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Abstract

Purpose—To enable fast reconstruction of quantitative susceptibility maps with Total Variation

penalty and automatic regularization parameter selection.

Methods—ℓ1-regularized susceptibility mapping is accelerated by variable-splitting, which

allows closed-form evaluation of each iteration of the algorithm by soft thresholding and FFTs.

This fast algorithm also renders automatic regularization parameter estimation practical. A

weighting mask derived from the magnitude signal can be incorporated to allow edge-aware

regularization.

Results—Compared to the nonlinear Conjugate Gradient (CG) solver, the proposed method

offers 20× speed-up in reconstruction time. A complete pipeline including Laplacian phase

unwrapping, background phase removal with SHARP filtering and ℓ1-regularized dipole inversion

at 0.6 mm isotropic resolution is completed in 1.2 minutes using Matlab on a standard workstation

compared to 22 minutes using the Conjugate Gradient solver. This fast reconstruction allows

estimation of regularization parameters with the L-curve method in 13 minutes, which would have

taken 4 hours with the CG algorithm. Proposed method also permits magnitude-weighted

regularization, which prevents smoothing across edges identified on the magnitude signal. This

more complicated optimization problem is solved 5× faster than the nonlinear CG approach.

Utility of the proposed method is also demonstrated in functional BOLD susceptibility mapping,

where processing of the massive time-series dataset would otherwise be prohibitive with the CG

solver.

Conclusion—Online reconstruction of regularized susceptibility maps may become feasible

with the proposed dipole inversion.
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Introduction

Quantitative Susceptibility Mapping (QSM) aims to estimate the underlying magnetic

susceptibility of the tissues that give rise to subtle changes in the magnetic field. Mapping

this property allows quantification of tissue iron concentration (1,2), vessel oxygen

saturation (3–6), and has found recent use in the investigation of neurodegenerative diseases

such as multiple sclerosis (7) and characterization of brain lesions (8).

Tissue susceptibility χ is related to the measured field map ϕ via the relation DFχ = Fϕ,

where F is the discrete Fourier Transform operator and  is the susceptibility

kernel in k-space (9). This kernel effectively undersamples the frequency content of the field

map on the conical surface , which makes the inversion of the relation ill-

conditioned. Existing approaches improve conditioning either by imposing prior knowledge

on the reconstructed susceptibility map (10–12), or by collecting additional data by changing

the orientation of the sample with respect to the main field (13,14). Compared to the

regularized reconstruction techniques that employ a signal prior, multi-orientation methods

yield susceptibility maps with superior quality, however at the cost of increased scan time

and patient discomfort (15).

Single-orientation, regularized QSM methods often impose sparsity or smoothness

constraints on the spatial gradients of the reconstructed susceptibility map, which can be

formulated by penalizing the ℓ1- or ℓ2-norm of the gradients in three dimensions (10–12,16).

The two types of regularized reconstruction methods can be expressed as an unconstrained

convex optimization problem, minimizing either

(1)

(2)

where α and β are regularization parameters and G = [Gx; Gy; Gz] is the gradient operator in

three spatial dimensions. The diagonal weighting term W can either be taken to be the

identity matrix I, or a binary mask W = [Wx; Wy; Wz] derived from the magnitude signal

can be employed to prevent penalizing certain gradient features (10–12). These two

optimization problems are conventionally solved with the iterative nonlinear Conjugate

Gradient algorithm. Reconstruction times reported in the literature range between 20

minutes (11,12) to 2–3 hours (17), which may be a limiting factor for the online

reconstruction of susceptibility maps required for routine use or in clinical settings.

Moreover, the parameters α and β need to be determined for optimal regularization, which is

usually addressed by performing multiple reconstructions while sweeping a range of
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parameters to trace the L-curve (18) or finding the operating point that satisfies the

discrepancy principle (19). As such, identification of suitable amount of regularization

would further increase the computation time.

We recently introduced a closed-form solution to the ℓ2-regularized QSM problem in Eq.2

without magnitude weighting (W = I) (20). This method requires only two Fast Fourier

Transform (FFT) operations and takes less than a second to compute for a high-resolution

phase data. In contrast, a closed-form solution to the ℓ1-constrained problem in Eq.1 does

not exist, which forces the existing algorithms to operate iteratively. Previously, ℓ1-

regularized reconstruction was shown to be superior to ℓ2-penalty both in image quality and

quantification accuracy (12). The ℓ1-regularized results presented herein also show

substantially reduced reconstruction error on numerical simulation, and better estimation of

undersampled content near the magic angle on in vivo data. In this article, we propose a fast

ℓ1-regularized QSM algorithm that works iteratively, however each iteration is computed

efficiently in closed-form. We also extend these fast ℓ1- and ℓ2-regularized solvers to

incorporate magnitude prior.

This work employs an efficient variable-splitting algorithm (21) to solve Eq.1 without

magnitude weighting, and reports 20× speed up in reconstruction time compared to the

nonlinear Conjugate Gradient solver (12,16). By introducing an auxiliary variable that

replaces the image gradient, each iteration of the proposed algorithm is computed in closed-

form, requiring only Fast Fourier Transforms (FFTs) and soft thresholding operations. With

the proposed formulation, reconstruction for high-resolution in vivo susceptibility mapping

at 0.6 mm isotropic voxel size takes 1 minute (using Matlab on a standard workstation).

Combined with state-of-the-art phase unwrapping and background phase removal methods

(14,22), this comprises a fast reconstruction pipeline that might facilitate clinical application

of QSM. In the Discussion section, we outline the differences between the presented

methods and a similar variable-splitting algorithm for QSM previously proposed in the

elegant contribution by Chen et al. (23).

With the addition of magnitude prior, solution of both ℓ1- and ℓ2-regularized problems

become more involved, since the related linear systems that need to be inverted are no

longer diagonal. By employing a preconditioner that facilitates the inversion of these

systems, we obtain a rapid iterative solver that leads to substantial computational savings.

Relative to the nonlinear CG method, we demonstrate 5 and 15× speed-up for the

magnitude-weighted ℓ1- and ℓ2-regularization, respectively.

Specific contributions of this work are,

i. Fast susceptibility mapping with ℓ1- and ℓ2-regularization: proposed ℓ1-

regularized algorithm is 20× faster than conventional Conjugate Gradient solver.

We also introduce ℓ1- and ℓ2-based solvers with magnitude prior that allow edge-

aware regularization, while achieving 5 and 15× speed-up over the CG approach.

ii. Automatic regularization parameter selection: using the L-curve heuristic, the

parameter that yields the maximum curvature on the curve is selected as the

optimal operating point. Sweeping the L-curve becomes practical with the proposed
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fast reconstruction, whereas parameter selection with Conjugate Gradient solver

would take several hours of computation.

iii. Functional BOLD susceptibility mapping (6,24,25): combination of fast phase

unwrapping, background phase removal, regularization parameter estimation and

susceptibility inversion makes reconstruction of large time-series datasets feasible,

thus making investigation of functional BOLD QSM practical.

iv. Reproducible research: Matlab code for the complete reconstruction pipeline

(Laplacian unwrapping, SHARP filtering, ℓ2- and ℓ1- regularized fast susceptibility

mapping with magnitude weighting and parameter estimation) is included as

supplementary material and made available online on the author’s webpage at:

http://web.mit.edu/berkin/www/Fast_QSM_Magnitude_Toolbox.zip

A copy of the source code is also deposited into a git archive at the following

address: https://sourceforge.net/projects/fastqsm/

Theory

i. Proposed ℓ2-Regularized QSM Algorithms

The global optimizer of the convex optimization problem in Eq.2 can be obtained by taking

the gradient and setting it to zero, i.e.,

(3)

The solution of this linear system is facilitated by evaluating the spatial gradient via

multiplication in k-space rather than using convolution in image space. This can be

accomplished by expressing the image gradient along the x-axis as Gx = F−1ExF, where Ex

is a diagonal matrix that provides the k-space representation of the image-domain

differencing operator δx − δx−1. Ex can be constructed by starting from the vector vx with

entries , where i = 0, …, Nx − 1 and Nx is the matrix size

along x. When vx is replicated along ky and kz dimensions in k-space to generate an image

volume of size Nx × Ny × Nz, the matrix Ex can be obtained by assigning this volume to

diagonal entries of Ex. The operators Ey and Ez are similarly defined. Eq.3 then becomes

(4)

where E = [Ex; Ey; Ez]. We recently proposed (20) a fast solution to Eq.4 when no

magnitude weighting is used (W = I). In this special case, further simplification of Eq.4

yields

(5)

Note that the matrix inversion now involves only diagonal matrices, hence it is

straightforward to evaluate. The total cost of ℓ2-regularized QSM is then two FFT operations
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and summation and multiplication of diagonal matrices. These usually take less than a

second for three-dimensional high-resolution image volume.

With the inclusion of magnitude weighting W, the system that needs to be solved becomes,

(6)

Because this system is no longer diagonal, its inversion is more involved. The linear

conjugate gradient algorithm is a popular technique used for solution of such symmetric,

positive definite systems. The convergence speed of this method is determined by the

condition number of the matrix A = (D2 + β · EHFW2F−1E). The conditioning can be

improved if the matrix A can be brought closer to being identity I. We propose to use the

closed-form solution in Eq.5 as preconditioner and solve the modified system,

(7)

Since (D2 + β · E2) is diagonal, it is straightforward to compute its inverse and convenient to

use it as a preconditioner. When the gradients of the magnitude image are thresholded so

that the strongest 30 % voxels within the brain mask are considered to be edges as suggested

in (26), the resulting W matrix is equal to the identity I except for ~5 % of its entries. This

makes the approximation (D2 + β · E2)−1 ≈ A−1 valid, and renders the preconditioner useful.

The closed-form solution in Eq.5 can be used as an initial guess to further accelerate

convergence.

Herein, the native Matlab function pcg.m is used for solving Eq.7. The major cost of each

iteration is 6 FFTs required for the operator A.

ii. ℓ1-Regularized QSM with Nonlinear Conjugate Gradient Solver

Nonlinear Conjugate Gradient (CG) is a popular method that is especially suitable for

solution of large-scale optimization problems. It requires evaluation of only the first-order

derivatives and has better convergence properties than simple gradient descent techniques.

The algorithm can be summarized as follows:

Conjugate Gradient Algorithm for ℓ1 – Regularized QSM

precomputation: DFχ, DF(∆χ), WGχ, WG(∆χ)

line search for stepsize τ: 

χ update: χ = χ + τ · ∆χ

gradient update: gnew = F−1D(DFχ − Fϕ) + α · GTWT sign(WGχ)

parameter update: b = ||gnew||2/||gprev||2
gprev = gnew

∆χ update: ∆χ = b middot; ∆χ − gnew

Bilgic et al. Page 5

Magn Reson Med. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Note that the data consistency term for the CG algorithm is taken to be 

instead of  as in Eq.1. Due to Parseval’s relation, the two terms are

equivalent, however using this alternative formulation avoids four redundant FFT operations

per iteration. The algorithm terminates when a user-specified convergence criterion is met.

Per iteration, it requires four FFT operations and four spatial gradient evaluations (two for

precomputation and two for gradient update). Since each gradient computation involves

finite differences in three dimensions, total cost of the algorithm is twelve differencing

operations and four FFT operations per iteration.

iii. Proposed ℓ1-Regularized QSM Algorithms

The proposed approach relies on a fast algorithm that was initially proposed for

reconstruction of undersampled k-space data in the context of compressed sensing (21).

Here, this method is extended to susceptibility mapping using the following formulation,

(8)

This constrained objective is first relaxed to an unconstrained optimization problem, then

solved with the two-phase “split-Bregman” iteration:

at iteration t,

(9)

(10)

Here, y is an auxiliary variable that replaces the magnitude-weighted gradient of the

susceptibility map χ. This idea of variable splitting will allow closed-form optimization via

the soft thresholding operator. The variable η adds the mismatch in WGχ = y back to the

unconstrained problem to enforce this constraint. Eq.9 can be solved efficiently by

iteratively minimizing with respect to χ and y separately:

(11)

(12)

The optimality condition for Eq.11 can be found by taking the gradient and setting it to zero,

(13)
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For the special case where magnitude weighting is not utilized (W = I), the solution to Eq.13

can be evaluated in closed-form to obtain the following update rule for χ:

(14)

Here,  and the variables yt and ηt have components in three dimensions,

yt = [yt,x; yt,y; yt,z] and ηt = [ηt,x; ηt,y; ηt,z]. The matrix inversion involves only diagonal

matrices and needs to be computed once. The cost of evaluating Eq.14 is three FFT

operations (one for each spatial axis) and element-wise multiplications. The update for the

susceptibility map is performed in k-space, thereby avoiding one redundant inverse FFT

operation per iteration.

In the presence of magnitude weighting, Eq.13 no longer admits a closed-form solution.

However, further simplification leads to a system similar to Eq.6 encountered while solving

the magnitude-weighted ℓ2-based problem,

(15)

This equation can be efficiently solved with the linear conjugate gradient method by again

employing the preconditioner (D2 + µ · E2). Convergence behavior can be substantially

enhanced if the solution from the previous iteration χt is used as an initial guess. As the

variable-splitting algorithm iterates, the difference between the successive solutions χt and

χt+1 decrease progressively. Using such a suitable initial guess, preconditioned conjugate

gradient can solve Eq.15 within 1% tolerance in a couple of steps.

Regardless of the magnitude weighting, solution to ℓ1-regularized least squares problem in

Eq.12 is given by the element-wise soft thresholding operation,

(16)

This operator is applied to all three components of yt+1. To compute the gradient in x

direction Gxχt+1, the k-space representation of the current susceptibility estimate Fχt+1 is

utilized due to Gxχt+1 = F−1Ex(Fχt+1). This way, the update rule in Eq.16 requires three

inverse FFT operations (one for each spatial axis) and simple thresholding operations.

Combining the solutions to Eqs. 11, 12 with the update rule in Eq.16 yields the complete

algorithm for the proposed ℓ1-regularized reconstruction:

Proposed Algorithm for ℓ1 – Regularized QSM

initialization: y0,x = y0,y = y0,z = η0,x = η0,y = η0,z = 0

Fχ update: Solve (D2 + µ · EHFW2F−1E)Fχt+1 = DFϕ + µ · EHFWT(yt − ηt)
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gradient update: 

soft thresholding: 

residual update: 

Per iteration, the proposed method without magnitude weighting requires six FFT operations

(three for Fχ update due to Eq.14 and another three for gradient update) and simple

thresholding operations. Compared to the nonlinear Conjugate Gradient method, there is no

need to compute the twelve differencing operations in image space, however there are two

additional FFT operations per iteration. On the other hand, one iteration of the proposed

method with magnitude prior requires (6 + 6s) FFTs, where s is the number of steps it takes

to solve Eq.15.

Moreover, the proposed method introduces a second regularization parameter µ that must be

determined. Ref. (21) shows that this parameter does not change the solution to the

optimization problem, but affects the convergence speed. Empirically, a parameter that leads

to fast convergence can be identified on one subject, which might then generalize to

different datasets. Alternatively, an automatic way to select this parameter will be proposed

in the Methods section, which was observed to yield fast convergence speed.

Methods

The performance of the proposed method was validated on a numerical phantom with

known susceptibility. In addition, two in vivo datasets were reconstructed: a high-resolution

whole brain 3D gradient echo (GRE) acquired at 3T with 0.6 mm isotropic resolution, and a

whole brain gradient echo 2D echo-planar at 7T with 1.5 mm isotropic resolution acquired

as a time series. Subjects were scanned under the approval of the local Institutional Review

Board. All computations were performed in Matlab using a workstation with 32 processors

(AMD Opteron 6282 SE) and 128 GB memory.

1. Numerical Susceptibility Phantom

A three-compartment phantom of size 246×246×162 with known susceptibility was

generated. Within each compartment, susceptibility was fixed and constant at χgray =

−0.023, χwhite = 0.027 and χcsf = −0.018 ppm (27). From this distribution χ, the field map ϕ

was generated using forward dipole model ϕ = F−1DFχ, to which random Gaussian i.i.d.

noise with a peak signal to noise ratio (PSNR) of 100 was added (Fig. 1a), where PSNR was

defined to be the ratio of the maximum value in the field map to the noise standard
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deviation. Starting from this noisy field map, susceptibility maps were reconstructed using

three different methods:

i. ℓ2-regularized QSM with closed-form solution,

ii. ℓ1-regularization with nonlinear Conjugate Gradient solver, and

iii. Proposed ℓ1-regularization with variable-splitting.

The regularization parameters (β for ℓ2-regularization, α for Conjugate Gradient and λ for

the proposed method) were determined by parameter sweeping and the values that

minimized the normalized root mean square error (RMSE) relative to the true χ were

selected to be the optimal setting.

At the first iteration of the proposed algorithm, the initial estimate of the susceptibility map

is found by using the initial condition y0 = η0 = 0 in Eq.14. This yields

(17)

Note that this is exactly the same expression as Eq.5, which gave the optimizer for the ℓ2-

regularized QSM formulation. Hence, it is seen that the first iteration of the proposed ℓ1-

constrained algorithm is actually the solution to the original ℓ2-regularized problem in Eq.2.

Based on this, we propose to set µ to the optimal value of β found for the closed-form ℓ2-

reconstruction. The algorithm terminates when the change in k-space of the susceptibility

falls below 1%.

To hasten convergence, nonlinear Conjugate Gradient algorithm used the closed-form ℓ2-

reconstruction as initial guess, and the termination criterion was again less 1% change in

susceptibility.

Ref. (21) shows that the parameter µ controlling the gradient consistency term

 in the variable-splitting algorithm does not affect the solution but the

speed of convergence. To empirically test this property, the numerical phantom was also

reconstructed with various µ settings while keeping the ℓ1-parameter λ fixed at 10−5. To

enforce convergence, the algorithm was run for 300 iterations.

2. High-Resolution In Vivo 3D GRE

A 26 year old, female, healthy volunteer (having given informed consent) was scanned using

a dual-echo gradient echo sequence with full flow compensation along all three axes (28) at

a Siemens 3T system equipped with 32 receive channels. Imaging parameters were: 0.6 mm

isotropic resolution, repetition time (TR) = 26 ms, echo times (TE) = 8.1 and 20.3 ms,

matrix size = 384×336×224, GRAPPA acceleration factor = 2, phase partial Fourier = 75%

and acquisition time = 15:42 min. Additional GRE data were collected with the same spatial

coverage but at a lower resolution of 1.8×1.8×2.4 mm3 at five different TEs (6 to 10 ms with

1 ms intervals). The radiofrequency (RF) phase offset of each channel at TE = 0 was

estimated using a linear fit to the phase images corresponding to the five acquired echoes.

The estimated offset per channel was then removed from the 0.6 mm high-resolution phase
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data (29). Finally, magnitude-weighted, phase-valued coil combination (30) was performed

and is given by

(18)

Combined phase image at TE = 8.1 ms was masked using a binary-valued region of interest

(ROI) generated with FSL-BET (31) (Fig. 2a). This wrapped-phase image was unwrapped

with the fast Laplacian unwrapping algorithm (22) (Fig. 2b) and the background

contributions due to air-tissue interfaces were removed with SHARP filtering (14) (Fig. 2c).

The truncation level for SHARP was set to 0.05 as in (14) and following (32), the kernel size

was set to 9×9×9 pixels so that the filter length was about 5 mm isotropic.

The regularization parameter β for closed-form ℓ2-regularization without magnitude prior

was selected using the L-curve heuristic (18) (Fig. 3). Since the L-curve traced by the data

consistency and regularization terms as β varied did not have a clear elbow point, the point

with the largest curvature was selected as the optimal operating point. The curvature κ was

computed as in (18),

(19)

Here,  and  and ω,̇ ρ,̇ ω̈ and ρ̈ represent first and

second derivatives of ω and ρ with respect to β. Since the L-curve is only sampled at discrete

points, we fit cubic splines to ρ and ω to express them as smooth functions of β, which can

then be differentiated.

Proposed magnitude-weighted ℓ2-based reconstruction with the preconditioned conjugate

gradient solver used the same β parameter. The termination criterion for this iterative

approach was to attain 0.1 % tolerance, where tolerance is defined as ||Ax − b2/b2 regarding

the solution of the system Ax=b. The magnitude prior was derived by thresholding the

spatial gradients of the magnitude signal so that 30 % voxels in the brain mask with the

strongest gradients were considered to be edges (26).

Regarding the proposed ℓ1-based method without magnitude weighting, the smoothing

parameter λ was similarly determined by maximizing the curvature of the L-curve (Fig. 4).

Each point on the L-curve was reconstructed using 10 iterations of the proposed algorithm.

Based on the observation that the initial iteration yields the ℓ2-regularized reconstruction, the

consistency parameter µ was set to the optimal β determined for the closed-form solution.

The algorithm terminated when there was less than 1 % change in the k-space of the

susceptibility map.

The dependence of convergence speed of the proposed ℓ1-based method on gradient

consistency µ parameter was also investigated. Reconstructions with parameters that are 10-
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times larger and 10-times smaller than the optimal choice of µ were performed with the

same 1 % change convergence criterion.

Reconstruction with ℓ1-regularization using magnitude prior employed the same λ parameter

identified from the L-curve analysis. The tolerance of the preconditioned conjugate gradient

used at each iteration was set to 1 %, and the algorithm terminated when the updates

between iterations was below 1 %.

The smoothing parameter α for the ℓ1-regularized nonlinear Conjugate Gradient method was

selected so that the data consistency of the final susceptibility map, ,

matched the consistency of the proposed reconstruction (Fig. 5). This strategy aimed to

obtain comparable amounts of regularization with the two ℓ1-penalized algorithms. To

facilitate convergence, closed-form ℓ2-reconstruction was used as initial guess to start the

CG iterations, which terminated when there was less than 1 % change in the susceptibility

map.

3. In Vivo 2D EPI for Functional BOLD QSM

To emulate functional BOLD QSM data acquisition, a 35 year old, male, healthy volunteer

(having given informed consent) was scanned with a 2D echo-planar imaging trajectory

using a Siemens 7T system with a 32-channel receive coil array (33) and a birdcage transmit

coil at 1.5 mm isotropic resolution. The imaging parameters were: TR = 3660 ms, TE = 21

ms, matrix size = 128×128×76, total number of time points = 30, GRAPPA acceleration

factor = 3 (reconstruction performed offline in Matlab), slice acquisition order: ascending,

slice orientation: axial. Following (30), the relative phase offset of each coil image was

estimated from the center 3×3×3 pixels and removed from each coil. Magnitude-weighted

phase-valued coil combination was performed using Eq.18. A brain mask was generated

using FSL BET (31) based on the first frame in the time series. After masking, coil-

combined wrapped-phase image of each frame was processed with Laplacian unwrapping

(22) and SHARP filtering (14) (Fig. 7) with truncation level = 0.05 and kernel size = 3×3×3,

so that the resulting filter size was about 5 mm (32).

The resulting tissue phase series was inverted using closed-form ℓ2-regularized QSM and

the proposed ℓ1-based reconstruction without magnitude prior. Smoothing parameters β and

λ were selected with L-curve analysis using the mean tissue phase averaged over the 30

frames as the input. The gradient consistency parameter µ for the ℓ1-based method was again

set to the β value determined by L-curve. The proposed iterative algorithm terminated when

there was less than 1% signal change.

To quantify the stability of phase and susceptibility time-series, time-SNR (t-SNR) and

standard deviation maps were computed for the raw unwrapped phase, tissue phase after

background removal, and ℓ1- and ℓ2-regularized susceptibility maps. The “noise” term

involved in t-SNR computation was estimated by subtracting the time-average from each

time point in the series. Taking the standard deviation of noise over time yielded the

standard deviation maps. The “signal” term in the t-SNR metric was obtained by averaging

the data over time, then taking the absolute value of this result. The ratio of the signal and

standard deviation components yielded the t-SNR maps.
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Results

1. Numerical Susceptibility Phantom

Starting from the noisy field map in Fig. 1a, the closed-form ℓ2-reconstruction was

completed in 0.3 seconds with 17.5 % RMSE (Figs. 1b and c). The nonlinear Conjugate

Gradient method converged in 50 iterations and 258 seconds with 6.1 % error (Figs. 1d and

e). The proposed variable-splitting reconstruction was completed in 10 iterations and 13

seconds with 6.7 % RMSE (Figs. 1f and g). The parameter setting that was used in these

experiments was β = 2.2 · 10−4 (ℓ2-recon), α = 1.5 · 10−5 (CG), λ = 10−5 (proposed) and

these values were chosen to minimize the reconstruction error of each method.

When the proposed algorithm was run for 20 iterations (10 extra iterations), the error

decreased to 6.1 % and the reconstruction time increased to 25 seconds.

To test the effect of the parameter µ in the final susceptibility solution, a wide range of µ

values were swept with 300 iterations. The value of µ = 2.2 · 10−4 used in Fig. 1f yielded

5.95 % RMSE. The same error of 5.95 % was obtained at µ = 2.2 · 10−3 and 2.2 · 10−2, while

this was 6.02 % for 2.2 · 10−5.

2. High-Resolution In Vivo 3D GRE

The proposed fast phase processing pipeline allowed unwrapping and background removal

to be completed in 13 seconds for the high-resolution anatomical dataset (Fig. 2). Tracing

the L-curve with the ℓ2-based method took 42 seconds, where 15 reconstructions were made

for logarithmically-spaced β values between 10−3 and 1 (Fig. 3 top panel). The setting that

maximized the curvature of the L-curve was found to be β = 3.2 · 10−2, which was taken to

the optimal smoothing parameter value (Fig. 3b). Two additional reconstructions with

under- and over-regularization are depicted in Figs. 3a and c for comparison. Computation

time for each ℓ2-based susceptibility map was 0.9 seconds.

The smoothing parameter value corresponding to the largest curvature on the L-curve for

proposed ℓ1-regularization was found to be λ = 9.2 · 10−4. Total reconstruction time for 15

reconstructions with logarithmically-spaced λ values between 10−4 and 10−2.5 was 710

seconds (Fig. 4 top panel). Under-, optimally- and over-regularized susceptibility maps are

plotted in Figs. 4a to c for comparison. Processing time for the optimally-smoothed

reconstruction was 60 seconds and convergence criterion was met in 13 iterations.

The convergence speed of the ℓ1-based method was seen to be dependent on the selection of

µ parameter. The result reported in Fig. 4b was obtained with the heuristically selected value

of µ = 3.2 · 10−2. If the value of µ were instead chosen to be 10 times larger (3.2 · 10−1), the

1 % convergence criterion would be met in 20 iterations and 91 seconds. Using a parameter

value 10 times smaller than the optimal (3.2 · 10−3), it would take 25 iterations and 114

seconds to converge. These are both slower than the optimal setting that required 13

iterations and 60 seconds.

The nonlinear CG smoothing parameter value that yielded matching data consistency with

the proposed method was found to be α = 10−3. Computation took 1350 seconds for the
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nonlinear Conjugate Gradient method, corresponding to 50 iterations (Fig. 5b). If the

regularization parameter α had been estimated with the L-curve technique, the parameter

sweep would have taken ~4 hours with the CG algorithm.

Regularized susceptibility maps with and without magnitude prior are presented in Fig. 6.

To facilitate comparison, maximum intensity projections are taken over 3 mm thick slabs.

Compared to the closed-form solution in Fig. 6a that was computed in 0.9 seconds, ℓ2-based

reconstruction with magnitude prior in Fig. 6b took 88 seconds and 14 iterations. While the

proposed ℓ1-based method without magnitude weighting (Fig. 6c) converged in 60 seconds,

the processing time increased to 275 seconds when magnitude prior was included (Fig. 6d).

To demonstrate the effect of magnitude weighting, sagittal planes are further zoomed in.

Maximum intensity projections of tissue phase, ℓ2- and ℓ1-based susceptibility maps with

and without magnitude prior thorough axial, coronal and sagittal planes are depicted in Fig.

7. The corresponding k-space views are plotted in Fig. 8.

3. In Vivo 2D EPI for Functional QSM

Obtaining the tissue phase for the 30 time frames using Laplacian unwrapping and SHARP

filtering took 9 seconds in total (0.3 seconds per frame, Fig. 9). L-curve parameter value

estimation was performed once on the average tissue phase, and the resulting parameter

values were applied to the 30 frames. ℓ2-based parameter estimation took 2.7 seconds, while

tracing the L-curve took 44 seconds with the proposed ℓ1-based method. The ranges of the

parameter sweeps were again β ∈ {10−3, 1} and λ ∈ {10−4, 10−2.5} and the optimal

parameter values were found to be β = 3.2 · 10−2 and λ = 9.2 · 10−4.

Closed-form ℓ2-reconstruction completed in a total of 2.1 seconds (0.07 seconds per frame,

Fig. 10a), whereas the proposed method completed in 192 seconds (6.4 seconds per frame,

Fig. 10b).

Time-series standard deviation maps for phase and susceptibility signals are depicted in

Figs.10c–f. The standard deviation and time-SNR values averaged over the brain mask were

σ = 6 · 10−3 and t-SNR=19.1 for the raw phase (Fig. 10c), σ = 3.3 · 10−3 and t-SNR=3.8 for

the tissue phase (Fig. 10d), σ = 4.4 · 10−3 and t-SNR=5.4 for ℓ2-regularized susceptibility

maps (Fig. 10e), and σ = 4.7 · 10−3 and t-SNR=4.3 for ℓ1-based susceptibility reconstruction

(Fig. 10f).

Regularization parameters for the QSM algorithms employed in the reconstruction of the

three datasets are summarized in Table 1.

Discussion

This report introduces a fast Total Variation regularized QSM algorithm that achieves 20×

processing speed-up relative to conventional nonlinear Conjugate Gradient solver.

Compared to the previously reported computation times (20 minutes to several hours

(12,17)), the proposed algorithm drastically reduces the processing time down to 1 minute

for a whole brain high-resolution dataset. This efficient formulation of ℓ1-constrained

reconstruction might therefore facilitate the clinical use of regularized susceptibility
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mapping. The increased computational efficiency stems from two sources: To reach the

same convergence criterion, the proposed method requires about 4 times smaller number of

iterations. At each iteration, this algorithm uses 6 FFT operations whereas the nonlinear CG

solver needs 4 FFTs and 12 spatial differencing operations. The combined effect of smaller

number of iterations at reduced computational load leads to the observed speed-up. The

convergence criterion employed for the nonlinear CG algorithm was less than 1 % change in

the image-space representation of the susceptibility map, while this criterion was 1 %

change in the k-space representation of the susceptibility reconstruction for the split-

Bregman algorithm. More explicitly, we compute ||χnew − χprev||2/||χnew||2 for nonlinear CG,

and ||F · χnew − F · χprev||2/||F · χnew||2 for split-Bregman reconstruction. While the two

stopping criteria are seemingly different, they are in fact equivalent due to Parseval’s

theorem, as ||F · χ||2 = ||χ||2.

Combined with the previously proposed Laplacian phase unwrapping and SHARP filtering

steps (14,22), the proposed algorithm comprises a fast processing pipeline that produces

susceptibility maps from the wrapped phase data. As each dipole inversion can be completed

rapidly, automatic estimation of the regularization parameter also becomes practical. The

proposed method without magnitude prior is capable of tracing the L-curve faster than the

time it would take the Conjugate Gradient solver to complete a single reconstruction. For in

vivo whole brain susceptibility mapping at 0.6 mm isotropic resolution, the complete

pipeline of phase processing, parameter estimation and regularized QSM takes under 14

minutes. As the optimal smoothing parameters would be expected to remain within a certain

range across different datasets, it would be possible to further reduce the parameter

estimation time by considering a smaller interval of values. For studies that involve scanning

multiple subjects with similar imaging parameters, it might also be possible to determine the

regularization amount on one subject, and apply this to the rest of the subjects in the study.

Variable-splitting methods are well studied and popular in signal processing community.

These are also known as split-Bregman iterations (21) and have been deployed successfully

in compressed sensing applications for MRI (34). A variable-splitting method for

susceptibility mapping similar to the proposed algorithm was proposed in (23), which aims

to solve,

(20)

Compared to our formulation in Eq.9, this introduces a new variable ν and a third

regularization parameter γ. Since the tissue phase ϕ is the observed data, it should not be

necessary to further introduce an auxiliary variable ν to penalize these observations. By

omitting the term , we avoid selection of the third parameter γ and simplify the

reconstruction. Further, we extend the variable-splitting algorithm to admit magnitude

weighting on the spatial gradients. Originally proposed in the influential MEDI papers (10–

12), magnitude-weighted regularization aims to avoid smoothing across strong edges

identified on the magnitude signal. Since the linear system involved in the reconstruction is

no longer diagonal, we propose to use a preconditioned conjugate gradient solver for rapid
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matrix inversion. Despite the increased complexity of the optimization problem, the

resulting ℓ1-regularized algorithm with magnitude prior is still 5× faster than the nonlinear

CG technique.

Herein, ℓ2-regularized QSM is also extended to admit prior information derived from the

magnitude signal. While the resulting optimization problem is no longer solved in closed-

form, the proposed preconditioned linear solver allows significant computational savings.

To reach a tolerance level of 0.1 %, preconditioned solver requires 14 iterations, which take

1.5 minutes for the high-resolution in vivo dataset. Without the preconditioner, the same

tolerance level would have been reached with 30 iterations and more than twice the

processing time. At 0.1 % tolerance, the objective value of the ℓ2-penalized minimization

problem obtained with the proposed method was 381.9675. If the nonlinear CG algorithm

were used, the objective value at the end of reconstruction would have been 381.9684, with

a processing time of 22 minutes. Based on this, the proposed ℓ2-based algorithm with

magnitude prior is able to solve the optimization problem 15× faster compared to nonlinear

CG with similar accuracy.

Existing fast QSM algorithms include Thresholded K-space Division (TKD) (35,36) and the

closed-form ℓ2-constrained method that our group recently proposed (20). Although these

techniques are computationally very efficient (requiring only two FFT operations), their

regularization approaches might hamper the conspicuity of high spatial frequency

components, such as vessels and small iron-rich structures like the red nucleus. This point

can be appreciated on Figs.7b and d, where the vessels in the MIP image for ℓ2-penalized

reconstruction are visibly dimmer than their ℓ1-penalized counterparts without magnitude

prior. The difference stems from the fact that ℓ2-regularization enforces a smooth

susceptibility map whereas ℓ1-penalty imposes a piece-wise constant image model that

preserves sharp edges. The k-space views in Figs.8b and d also reveal that ℓ1-regularization

is more successful at estimating the undersampled content in the vicinity of the magic angle

relative to ℓ2-based QSM when no magnitude weighting is employed. To quantify the

improvement, k-space energy of the reconstructed maps at the frequencies where the

susceptibility kernel dampens the field map (frequencies k that satisfy D(kx, ky, kz) ≤ 0.25)

was computed. In this case, ℓ1-based maps had 11 % higher energy than the ℓ2-

reconstruction. Considering only high frequency content at this threshold level (D ≤ 0.25

and ), ℓ1-regularized map was found to have 69 % higher k-space

energy. However, the difference between the two regularization approaches would be

smaller when average susceptibility values are computed within anatomical boundaries of

large iron-rich structures such as putamen and globus pallidus (16).

Magnitude-weighted regularization might mitigate this drawback of ℓ2-based regularization

through edge-aware smoothing. As seen in Figs.6a and b, the conspicuity of vessels has

substantially increased when magnitude prior was involved in ℓ2-regularization. When Figs.

6c and d are compared, benefit of magnitude prior can also be observed in ℓ1-regularization,

albeit to a smaller degree. Effect of edge-aware dipole inversion can also be observed in the

susceptibility MIPs (Figs.7c and e) and in improved estimation of k-space content near the

magic angle (Figs.8c and e).
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Increased computational efficiency would have particular impact on processing large

datasets. Recently introduced functional susceptibility mapping (6,24,25) involves

reconstruction of a time series of three-dimensional phase images. The complete pipeline

consisting of phase unwrapping, background removal, smoothing parameter value

estimation and dipole inversion for 30 time frames at 1.5 mm isotropic resolution required 4

minutes when state-of-the-art phase processing and the proposed algorithm were combined.

The reconstruction time would otherwise exceed one hour with the nonlinear Conjugate

Gradient algorithm. As such, the proposed algorithm is expected to facilitate the

investigation of the relation between functional blood oxygenation dependent (BOLD)

contrast and changes in the underlying susceptibility distribution. To mitigate the low-spatial

frequency background variation in fMRI phase images, a combination of phase images at

different time-points can be utilized (e.g. by subtraction of the first time-point or of the

average phase over time) and then χ can be computed (6). While TKD and ℓ2-regularization

are linear in χ, ℓ1-regularization is a non-linear reconstruction technique. The resulting

susceptibility maps will be independent of the order in which subtraction and dipole

inversion are computed for TKD and ℓ2-penalty, however the ordering is important for ℓ1-

constrained inversion because of the thresholding step.

Phase processing and dipole inversion for EPI data acquired at 7T constitutes a challenging

problem, particularly due to imperfections associated with echo-planar k-space trajectory.

While 1.5 mm isotropic voxel size (Figs.9 and 10) is high-resolution for fMRI, it is

considerably lower than the resolution of the 3D GRE data acquired at 0.6 mm isotropic

voxel size (Figs. 2–8). As such, the EPI volumes do not have the same level of spatial detail

as the GRE images, however they are capable of representing variations in response to

neural activity and physiological changes since they constitute a time-series dataset. Relative

to the tissue phase images in Fig. 9, loss of spatial resolution can be observed in the ℓ2- and

ℓ1-constrained time-series in Figs.10a and b. Although the smoothing parameters β and λ

were selected with the L-curve method, the amount of regularization can also be tailored to a

particular problem while using the L-curve parameter values as useful landmarks (e.g. a

parameter 10% less than the L-curve selected value can be employed for reduced

smoothing). Once the regularization parameter is selected on a single time point, the same

value can be applied to the rest of the volumes in the time-series. This point constitutes the

major computational difference between the high-resolution 3D GRE dataset and the

functional QSM experiment.

Based on confounding effects of instrumental and physiological origin in the EPI phase

signal (6), we further acknowledge that extracting functional information is a difficult task

that requires stability over the time points. To quantify the stability in the raw unwrapped

phase, tissue phase, and ℓ2- and ℓ1-regularized time-series, we report average time-SNR and

maps of standard deviation over time in Figs.10c–f. The streaking artifacts visible in these

maps stem from imperfect estimation of the relative phase offset of each coil. This can be

mitigated by estimating the offset from a dual-echo acquisition (29). As a result of

deconvolution, ℓ2- and ℓ1-based susceptibility series exhibit 33 % and 42 % increase in

average standard deviation relative to the tissue phase. However, the time-SNR values in the

susceptibility maps are larger by 42 % and 13 % when compared to times-SNR value of the
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tissue phase, owing to the fact that the increase in the signal counterbalanced the increase in

the noise. It can also be seen that the noise standard deviation for ℓ1-based reconstruction

has substantial spatial variation. Based on the nonlinear nature of regularization, smooth

regions tend to remain below the ℓ1-threshold which leads to small standard deviation over

time. Further, a 5-fold reduction in time-SNR is observed between the raw unwrapped and

the tissue phase. Since the tissue component is about an order of magnitude smaller than the

background contribution, substantial reduction in the phase signal is expected when

background phase is eliminated.

In addition to the regularization parameter λ that adjusts the contribution of the signal prior

to the reconstructed susceptibility map, the proposed variable splitting formulation

introduces a second parameter µ that weights the gradient consistency due to

( ). While Ref. (21) shows that µ does not affect the solution but the speed

of convergence, a suitable parameter value still needs to be selected. For the in vivo setting,

we addressed the parameter identification problem by setting µ to the optimal ℓ2-parameter β

that was determined with the L-curve method. This heuristic selection was seen to yield

favorable convergence speed. Based on the numerical phantom experiments detailed under

Results section, the same reconstruction error was obtained when the value of µ varied

within three orders of magnitude range. This points out that the same susceptibility map is

obtained regardless of the value of µ. Regarding the convergence speed of the heuristically

selected µ parameter, the experiments performed on the in vivo dataset demonstrated that

using 10-times larger or 10-times smaller parameters lead to slower convergence. As such,

the heuristically selected parameter is seen to have favorable convergence characteristics in

practice.

Limitations

To compensate for the noise variation in the field map, a diagonal weighting M proportional

to the image magnitude can be included in the data consistency term (10,12,13). With this

refinement, the ℓ2-constrained problem becomes,

(21)

The optimizer of this expression is given by the solution of

(22)

This system needs to be solved iteratively, and the preconditioner (D2 + β · E2) is expected

to be less effective compared to its use without noise weighting M. A similar system arises

in the update formula for ℓ1-based reconstruction,

(23)
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Employing efficient matrix factorization algorithms could potentially facilitate these more

challenging matrix inversion problems (37,38).

Extensions

L-curve parameter estimation entails reconstruction with varying levels of regularization.

Because each reconstruction is independent of the others, they could be performed in

parallel for increased time efficiency.

The phase processing pipeline employed in the current work could be further refined. A

regularized version of the SHARP filter was recently proposed to enhance the quality of the

background phase removal (32,39). This improvement would however come at the cost of

additional processing time, as this regularized formulation is solved iteratively. A second

refinement would be to use a spatially varying SHARP kernel size, which would yield

higher quality tissue phase inside the brain, and reduce the amount erosion that needs to be

applied on the mask boundary (40). This improvement is included in the software package

that accompanies this manuscript.

Conclusion

This work introduces a variable-splitting algorithm that reduces the processing time of ℓ1-

regularized QSM by 20 times relative to the conventional nonlinear Conjugate Gradient

solver. Such efficient optimization also renders regularization parameter estimation with the

L-curve method practical. Combined with state-of-the-art phase unwrapping and

background removal techniques, the proposed algorithm comprises a pipeline that might

facilitate clinical use of susceptibility mapping. This method is also extended to admit prior

information derived from the magnitude signal for edge-aware regularization. The

developed fast dipole inversion methods are expected to facilitate the investigation of the

relation between the BOLD signal and the underlying tissue susceptibility changes by

reconstructing four-dimensional time-series datasets in feasible time.
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Fig. 1.

QSM with numerical phantom. RMSE values are computed relative to the known, ground-

truth susceptibility map. A field map was simulated using the true susceptibility, to which

noise with PSNR=100 was added to obtain the noisy field map in (a). QSM with closed-

form L2-regularization shown in (b) took 0.3 seconds, and the reconstruction error (c) was

17.5 %. L1-regularized Conjugate Gradient reconstruction took 258 seconds (d), and the

error (e) was 6.1 %. Proposed L1-constrained QSM was completed in 13 seconds (f), with

an RMSE of 6.7 % (g).
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Fig. 2.

Phase processing steps for in vivo 3D GRE data at 0.6 mm resolution. Starting from the coil-

combined, wrapped phase in (a), unwrapped phase data are obtained with Laplacian

unwrapping (b) in 6 seconds. Further processing with SHARP filtering yielded the tissue

field map (c) in 7 seconds.
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Fig. 3.

Closed-form L2-constrained reconstruction for 3D GRE. Upper panel: L-curve is traced in

42 seconds, and the parameter value that maximized the curvature was β = 3.2 · 10−2,

corresponding to the optimal level of regularization. In (a), (b) and (c), under-, optimally-

and over-regularized susceptibility maps are depicted. Each reconstruction took 0.9 seconds

of computation time.
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Fig. 4.

Proposed L1-constrained reconstruction for 3D GRE. Upper panel: L-curve is traced in 710

seconds, and the parameter value that maximized the curvature was λ = 9.2 · 10−4,

corresponding to the optimal level of regularization. In (a), (b) and (c), under-, optimally-

and over-regularized susceptibility maps are depicted. Under- and optimally-regularized

reconstructions took 60 seconds and 13 iterations to converge, while optimization took was

70 seconds and 15 iterations for the over-regularized case.
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Fig. 5.

Comparison of L1-regularized dipole inversion methods for in vivo 3D GRE. Proposed

algorithm in (a) converged in 60 seconds and 13 iterations, while it took 1350 seconds and

50 iterations for the Conjugate Gradient algorithm to finish (b).
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Fig. 6.

L2- and L1-regularized QSM with and without magnitude prior. Compared to closed-form

reconstruction in (a) that is completed in 0.9 seconds, magnitude weighted L2-regularization

in (b) requires 88 seconds of processing while increasing conspicuity of high-frequency

structures like vessels. Relative to the proposed L1-based method in (c), inclusion of

magnitude prior in (d) is computationally more demanding, requiring 275 seconds of

reconstruction.
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Fig. 7.

Maximum intensity projections (MIPs) of in vivo 3D GRE dataset. Tissue phase MIP is

shown in (a), and closed-form L2-based susceptibility map is depicted in (b). Projection for

the proposed L2-regularized QSM with magnitude prior is given in (c), and L1-based

reconstruction without (d) and with magnitude weighting is shown in (e). Note the increase

in the vessel susceptibility values estimated with the methods that utilize magnitude prior.
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Fig. 8.

K-space views for tissue phase (a), closed-form QSM (b), proposed L2-regularization with

magnitude weighting (c), L1-based reconstruction without (d), and with magnitude prior (e).

Note the increase in the k-space content near the magic angle for the methods that utilize

magnitude prior.
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Fig. 9.

Phase processing steps for in vivo EPI at 1.5 mm isotropic resolution acquired as a time-

series (frames 1 to 30). Starting from the coil-combined wrapped phase, application of

Laplacian unwrapping and SHARP filtering took 9 seconds for the 30 frames, corresponding

to 0.3 seconds/frame processing time.
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Fig. 10.

Reconstruction of 30 frames of EPI data with the closed-form L2-regularized QSM shown in

(a) was completed in 2.1 seconds, corresponding to 0.07 seconds/frame speed. Using the

proposed L1-based method shown in (b), the reconstruction time was 192 seconds for the 30

frames, yielding a processing speed of 6.4 seconds/frame. L-curve parameter estimation

took 2.7 seconds for L2- and 44 seconds for L1-constrained reconstruction. Standard

deviation maps of phase and susceptibility time-series are depicted in (c)–(f). Raw

unwrapped phase in (c) has a standard deviation of 6 · 10−3 over time, and a time-SNR of

19.1 averaged inside the brain mask. For tissue phase shown in (d), these values were σ =

3.3 · 10−3 and t-SNR=3.8. L2-regularized susceptibility time-series had σ = 4.4 · 10−3 and t-

SNR=5.4 (e), while L1-based reconstruction returned σ = 4.7 · 10−3 and t-SNR=4.3 (f).
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Table 1

QSM reconstruction algorithms and related regularization parameters

QSM Algorithm Parameter Numerical Phantom In Vivo 3D GRE In Vivo EPI

Closed-form ℓ2-regularization β (ℓ2 penalty) 2.2 · 10−4 3.2 · 10−2 3.2 · 10−2

Nonlinear CG ℓ1-regularization α (ℓ1 penalty) 1.5 · 10−5 1.0 · 10−3 –

Proposed ℓ1-regularization λ (ℓ1 penalty) 1.0 · 10−5 9.2 · 10−4 9.2 · 10−4

µ (gradient consistency) 2.2 · 10−4 3.2 · 10−2 3.2 · 10−2
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