
specific counts for community samples without requiring labels. In
a pioneering work, neural networks applied to flow cytometry
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data successfully differentiated between dozens of phytoplankton
species [30, 31]. This technique was also advocated by Davey &
Kell for bacteria [32]. Recently, Rubbens et al. [33] were able to
predict the abundances of soil bacterial species mixed in different
proportions in silico as well as in vitro using linear discriminant
analysis and random forests. Duygan et al. [34] applied neural
networks to flow cytometry data to infer microbial ‘cell type’
diversity in a lake community by comparing samples to signatures
of predefined strain and bead standards.

Human gut bacterial communities are known to be involved
in gastrointestinal conditions such as inflammatory bowel
disease and irritable bowel syndrome. To better understand
gut microbial responses to perturbations such as antibiotics or
changes in diet and to unravel microbial interactions, artificial
gut communities are being studied in vitro. In such studies,
species-specific microbial abundances are often assessed
through 16S rRNA sequencing [35-37]. The main goal here is
to evaluate the performance of supervised classification applied
to FC data of human gut species and to compare it to 16S rRNA
sequencing. Additionally, we look at variability of flow cytometry
data across different experiments and between different gut
bacteria.

METHODS

Bacterial strains

Gut bacteria originating from human feces and a common lab strain which
was also labeled with a fluorescent protein were selected for this
experiment (Table 1).

Culture conditions

All bacteria were cultivated at 37 °C without agitation under anaerobic
conditions in a Don Whitley A135 Anaerobic Workstation with HEPA filter
(10% H,, 10% CO,, 80% N, 55% humidity). 16S rRNA gene sequencing was
performed regularly to confirm species identity.

Prior to the experiments, all gut-derived strains were subcultured twice
(48 h and 18 h, respectively) in modified Gifu Anaerobic Medium broth
(MGAM [38], HyServe), except for F. prausnitzii DSM17677, which was
grown in Reinforced Clostridial Medium broth (RCM, Oxoid). All bacterial
cultures were sampled in stationary phase, as determined by optical
density ODgqp in a plate reader (Epoch2, Biotek, Supplementary Fig. 1).

E. coli expressing mCherry was cultivated at 37 °C in RCM broth, in the
presence of ampicillin (100 pg/ml), with 200 rpm agitation and under
aerobic conditions for 16 hours prior to each experiment.

Flow cytometry
After 18 hours of growth, the cells were serially diluted 1000x in PBS to an
approximate cell density of 10° cells per ml and stained with 1 pl/ml SYBR
green | (1:100 dilution in dimethylsulfoxide; 20 min incubation at 37 °C;
10.000 concentrate, Thermo Fisher Scientific) following the protocols
described in [18, 33, 34, 39]. Two flow cytometers were used in this study.
The setup and experimental use of both instruments are summarized in
Table 2. For selected mock communities, we used a benchtop Accuri C6
flow cytometer (BD Biosciences). A threshold value of 2000 was applied to
the FL1 channel. The Accuri C6 flow cytometer delivered a multiparametric
description of each event in each sample consisting of 13 parameters
(SSC-A, SSC-H, FSC-A, FSC-H, FL1-A, FL1-H, FL2-A, FL2-H, FL3-A, FL3-H, FL4-
A, FL4-H and Width). During the study period, the instrument was
calibrated daily with Spherotech 8-peak and 6-peak validation beads (BD
Biosciences). The four-species community as well as all mock communities
involving E. coli with mCherry were measured with a benchtop CytoFLEX S
flow cytometer (Beckman Coulter) which, in contrast to Accuri C6
instrument, has the required filters to detect mCherry (mainly 610/20).
This resulted in a multiparametric description of each event consisting of
23 parameters (FSC-A, FSC-H, SSC-A, SSC-H, FL1-A, FL1-H, FL2-orange-A,
FL2-orange-H, FL3-red-A, FL3-red-H, FL4-A, FL4-H, APC-A750-A, APC-A750H,
VSSC-A, VSSC-H, KO525-A, KO252-H, mCherry-A, mCherry-H, PI-A, PI-H and
FSC-Width). During the study period, the instrument was calibrated daily
with CytoFLEX Daily QC Fluorospheres.

All events were quantified using a volumetric method (measured
events/ul).
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In vitro mock communities

Cell densities of all in vitro mock communities were first measured
separately with the CytoFLEX, after which the community suspensions
were diluted in 0.2 um filtered PBS to reach final cell densities of
approximately 5000 cells/pl. These standardized suspensions were then
mixed in intended proportions of 5%, 10%, 20%, 40%, 50%, 60%, 80%, 90
and 95%, in a final volume of 1 ml (Fig. 1). In the case of the mock
community with Collinsella aerofaciens and Bacteroides thetaiotaomicron,
proportions of 1 and 2% were also prepared. Due to inherent pipetting
errors, the mock communities do not reach the intended proportions
precisely. For this reason, cell density in each monoculture (for the
intended proportions) was counted with the flow cytometer by diluting
the cells in 0.2 um filtered PBS. The proportions based on these
measurements differ somewhat from the intended proportions and are
referred to here as expected proportions. Proportions predicted through
supervised classification are compared to these expected proportions.
Removal of debris and/or background was accomplished here by gating
for SYBR/mCherry events in FL1 and FL3 channels respectively.

In vitro co-growth communities

The in vitro co-growth community was composed of four bacteria
(Roseburia intestinalis, Blautia hydrogenotrophica, Bacteroides thetaiotaomi-
cron and Faecalibacterium prausnitzii). Monocultures were grown for 18
hours in RCM, after which cells were counted with the CytoFLEX flow
cytometer and cultures were diluted to roughly obtain 1¥10° cells per ml
per species. Next, bacteria were added in equal proportions to obtain a
total final concentration of 4*10° cells/ml in 10 mL RCM. Both mono-
cultures and communities were grown for 48 hours in batch, and samples
were taken at timepoints 24 h and 48 h. Three biological replicates were
prepared in this experiment.

16S rRNA gene sequencing

Samples were centrifuged at 12130 x g for 10 min. The supernatant was
removed, and the remaining pellets were stored at —80°C until further
processing. DNA extraction was carried out using the MoBio Power-
Microbiome RNA isolation kit as previously described [40]. Next, the V4
region for the 16S rRNA gene was amplified with the primer pair 515 F/806
R and sequencing was performed using the lllumina MiSeq platform to
generate paired-end reads of 250 base pairs. After demultiplexing with
sdm as part of the LotuS pipeline [41] without allowing for mismatches,
fastq sequences were preprocessed using DADA2 pipeline v1.14.1 [42]. The
taxonomy was assigned initially using RDP classifier v2.13 but for taxa that
were not correctly identified, the sequence variants were aligned to
EzBioCloud database [43] to ensure accurate assignment of the species.
Taxa proportions were corrected with 16S rRNA gene copy numbers
retrieved from the rRNA operon copy number database rrnDB [44] and the
National Center for Biotechnology Information (NCBI, Bethesda (MD):
National Library of Medicine (US)), and multiplied by total cell count from
the sample obtained by flow cytometry.

CellScanner
CellScanner is a new standalone tool (manuscript in preparation) for the
analysis of flow cytometry data that performs gating and uses supervised
classification techniques to assign events from cocultures to species
indicated by the user (Fig. 1). CellScanner relies on flow cytometry data
from monocultures (reference files) to train 10 classifiers (neural networks
of 200 layers, using Ibfgs solver and the rectified linear unit activation
function). For each classifier, 1000 events per species are selected
randomly from the corresponding monoculture. Of these, 875 events (7/
8) are used to train the neural network and 125 events (1/8) to test the
trained neural network. Each trained classifier then assigns a species to
each event in the coculture. This procedure is carried out for each co-
culture sample separately. For the analyses on Accuri data, all 13
parameters were taken into account. For CytoFLEX, nine parameters
representing the area (FSC-A, SSC-A, FL1-A, FL2-orange-A, FL3-red-A, FL4-A,
VSSC-A, mCherry-A, PI-A) and FCS-Width were considered. Only the area
(A) records were considered since the height (H) records did not provide
additional information and increased the calculation time.

For each experiment, monoculture data from the same experiment was
used to train the model.

If the mCherry protein is excited, the emission will be detected by the
following filters: 660/10, 690/50, 780/60, 585/42, 610/20 and 690/50.
For the classification of E. coli and R. intestinalis without taking the
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Table 1. Characteristics of species used in this study.
Strain Gram Size (length Shape & Phylum, family Reference 16S rRNA
- width, pm) Occurrence (Species size) copy number
Bacteroides - 1.0-2.0 x Oval bacillus Bacteroidetes, Eggerth et al. 5
thetaiotaomicron 0.7-1.0 Single or pairs Bacteroidaceae 1932 [63]
DSM 2079
Bacteroides uniformis - 0.8x15 Bacillus Bacteroidetes, Eggerth et al. 4
RCC 1835 Single Bacteroidaceae 1932 [63]
Bifidobacterium adolescentis + 4.0-6.0x 1.0 Y or bifid Actinobacteria, Kim et al. 2010 4
RCC 1139 Bifidobacteriaceae [64]
Bilophila wadsworthia - 0.7-1.1 % Bacillus Proteobacteria, Baron et al. 4
RCC 662 1.0 -10.0 Pleomorphic Desulfovibrionaceae 1989 [65]
Blautia hydrogenotrophica + 0.6-0.7 Coccobacillus Firmicutes, Bernalier et al. 1
DSM 10507 Pairs Lachnospiraceae 1996 [56, 66]
Collinsella aerofaciens A 0.3-0.7 x Cocci Actinobacteria, Kageyama et al. 5
RCC 1366 1.2-43 Chain of Coriobacteriaceae 1999 [67]
6-120 cells
Escherichia coli* - 1.0-2.0x0.5 Bacillus Proteobacteria, Riley, 1999 [68] 7
DSM 6050 Single Enterobacteriaceae
Faecalibacterium prausnitzii - 0.5-0.8 x Bacillus Firmicutes, Clostridiales Duncan et al. 6
DSM 17677 2.0-9.0 2002 [69]
Parabacteroides merdae - 0.8-1.6 x Bacillus Bacteroidetes, Sakamoto et al. 7
RCC 643 1.2-12 Single Porphyromonadaceae 2006 [70]
Prevotella copri - 0.83 x Bacillus Bacteroidetes, Hayashi et al. 4
DSM 18205 0.91-0.99 Single Prevotellaceae 2007 [71]
Roseburia intestinalis Gram 0.5% 1.5-3.0 Bacillus Firmicutes, Duncan et al. 6
DSM 14610 variable Lachnospiraceae 2002 [72]
(+)
Ruminococcus bromii + 0.7-1.1 Cocci Firmicutes, Moore et al. 4
RCC 1377 (diameter) Pairs and chains Ruminococaceae 1972 [73]
up to 8 cells

DSMZ: German Collection of Microorganisms and Cell Cultures GmbH. RCC: Raes lab Culture Collection. Cell size and shape are reported for different media
from literature. Cell size is known to be variable depending on growth phase and medium used. 16S rRNA copy numbers were taken from rrnDB [44]. Bacillus

shape: rod-like. Coccus shape: Sphere-like.
* With and without plasmid pRSetB-mCherry.

Table 2. Flow cytometers used in this study
Flow Laser Detector Filter Used
cytometer in figure
Accuri C6 Blue FL1 533/30 2,4A, 6
oy FL2 585/40
FL3 670 LP
Red FL4 675/25
(640 nm)
CytoFLEX S Violet VSSC 405/10 3, 4CDE, 5
08 KO525 425/40
Blue FL1/GFP 525/40
(488 nm) FL4 690/50
Yellow FL2 585/42
(561 nm) mCherry  610/20
PI 690/50
Red FL3 660/10
(638 nm) APC-A750  780/60

red-fluorescence of mCherry into account, only the following parameters
were used in CellScanner: FSC-H, FSC-A, SSC-H, SSC-A, FL1-H, FL1-A, VSSC-
H, VSSC-A, KO525-H, KO525-A and FSC-Width, thus removing the
information from the filters detecting mCherry.

ISME Communications

For data obtained by the Accuri flow cytometer, events were identified
as background if they met the criteria given by at least one of the following
equations, matching the gating described by Vandeputte et al. [18]:

FL3A == 0or FL1A==0
FL3A > 0,0241x FL1A™09%

FSCA > 100000 & SSCA > 10000

Because of the stringent threshold settings of the Accuri, very few blank
events were detected (<100 per sample). This “line gating” method was
thus sufficient to limit the effect of background events on the prediction.
For data obtained from CytoFLEX, the considerable amount of detected
debris was removed by supervised classification (machine learning). Ten
classifiers were trained on blanks and samples from a monoculture
respectively to differentiate between debris and cells from a single species.
The events classified as debris or as “unknown” were removed. This
machine-learning based gating was repeated for each monoculture.

CellScanner was applied to community files that originated either from
cocultures in vitro or were compiled in silico from monoculture files (5000
maximum events per species). In the latter case, 1000 events were selected
from each monoculture file. Since 10 classifiers are trained, 10 species
assignments are made for each event in the coculture. When the
‘unknown’ setting is enabled, and seven out of the ten classifiers agree
on a species, then the event is assigned to the corresponding species,
else it is classified as unknown. Without the ‘unknown’ setting, each event
is classified according to the majority vote of the classifiers. In case of a tie,
the event is randomly classified as one of the species.

SPRINGER NATURE
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Fig. 1 A brief overview of CellScanner is shown in box 1. A
classifier is trained on monocultures and blank data and subse-
quently applied to coculture data to classify every event ten times.
When the repeated classifications agree on one species (or blank) for
>70%, the event will be classified as such. Otherwise, the event will
be classified as “unknown’ Box 2 summarizes the collection of mock
community data. In short, monocultures were grown to stationary
phase, cells were counted with a flow cytometer, and then diluted to
obtain an equal number of cells per ml. These dilutions were used to
make different ratios of the bacteria. Subsequently, mock commu-
nities were subjected to flow cytometry (FC) and 16S rRNA gene
sequencing with lllumina MiSeq. Finally, FC data were analyzed with
CellScanner.

CellScanner calculates the accuracy (ACC) and the F1 score:

Accuracy = TP+ TN F1score = 21p
Y T2TP+FP+ N

With TP= True positive, P =Positive values, N = Negatives values, TN =
True negative value, FP= False positive value and FN= False negative
values.

The removal of events classified as ‘unknown’ reduces the number of
false positives, which increases the specificity (TN/(TN+FP)) and the
precision (TP/(TP+FP)) (Supplementary Fig. 2). Unless stated otherwise, the
“unknown” setting was enabled and proportions were calculated after
removal of unknown events.

For ease of comparison, relative abundances are shown. The absolute
abundances as events measured by flow cytometry and classified by
CellScanner are reported in Supplementary Tables 1-6.

In silico communities

Allin silico communities consisted of monoculture data from cells grown in
MGAM derived from separate FC measurements performed on the Accuri
C6 flow cytometer. The in silico communities were generated by
CellScanner, using a maximum of 1000 random events from each
monoculture file to create a community file.

Feature importance

LIME (Local Interpretable Model-agnostic Explanation, [45]) was applied to
assess the importance of different flow cytometer parameters (= features)
for species classification in 66 pairwise species combinations. The

SPRINGER NATURE

importance of each of the 13 Accuri features was estimated for 50 events
per classifier, running 10 classifiers per combination (i.e., 500 events). The
more predictive a feature is for either species, the higher is the importance
of that feature. Importance values receive a positive or negative sign
depending on whether the feature contributes to classifying an event as
belonging to a species or as not belonging to it. We took the absolute of
each importance value and summed feature values coming from the same
detector (A+H). We calculated the mean importance for the seven
parameters (FSC, SSC, FL1, FL2, FL3, FL4 and Width) for each pair across the
500 events and subsequently for each shape combination.

Intraspecies variation

To assess intraspecies variation, we analyzed monocultures of four
different species (Escherichia coli, Bacteroides thetaiotaomicron, Blautia
hydrogenotrophica, Roseburia intestinalis) and the medium alone (MGAM),
using seven monocultures from different dates for each. A thousand
events from each experiment were selected randomly, except for blank
controls, for which all events were considered (0-70 events per file). We ran
CellScanner on the five-species in silico community (four species + blank)
with the majority rule described above (events on which less than 70% of
classifiers agreed were assigned as “unknown”). We calculated pairwise
Euclidean distances between events from the Accuri flow cytometer with R
function daisy in the cluster package. Because the FL4 parameter is not
predictive and highly variable within every monoculture on Accuri, we
removed it from the distance calculation to avoid artefacts.

Statistical analysis
All statistical analyses were performed using R (version 3.6.1, http://www.R-
project.org).

RESULTS

Identification of gut bacterial species in in silico communities
We first tested how accurately gut bacterial cells can be identified
in an in silico mixture, where the true positive and false negative
assignment for each event in the community is known. For this,
we collected flow cytometry data of monocultures for ten gut
species in stationary phase with Accuri C6, mixed them in silico in
equal proportions and quantified the accuracy of species
identification in these mixtures with CellScanner (Fig. 2A).

For half of the species, more than 50% of the events were not
consistently assigned to a single species and thus classified as
“unknown”. This suggests that many species overlap in the
measured features, which makes them difficult to distinguish by
machine learning. Some species, such as Escherichia coli, have
distinct features and are thus easy to classify (Supplementary
Fig. 3), while the features of other species, e.g., Bl. hydrogeno-
trophica, overlap with another species, resulting in misclassifica-
tion. Of note, two species belonging to the same genus (Bact.
thetaiotaomicron and Bact. uniformis) are not misclassified as each
other but are more commonly misclassified as species in other
genera. The overall accuracy of species identification in this ten-
species community is 32%, with an F1 score of 39% (Supplemen-
tary Fig. 3), including the events assigned as “unknown”. When
reducing the community to five species (Fig. 2B), the overall
accuracy almost doubles to 62% and the F1 is 71% (Supplemen-
tary Fig. 4). With less overlap between the species, the individual
classification true positive rate reaches a minimum of 39% for all
species, and the proportion classified as ‘unknown’ decreases
substantially.

As expected, when selecting the five species that were easiest
to recognize in the ten-species community the accuracy of species
identification increased. This could help in species selection when
designing a consortium.

Quantification of species in vitro with mock communities

To test whether we can accurately quantify species in a mixture
in vitro, we mixed three gut bacterial species grown to stationary
phase (E. coli expressing mCherry, R. intestinalis and F. prausnitzii)

ISME Communications
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A Normalized CM with10 species B Normalized CM with5 species
unknown 4 nan nan nan  nan nan nan nan nan  nan nan
unknowin - nan nan nan nan nan nan
Ruminococcus bromii{ 041 273 041 382 791 000 327 409 6.14 19.65
Roseburia intestinalis1 3.38 399 162 036 231 002 207 098 2818 128
Roseburia intestinalis 4 9.42 335 0.04 1.45 38.71

Prevotella copri{ 142 115 085 237 008 006 6.99 025 095 3434

Parabacteroides merdae 1 0.14 2.08 029 504 210 000 047 022 1942 23.51 Prevotella copri - 3.36 0.41 21.83
1 1
2 Escherichia coli{ 0.50 017 032 179 002 [RESEM 042 130 010 0.02 ®
E g
Collinsella aerofaciens | 0.44 2.99 3.06 175 14.99 002 227 332 501 6.62 Escherichia coli 040 0.20 6.10
Blautia hydrogenotrophica{ 1.23 103 076 19.63 042 2526 127 355 114 2.50
Bifidobacterium adolescentis 119 2.44 22.64
Bifidobacterium adolescentis { 0.95 052 [FELN 035 152 003 003 030 109 054
Bacteroides uniformis { 3.88 2474 164 056 162 010 218 205 593 168
Bacteroides uniformis | 39.86 251 056 457 7.86
Bacteroides thetaiotaomicron 123.51 542 144 063 012 000 639 128 209 008
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Fig. 2 Accuracy of species identification in FC data of gut bacterial communities compiled in silico. Confusion matrices for an in silico 10-
species community (A) and 5-species community derived from the five best-identifiable species from A (B). Events in monoculture data
obtained with Accuri C6 were gated and mixed in equal proportions in silico. The true species is depicted on the y-axis, the predicted species
is depicted on the x-axis. The numbers are the percentages of the events that are classified as such. The higher the number in the diagonal,
the more accurately CellScanner predicted the species.
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Fig. 3 Comparison of supervised classification of flow cytometry data and 16S rRNA gene sequencing on mock communities. A Expected
proportions and proportions predicted with CellScanner for R. intestinalis (Rl) and E. coli (EC), the latter expressing mCherry. 16S rRNA gene
sequencing results are included. B Expected proportions and proportions predicted with CellScanner of FP (F. prausnitzii) and EC, the latter
expressing mCherry. C Expected proportions and proportions predicted with CellScanner, without using the red channels in the classification,
of Rl and EC expressing mCherry. 16S rRNA gene sequencing data are included. D Expected proportions and proportions predicted with
CellScanner, without using the red channels in the classification, of FP and EC expressing mCherry. All flow cytometry shown here were
obtained with CytoFLEX.

in different proportions, resulting in three combinations of two
species. Labeled E. coli was included as a positive control because
the CytoFLEX flow cytometer can easily distinguish the mCherry
colored E. coli cells from the SYBR Green stained R. intestinalis or F.
prausnitzii cells (Fig. 3). The proportions predicted with CellScan-
ner and with 16S rRNA gene sequencing were compared to the
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expected proportions. As shown in Fig. 3A and C, the prediction of
CellScanner is almost identical to the expected proportions, with
an absolute mean difference of 1%. The absolute mean difference
of the 16S results is 25% from the expected proportions, with 2%
of the number of events classified as ‘unknown’ on average.
For ease of comparison, proportions are compared, absolute
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Fig. 4 Proportions in two- and three-species mock communities predicted through supervised classification of flow cytometry data.
A Intended and predicted proportions for Bact. thetaiotaomicron (BT) and C. aerofaciens (CA). In contrast to expected proportions, intended
proportions have not been corrected for pipetting errors (see Methods). Error bars: Standard deviation over two technical replicates. Flow
cytometry was carried out with Accuri C6. B Expected proportions and proportions predicted by CellScanner for R. intestinalis (RI) and F.
prausnitzii (FP). 16S rRNA gene sequencing data are included. C Proportions predicted by CellScanner for a three-species mock community of
R. intestinalis, E. coli and Bact. uniformis. D Confusion matrix of an in silico three-species community made from the monocultures of the species

in (C). For panels (B-D), flow cytometry was carried out with CytoFLEX.

abundances for all species combinations are reported in supple-
ment (Supplementary Table 1).

Because it is straightforward to distinguish E. coli labeled with
mCherry from a non-labeled species, we tested whether
CellScanner could still differentiate the two species when the
red fluorescence channels were left out in the software, in essence
removing the fluorescent label of E. coli. As shown in Figs. 3C and
3D, CellScanner predictions are less accurate without these
channels, with events classified as ‘unknown’ increasing to 8%
(Supplementary Table 2) but are still close to the expected
abundances (absolute mean abundance difference of 3%). Thus,
for these species pairs, information from scattered light and the
remaining channels was sufficient to accurately identify both
species in the mixture.

Next, we tested how well CellScanner could identify unlabeled
species in stationary phase in mock communities of known
proportions. First, we collected mock community data for 11 ratios
of Bact. thetaiotaomicron and C. aerofaciens and found that
proportions predicted by CellScanner are relatively close to the
expectation, with an absolute mean difference of 19% (Fig. 4A,
Supplementary Table 3). We then repeated this experiment for F.
prausnitzii and R. intestinalis. For comparison, we also determined
mock community proportions through 16S rRNA gene sequen-
cing. In case of F. prausnitzii and R. intestinalis, both sequencing
and CellScanner are close to the expected abundance (absolute
mean difference of 7% for 16S versus 13 and 18% for F. prausnitzii
and R. intestinalis respectively; Fig. 4B and Supplementary Table 4).

For a mock community of three species, the absolute mean
difference between the expected abundance and CellScanner’s
prediction is 13%, 17 and 23% for R. intestinalis, E. coli and Bact.
uniformis respectively (Fig. 4C; Supplementary Table 5 shows the
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results when keeping ‘unknown’ events). Although the confusion
matrix (Fig. 4D) shows that E. coli should be easily distinguished
from the other bacteria, it is not always predicted in the correct
proportion (e.g., Fig. 4C, Ratio 3). In conclusion, supervised
classification works well for some bacterial species combinations
but not for others, in agreement with previous findings [33].

The experiments described above were performed with in vitro
mock communities with abundance measurements available for
each species for each ratio. Finally, we tested whether CellScanner
could identify species in a community of four gut bacteria grown
together for 48 h. Since 50% of the events were classified as
‘unknown’ using the settings as described in the “Methods”
(Supplementary Fig. 5 and Supplementary Table 6), we ran
CellScanner without any “unknown” assignment to assess how
these previous “unknown” events were classified (Fig. 5). In both
cases, CellScanner and 16S rRNA gene sequencing agree on R.
intestinalis dominance after 24 and 48 h of growth. Although
CellScanner’s accuracy drops with increasing species number,
prediction of bacterial dominance is still in agreement with
sequencing results in this case.

Shape and size differences do not explain classification
accuracy

Flow cytometry data depends on physical characteristics of a cell
such as size (forward scatter) and shape (side scatter). To test
whether differences in size and shape improve classification
accuracy, we compared all 66 pairwise predictions for 12 gut
bacterial species in silico (Supplementary Fig. 6) and found that
difference in shape is not sufficient to ensure a high accuracy
(>80%, Fig. 6A) and that vice versa, species pairs with the same
shape can reach high accuracies. For instance, 89% of the pairwise
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Fig. 5 Comparison of 16S rRNA gene sequencing and supervised classification of flow cytometry data for a four-species coculture grown
for 48 hours. In this case, the ‘unknown’ setting (see Methods) was switched off, since more than half of the events was classified as ‘unknown’
(RI dominance is also seen when keeping unknowns, see Supplementary Fig. 5). Three biological replicates are shown as co1, co2, and co3.

Flow cytometry was carried out with CytoFLEX.

predictions within the bacillus group resulted in an F1 score
greater than 80%. Next, we compared the importance of different
features of FC data (i.e, forward scatter, side scatter etc.) for
species classification. The feature importance was calculated with
Lime (see “Methods”), a program that compares the feature value
for each event to the feature values of the training dataset with
similar values to assess with which probability this feature
represents a specific species. This way, Lime assesses whether a
particular feature makes a useful contribution to the classification
task.

We assessed feature importance for all 66 pair-wise predictions
for 12 bacteria in silico (Fig. 6B) and confirmed that neither size
nor shape was sufficient to separate species. For all predictions,
forward and side scatter had a lower importance (respectively 10
and 12% of the global importance on average) than the other
features together (78% of the global importance on average), but
they also contributed to classification. Thus, more than two
features are needed to separate the species with high accuracy,
emphasizing that multivariate data are necessary for classification.
As expected, the feature importance of fluorescence channels
decreased with their distance to the SYBR-Green emission
spectrum, with FL-1 having the highest and FL-4 the lowest
values. In addition, we found that 50 of the pairwise predictions
with a forward scatter feature importance value higher than 20%
were related to Bif. adolescentis (bifid group). This suggests that
the shape of this species is distinct enough from the others to
have an impact on species classification.

Species properties in flow cytometry data differ across
biological replicates

To assess the robustness of the predictions to biological variation,
we tested whether CellScanner could distinguish monoculture
data of the same species across biological replicates. We mixed
monoculture data of each species to obtain in silico communities.
Bact. thetaiotaomicron biological replicates are separated with an
accuracy of 68% and Bl. hydrogenotrophica with 65%, for seven
monocultures each. The other species are harder to distinguish
between experiments, in particular E. coli for which we observed
an accuracy of 36% (Fig. 6C). Differences between monocultures
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of Bact. thetaiotaomicron are already apparent in the 3D plot,
where the clusters are distinct (Supplementary Fig. 7).

To confirm that monocultures of the same species can vary
from one experiment to another, and to emphasize that this
variation depends on the species, we assessed intra- and inter-
cluster variation (Fig. 6C). We computed intra-cluster variation as
the mean of all pairwise Euclidean distances between events per
experiment and then averaged across all experiments of a
species. For inter-cluster variation, we computed the mean
pairwise Euclidean distance between experiment centroids,
where the centroid is defined as the mean distance between
experiment-specific events. A large intra-cluster variation is due
to high heterogeneity within experiments whereas a large inter-
cluster variation indicates high variation between experiments.
We also assessed the variability across technical replicates, which
is small compared to biological replicates (Supplementary Fig. 8,
Supplementary Table 3). These results confirm that clusters
change across biological replicates, and that this change is
species-specific (e.g., strong for Bact. thetaiotaomicron and weak
for E. coli).

We observed the highest intra- and inter-cluster variation for
the blanks (Fig. 6C), which we attribute to the small number of
particles and to their high diversity. Because the size and shape of
particles in the blanks differ, they do not always form a well-
defined cluster. However, their features are distinct enough to
separate these particles from events representing bacterial cells
using supervised classification.

In summary, heterogeneity across biological replicates is
variable and species-specific.

DISCUSSION

In this study, we evaluated supervised classification applied to FC
data as a method to count gut bacterial species in mixtures.
Assessment of this method on mock communities in silico and
in vitro showed that it can resolve proportions in cocultures, but
also that its accuracy depends on the species combination. In
addition, in a low-complexity gut community, it reproduced trends
seen with 16S rRNA gene sequencing.
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Fig. 6 Impact of shape, features and heterogeneity on classification accuracy. A F1 score for pairwise in silico predictions within 12 species

(66 combinations) grouped by shape (i.e., Bacillus, coccus, bifid, coccobacillus). B Feature importance calculated with Lime. C-E Heterogeneity
assessed for seven biological replicates, for four species, Bact. thetaiotaomicron (BT), Bl. hydrogenotrophica (BH), R. intestinalis (Rl), E. coli (EC), and
medium debris (Blank). C Intra-cluster variation is computed as the mean pairwise Euclidean distance averaged across experiments per
species. D Inter-cluster variation is assessed as the mean of all pairwise centroid distances per species, where a centroid is computed for each
species-specific experiment. Accuracy refers to CellScanner accuracy when assigning events from merged replicates to the correct experiment
of origin. A low intra-cluster variation combined with a high inter-cluster variation reduces the overlap between experiment-specific clusters

and results in a high accuracy.

Our method has several advantages: it avoids labor-intensive
DNA extraction or plating, does not require fluorescent labeling of
species, and in contrast to 16S rRNA gene sequencing delivers
absolute abundances. However, the method is limited to
cocultures and small bacterial communities; we observed a
decline in accuracy with increasing species number (Fig. 2).

In the co-growth experiment (Fig. 5), it is of note that Bl
hydrogenotrophica disappears from the second replicate in 16S
data, but not in FC-based data. It may still be present in 16S rRNA
gene sequencing data but was too rare to be captured during
sequencing. Alternatively, in FC data, cells from other species may
have been misclassified as Bl. hydrogenotrophica, inflating its
abundance in FC-based counts (Supplementary Fig. 9). However,
16S rRNA gene sequencing accuracy in small communities can
also be low. For example, the 16S rRNA gene sequencing results
differed on average 25% for the expected abundance in the mock
community with E. coli expressing mCherry (Gram-negative) and R.
intestinalis (Gram-positive), but only 9% in the community with R.
intestinalis and F. prausnitzii, where both bacteria are Gram-
positive. This variation is in line with previous studies showing that
16S rRNA gene sequencing results of mock communities did not
match the expected community compositions [46-48]. In the
absence of a ground truth for the co-growth experiment, we do
not know which technique is closer to the true counts.

We show that FC features linked to cell shape and size are not
sufficient to distinguish species. FC-based data are commonly
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analyzed by incorporating one or two features at the same time
(2-D histograms). In the present study, feature importance was
often evenly spread across three or more features when classifying
species pairs and also included spillover channels. This is in line
with previous experiments [49], where the authors show (using
the same FC instrument), that FL1, FL2, FSC and FL3 are the
channels resulting in the best identification. In addition, they note
that with increasing community complexity, more channels are
needed for an optimal identification. It is therefore important to
use multivariate methods to benefit from all generated data in
order to classify each event with higher accuracy. In our
experiments, a single non-discriminating dye (SYBR Green)
staining all cells was combined with an E. coli strain expressing
a fluorescent protein to be able to distinguish it from other
species. As expected, a species-specific fluorescent label increased
the accuracy of supervised classification (Supplementary Table 7).
Likely, further combinations with other fluorescent labels allowing
to distinguish different species may lead to an increased accuracy
of single-cell predictions in (complex) microbial communities
[50, 51]. For instance, a fluorescent polyclonal antibody against F.
prausnitzii was developed recently for use in flow cytometry [52].

For some species such as E. coli, variability across biological
replicates of monocultures was low, while other bacteria (e.g.,
Bact. thetaiotaomicron and Bl. hydrogenotrophica) showed con-
siderable variation. We found technical variability to be consis-
tently small (Supplementary Fig. 8), implying that the variability
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mostly had biological sources. Vives-Rego et al. [53] hypothesized
that both cell size diversity and cell cycle variations lie at the
origin of experimental variation. This can influence the mono-
culture data when comparing datasets from different experi-
ments with the same bacterial monoculture measurements. We
tried to keep this to a minimum in our experiments by using
bacteria in the stationary phase of the growth cycle and using the
same medium for each experiment. Another reason for the
variability could be explained by bacterial aggregation, which
may differ for each species per experiment and could influence
the measured parameters [54]. We accounted for this by
vortexing the samples, but since we are not sure whether this
resolved the issue, it could be further explored in future studies.
In the case of Bact. thetaiotaomicron, biological variability can be
attributed to cell shape switching between three morphologies
resembling the Greek letters 6, 1 and o [55]. However, cell shape
variation is probably not the only factor explaining biological
variability since heterogeneity is also observed for other bacteria
with only one cell shape such as Bl. hydrogenotrophica [56]. The
latter species can occur singly or in pairs, which might affect the
readings in the flow cytometer if they cross the light beam when
still attached to each other. An important additional limitation of
our method is the observation that coculturing bacteria can lead
to reduced phenotypic heterogeneities [57], and therefore the
characteristics measured in monocultures might not always
represent the same characteristics when grown in coculture.
Future research could identify the traits that affect the features
measured by FC. If one of the species in the coculture could be
distinctly labeled, classifiers could be trained on these events
without taking the channels used for the label into account.
Subsequently, these classifiers could be used on a community
without labeled species. Although this would require initial
labeling of species, the labeling step(s) could be omitted later
allowing for a more efficient throughput of samples. The need for
training data (and hence monocultures) for different media and
physiological states could be overcome with unsupervised
clustering approaches. However, such approaches would require
a method of linking clusters to species and may not be
sufficiently accurate. Alternatively, a publicly available collection
of monocultures and trained classifiers built by the research
community could address this problem in the long term.

The method was tested on gut bacteria in stationary phase.
Since cells may change their physiology throughout the growth
curve, it is a limitation of this method that mono- and coculture
samples need to be taken from the same growth phase. In
addition to using calibration beads to calibrate the flow
cytometer, a standardized bacterial mock community could be
used to account for differences in sample handling during
different FC experiments [58].

The field of flow cytometry is constantly evolving and detection
of small particles is getting more accurate. As the resolution of FC
instruments increases, we are able to obtain more detailed data
for each event, which will increase classification accuracy. In
addition, better and smaller cameras improve imaging technolo-
gies for FC (IFC), which allows capturing a photo of each individual
event that could subsequently be automatically analyzed. IFC can
capture multiple cellular parameters such as size, volume, and
shape [59-61]. Combining the multiparametric data from conven-
tional FC and IFC could further boost the accuracy of supervised
classification. In addition, more recent machine learning techni-
ques, such as UMAP, may outperform the classification technique
used here [62].

Taken together, our results illustrate that machine learning
combined with FC can give accurate abundances for unlabeled
species in cocultures and captures trends in small communities. In
combination with multiplex labeling, this approach has the
potential to become a fast yet accurate technique for differential
counting of microorganisms in small communities.
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DATA AVAILABILITY

CellScanner is available on GitHub: https://github.com/Clem-Jos/CellScanner. All flow
cytometry data is available on flowrepository.org. To open the link, please paste it
into a browser. Ratios BT & CA: https://flowrepository.org/id/FR-FCM-Z3TX Ratios RI,
FP & EC: https:/flowrepository.org/id/FR-FCM-Z3TM Ratios RI, BU & EC https://
flowrepository.org/id/FR-FCM-Z3TP  Cogrowth of RI, BH, BT & FP: https://
flowrepository.org/id/FR-FCM-Z3TQ Monoculture data: https://flowrepository.org/id/
FR-FCM-Z3U2
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