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Fast Quantizing and Decoding Algorithms 
for Lattice Quantizers and Codes 

J. H. CONWAY AND N. J. A. SLOANE, FELLOW, IEEE 

Abstract-For each of the lattices A,(n 2 I), D,,(n 2 2), EC, E,, E,, 
and their duals a very fast algorithm is given for finding the closest lattice 
point to an arbitrary point. If these lattices are used for vector quantizing 
of uniformly distributed data, the algorithm finds the min imum distortion 
lattice point. If the lattices are used as codes for a Gaussian channel, the 
algorithm performs max imum likelihood decoding. 

I. INTRODUCTION 

T HE SO-CALLED root lattices are the n-dimensional 
lattices A, (n 2  l), o,(n 2  2), and  E,(n = 6,7,8) de- 

fined in Section II. These lattices and  their duals give rise 
to the densest known sphere packing and  coverings in 
dimensions n  I 8, -and they can be  used as the basis for 
efficient block quantizers for uniformly distributed inputs 
and  to construct codes for a  band-limited channel  with 
Gaussian noise (see [6], [9], [ 111, [ 161). Around each lattice 
point is its Voronoi region, consisting of all points of the 
underlying space which are closer to that lattice point than 
to any other. (Voronoi regions are also called Dirichlet 
regions, Brillouin zones, W igner-Seitz cells, or nearest 
neighbor regions.) If the lattice is used as a  quantizer, all 
the points in the Voronoi region around the lattice point x 
are represented by x; while if the lattice is used as a  code 
for a  Gaussian channel, all the points in the Vordnoi region 
around x are decoded as x. In the preceding paper  [6] we 
found the Voronoi regions for most of the root lattices and  
their duals, as well as the mean-squared quantization error 
when these lattices are used to quantize uniformly distrib- 
uted data. 

In the present paper  we give very fast and  simple algo- 
rithms which, for any of the lattices A,, D,, E,, and their 
duals (as well as many other lattices), find the closest 
lattice point to an  arbitrary point of the space. In other 
words the algorithms find which Voronoi region the given 
point belongs to. The  algorithms can therefore be  used 
either for vector quantizing or for channel  decoding. The  
running time  of the algorithms for D,,, D,*, E,, and E,* is 
proportional to n, while for A, and  A: it is proportional to 
n log n and n210g  n, respectively. 

Although considerable work has been  done  in the past 
on  n-dimensional quantizers and  codes (see [l], [3], [8], [9], 
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[ 141, [16]-[18], and  the references given there), these 
rithms appear  to be  new. 

II. DEFINITIONOF ROOT LATTICESANDTHEIR 
DUALS 

227 

algo- 

If a,;.., (I, are linearly indepenhent vectors in m-di- 
mensional real Euclidean space R” with m 2 n, the set of 
all vectors 

x = uia* + . * * fu (I n  EL) 

where u,; . ., u, are arbitrary integers, is called an  n-di- 
mensional lattice A. The  dual (or reciprocal) lattice A* 
consists of all points y in the subspace of !R” spanned by 
41,’ * *,a, such that the inner product x . y = x,y, 
+ . . . +x,y, is an  integer for all x E A. Most of the 
lattices considered here are contained in their duals, so that 
there are coset representatives Q , * . . , rd-, such that 

d-l 
A* = u (q + A). 

i=O 
(1) 

The  number  d is called the determinant of A. The  norm (or 
energy) of a  vector x = (x,; * .,xm) E IR” is 

llxll = Jxx = ( ~x,y2. 

For further information about lattices see for example [2], 
[41-[71, Vll, W I, V51, P61. 

For n 2 1, A, is the n-dimensional’ lattice consisting of 
the points (x0, x,; . . ,x,) having integer coordinates that 
sum to zero. (Thus A, is an  n-dimensional lattice described 
by (n + 1)-dimensional coordinates.) If two lattices A and 
B differ only by a  rotation and  change of scale, we say they 
are equivalent and  write A = B. Then  A, is equivalent to 
the one-dimensional lattice of integer points, Z, and  A, is 
equivalent to the familiar two-dimensional hexagonal  lattice 
(see F ig. 1). 

The  dual lattice A; consists of the union of n + 1 cosets 
of A,: 

A; = ;; (q + A,,), (2) 
i=O 

’ The subscript gives the dimension of the lattice. 
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where, for i = 0, 1; . .,n and j = n + 1 - i, 

zi d . . . - - . . . - -j i i 
‘n+l’n+l’ ‘n+l 

= ((&(&)j). (3) 
Then AT = A, = Z and AI = A,. Also A, (- D3) is the 
face-centered cubic lattice and A; (- 0:) is the body- 
centered cubic lattice. It is kniiwn that A, is the optimal 
two-dimensional quantizer for a uniformly distributed in- 
put, and it is conjectured that A: is optimal in three 
dimensions. 

For N 2 2, D,, consists of the points (x,, x1,*. .,x,) 
having integer coordinates with an even sum. The dual D,* 
is the union of four cosets of 0,: 

D,* = ;1 (q + D,), (4) 
i=O 

where 

r. = (On], r, = (in), 

r, = (On-‘, l), ij = (in-‘, -4). 

Also D2 = A, @A, = Of, D, = A,, and 0: = D4. 
For example the vectors of small norm in D4 consist of 

all permutations and sign changes of the following: 

We number norm2 

(0, 0, 0, 0) 1 0 
(*l,-cl, 0, 0) 24 2 

(k2, 0, 0, 0) 8 4 

(r’l,-cl,?l,&l) 16 * 4 

(t2, tl, -cl, 0) 96 6 

(22, 22,‘ 0, 0) 24 8 

(See also [16, Table VI.) 
(5) 

There is a second, equivalent definition of D,* which is 
sometimes easier to use: D,* consists of the points of the 
n-dimensional integer lattice H”, together with the translate 
of Z” by the vector (i,t; . ., i), i.e., 

D,* = Z” u ((4”) + B”). 03) 

The most convenient definitions of E6, E,, and E, are 
the following.2 E, is the union of D, and the coset 

In other words E, consists of the points (x,, . . .,x,) with 
xi E Z and Xxi even, together with the points (y,, . . . ,ys) 
withy, E Z + $ and zy, even. Also E; = E,. 

2A slightly different (although equivalent) definition of E, was used in 
[6]. The present definition leads to a simpler algorithm in Section VII. 

E, is a subspace of dimension 7 in E,, consisting of the 
points (u,; . ., us) in E, with Bu, = 0. Equivalently 

E, = A, u ((-t”,;“) + A7). (7) 

The dual ET is given by 

E; = E, tJ ((-+2,+“) + ET) 

= ; (sj + AT), @) 
i=O 

where 

Si=((+)2i,($)2j), i+j=4. (9) 

Finally E6 is a subspace of dimension 6 in E,, which we 
may take for example to consist of the points (u,, . . . , us) 
in E, with Zui = 0 and u, + us = 0. However this lattice 
and its dual do not appear to be as important as the others 
for the applications considered here, and we shall not 
discuss them in as much detail. 

III. FINDING THE CLOSEST POINT OF THE 
n-DIMENSIONAL INTEGER LATTICE Zn 

The algorithm for finding the closest point of the integer 
lattice Z” to an arbitrary point x E R” is particularly 
simple, and serves to introduce the notation. For a real 
number x, let 

f(x) = closest integer to x. 
In case of a tie, choose the integer with the smallest 
absolute value. For x = (x,; . a,~,,) E OX”, let 

f(x) = (f(x,)r~J(4)* 
For later use we also define g(x), which is the same as f(x) 
except that the worst component of x--that furthest from 
an integer-is rounded the wrong way. In case of a tie, the 
component with the lowest subscript is rounded the wrong 
way. 

More formally, for x E IR we define f(x) and the func- 
tion w(x) which rounds the wrong way as follows. (Here m 
is an integer.) 

Ifx = 0, thenf(x) = 0, 
w(x) = 1. 

IfO=Cm<x<m+i, thenf(x) = m, 
w(x)=m+ 1. 

IfO<m+i<x<m+l, ~thenf(x)=m+l, 
w(x) = m. 

If-m-$5x<-m<O, thenf(x) = -m, 
w(x) = -m - 1. 

If-m-1(x<-m-2, thenf(x)=-m-1, 
w(x) = -m. 

(10) 
(Ties are handled so as to give preference to points of 
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smaller norm.) We  also write 

x =f(x) + +), 
so that 16(x) 1  I l/2 is the distance from x to the nearest 
integer. 

G iven x = (xi;. .,x,) E R”, let k (1 I k 5 n) be such 
that 

I c%J ISI @Xi) I for all 1  I i 5  n 

and 
1 S(xk) )=I 6(xi) I* k I i. 

Then  g(x) is defined by 

g(x) = (f(xA f(X2h’ * ‘~hJ~* * -,fbn)). 
Algorithm 1 -To Find the Closest Point of h”to x: Given 

x E R”, the closest point of Z” is f(x). (If x is equidistant 
from two or more points of Z”, this procedure finds the 
one  with the smallest norm.) 
To  see that the procedure works, let u  = (u,, . . . , u,) be  
any point of Z,. Then  

IIU - XII2 = i (Ui - xi)2, 
i=l 

which is m inimized by choosing ui = f(xi) for i = 1,. . *, n. 
Because of (10) ties are broken correctly, favoring the point 
with the smallest norm. 

IV. FINDING THE CLOSEST POINT OF D, 

Algorithm ~-TO Find the Closest Point of D,, to x: Given 
x E R”, the closest point of D, is whichever of f(x) and 
g(x) has an  even sum of components (one will have an  
even sum, the other an  odd  sum). If x is equidistant from 
two or more points of D,, this procedure produces a  nearest 
point having the smallest norm. 

This procedure works because f(x) is the closest point of 
Z  n  to x and  g(x) is the next closest. f(x) and g(x) differ 
by one  in exactly one  coordinate, and  so precisely one  of 
zf(xi) and &d i> x is even and  the other is odd. Again (10) 
implies that ties are broken correctly. 

Example: F ind the closest point of D4 to x = 
(0.6, - 1.1, 1.7,O.l). We  compute 

and  
f(x) = (1, -LW ) 

g(x) = (0, -L2,0), 

(1, 1, l,l). The  algorithm computes 
f(x) = (O,O,O,O), sum = 0, even, 
g(x) = (l,O,O,O), sum = 1, odd, 

and  selects f(x). Indeed f(x) does have the smallest norm 
of the eight neighboring points. 

V. FINDING THE CLOSEST POINT OF A COSET OR OF 
A DUAL LATTICE 

A procedure Cp for finding the closest point of a  lattice A 
to a  given point x can be  easily converted to a  procedure 
for finding the closest point of a  coset r + A to x. For if 
Q(x) is the closest point of A to x, 

@(x - r) -I- r 
is the closest point of r + A to x. 

Suppose further that L  is a  lattice (or in fact any set of 
points) which is a  union of cosets of A: 

d-l 
L= U (I;++). 

i=O 

Then  @  can be  used as the basis for the following proce- 
dure for finding the closest point of L. 

Algorithm ~-TO Find the Closest Point of L  (A Union of 
Cosets of a  Lattice) to a Given Poirit x: G iven x, compute 

yi = Q(x - ri) + q  

for i = 0, 1; . ., d - 1. Compare each of y,,, . . . ,y+, with x 
and  choose the closest. 

In view of (l), (2), (4), (8) this algorithm reduces the 
problem of finding the closest point of the dual lattices AZ, 
D,* and Et, ET, E$ to that of finding the closest point of 
the original lattices, Alternatively, a  faster algorithm for 
D,* is obtained from (6) and  Algorithm 1. We  illustrate 
Algorithm 3  by applying it first to D,* using definition (4), 
and  then to 0: using definition (6). 

For the first example we observe from (4) that D,* is the 
union of four &sets of D, with coset representatives 

r, = (0, 0, 0, 0, O), 

rl =(+, f, 3,3, 93  

r2 = (0, 0, 0, 0, 11, 
I I I I -1 ‘3  =(2,1, T, 2, *). 

since the first component  of x is the furthest from an  
integer. The  sum of the components of f(x) is 1  - 1  + 2  To  find the closest point of 03  to 

+ 0  = 2, which is even, while that of g(x) is 0  - 1  + 2  + x= (O.l,O,-0.3,0.4,0.8) 
0  = 1, which is odd. Therefore f(x) is the point of D4 
closest to x. 

we proceed as follows: 

To  illustrate how ties are handled, suppose f(x) = (O,O,O,O, l), sum = 1, odd, 

x= (#,&+). g(x) = (O,O,O, 1, l), sum = 2, even, 

In fact (see (5)) x is now equidistant from eight points of therefore 

D4, name ly (O,O, O ,O), any permutation of (1, l,O , 0), and  Yo = (wm 1,l). 
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Also 
x - rl = (-0.4,-0.5,-0.8, -0.1,0.3), 

f(x-r,)=(O,O,-l,O,O), sum= -1, odd, 
g(x-r,)=(O,-l,-l,O,O), sum= -2, even, 

therefore 

Thus y, = (0.5,0.5,0.5) is the closest point of D? to x. 
Obviously the second definition of D,* leads to the faster 

algorithm. For any n it is only necessary to compute 
f(x), f(x - r,), and to calculate the squared norms II x - 
yol12 and llx -y1112. 

yl = s(x - 4 + 5 
= (0.5, -0.5, -0.5,0.5,0.5); 

x - rz = (O.l,O, -0.3,0.4, -0.2), 
f(x-r2)= (O,O,O,O,O), sum = 0, even, 
g(x - r2) = (O,O,O, l,O), sum = 1, odd, 

therefore 

and 

Yz =fb - 5) + r, 

= (o,o,o,o, 1); 

x - r3 = (-0.4,-0.5,-0.8, -0.1,1.3), 
f(x - r3) = (O,O, - l,O, l), sum = 0, even, 
g(x-r,)=(O,-l,-l,O,l), sum=-1, odd, 

therefore 

VI. FINDINGTHECLOSESTPOINTOF E8 

Since E, is the union of two cosets of D, the discussion 
in the previous section leads to the following procedure. 

Algorithm ~-TO Find the Closest Point of E, to x: Given 
x = (x1; * .,X8) E IRS. 
Compute f( x) and g(x), and select whichever has an even 
sum of components; call it yo. 
Compute f(x - 4) and g(x - j), where 

f= (~A,+,~,+,tA,~), 
and select whichever has an even sum of components; add 
4 and call the result y,. 
Compare y, and y, with x and choose the closest. 

For example, to find the closest point of Es to 
x= (0.1,0.1,0.8,1.3,2.2,-0.6,-0.7,0.9), 

we compute 

y3=f(x-5r3)+r3 
= (0.5,0.5,-0.5,0.5,0.5). 

The final step is to see which of y,, . . * ,y, is closest to x. 
We compute 

Thus 

llx -yol12 = 0.5, 
(lx - y1112 = 0.55, 

llx -y,l12 = 0.3, 

(lx -y3112 = 0.55. 

f(x) = (0,0,1,1,2, -1, -l,l), sum= 3, odd, 
g(x)=(O,O,1,1,2,0,-l,l), sum=4, even, 

and take y, = g(x). Also 
x- )= (-0.4, -0.4,0.3,0.8,1.7, -1.1, -1.2,0.4), 

f(x--))=(0,0,0,1,2,-l,-l,O), sum=l, odd, 

g(x-3) = (-1,0,0,1,2,-l,-l,O), sum=O, even, 

and so 
y, = g( x - ,) + f 

Y2 = @,u40~ 1) 

is the point of DT closest to x. 
For the second example we use (6) to define the body- 

centered cubic lattice 0; as the union of two cosets of Z3 
with coset representatives 

r. = (0,&O), 
r, = (f, +,t). 

= (-0.5,0.5,0.5,1.5,2.5, -0.5, -0.5,0.5). 
Finally, 

llx -yol12 = 0.65, Ilx -y,l12 = 0.95 
and we conclude that y, = g(x) is the closest point to x. 

VII. FINDINGTHE CLOSESTPOINT OF A,,AE,E,, 
AND E; 

Algorithm ~--TO Find the Closest Point of A,, to x: 
To find the closest point of Dz to 

n = (0.2,0.5,0.8), 
Step 1: 

we compute 

yo =f(x) = w4 11, 
x-r, = (-0.3,0,0.3), 

f(x - r,) = (0,&O), 
y, = r, +f(x - r,) = (0.5,0.5,0.5). 

The final step is to find which of y. and y, is closer to x: 

llx - yol12 = 0.33, llx - yJ2 = 0.18. 

Step 2: 

Step 3: 

Given x E Rn+‘, compute s = Xxi and replace 
x by 

x’rx- ~(lA-*A 

Calculate f(x’) = (f(xb); . .,f(xL)) and the de- 
ficiency A = Z f(x:). 
Sort the xi in order of increasing value of 6(x;) 
(defined in Section III). We obtain a rearrange- 
mentofthenumbers0,1;~~,n,sayi,,i,;~~,i,, 
such that 
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Step 4: If A = 0, f(x’) is the closest point of A, to x. 
If A > 0, the closest point is obtained by sub- 
tracting 1  from the components f(xjJ, . - *, 
f(-G&,). 
If A < 0, the closest point is obtained by adding 
1  to the components f(xi,), f(x’i,m,),*. -, 
f(xl,_,+,). 

Remarks: We know from Section III that f(x) is the 
closest point of Z  *+ I to x. The  procedure described here 
finds the closest point of A,, because it makes the smallest 
changes to the norm of f( x’) needed to make I: f(xi) 
vanish. 

Step 1  projects x onto x’, the closest point of the 
hyperplane Xx, = 0. Since A, is by definition contained in 
this hyperplane it may be  possible to assume that x already 
lies there, in which case Step 1  can be  om itted. 

The  only substantial amount  of computation needed  is 
for the sort in Step 3, which takes O(nlog n) steps [lo], 
[13]. However Step 3  can be  om itted if x is expected to be  
close to A,,. In this case A will be  small, and  Steps 3  and  4  
can be  replaced by the following: 

Step 3’: If A = 0, f(x’) is the closest point of A, to x. 
If A > 0, find the A components of x’, say xjO; . .,x; *-,, 

for which 6(x;) is as small (i.e., as close to - 4) as possible. 
The  closest point of A, is obtained by subtracting one  from 
the components f(xjJ; . .,f(xl-,) of f(x). 

If A < 0, find the I A I components of x’, say 
XI,,, x;n-,,. . *‘xIneA+,, for which 6(x;) is. as large (i.e., as 
close to f) as possible. The  closest point of A,, is obtained 
by adding 1  to the components of f(x;J;. .,f(xineA+,) of 
f(x). 

In any case I A I cannot exceed n/2. However if A is 
expected to be  large the first version of the algorithm is 
preferable. 

The  closest point of AZ can be  found by Algorithm 3, 
using the fact that A; is the union of n + 1 cosets of A, 
(see (2)). 

For example the hexagonal  lattice A, is shown in F ig. 1, 
together with ordinary two-dimensional coordinates 
(u,, u2) for the points. The  three-dimensional coordinates 
(x0, x1, x2) with x0 + x1 + x2 = 0  that we have used are 
obtained by mu ltiplying (u,, u2) on  the right by the matrix 

11  0  -I\ 

Conversely the u-coordinates may be  obtained from the 
x-coordinates by 

(u,, 4 = (x,, Xl, x2) . SM”. 
For example the points (0, 0), (1, 0), (l/2, n/2), 
(- l/‘&d=) h ave x-coordinates (0, 0, 0), (1, 0, - l), 
(1, - 1, 0), (0, - 1, l), respectively. To  find the closest point 
of A,, to the point P with coordinates 

(u,, u2) = (0.4, -0.4) 
we first find the x-coordinates of P, which are 

x = (x0, x1, x2) = (0.169,0.462, -0.631). 

0 

231 

0 

(-I, 01 to,01 (I .Ol 
0 0 0 

P 
X 

Fig. 1, The hexagonal lattice A z. 

Step 1  of the algorithm can be  om itted, since x0 + xl + x2 
= 0  holds automatically. Step 2  produces 

f(x) = (0,0,-l), 
with deficiency A = - 1. At Step 3  we find 

8(x,) = 0.169 < 8(x2) = 0.369 < 6(x,) = 0.462. 
At Step 4  we add  1  to f(x,), obtaining 

(0, 1, - 1) 
which is the closest point of A,. The  u-coordinates for this 
point are 

6  (0,1,-l).+ ;,-r 
i i 

(see F ig. 1). 
Since A, = D,, Algorithm 2  is preferable to Algorithm 5  

for finding the closest point of the face-centered cubic 
lattice. F inally E, and ET can be  handled via the algorithm 
for A,, using (7), (8), and  Algorithm 3. 
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The Design of Two-Dimiensianal Quantizers 
using Precjuantization 

KERRY D. RINES, MEMBER, IEEE, AND NEAL C. GALLAGHER, JR., MEMBER, IEEE 

A bstruct-The theoretical advantages of two-dimensional quantization 
over univariate quantization have been studied in the literature. However, 
in many cases there is no known implementation for the two-dimensional 
quantizer that can operate in real time. A new approach to the design of 
two-dimensional quantizers is piiisented. This technique, called prequanti- 
zation, is used to design two-dimensional quantizers that operate in real 
time. The importance of prequantization is demonstrated by the design of 
the optimum uniform two-dimensional (hexagonal) quantizer. Additional 
examples are given to illustrate the flexibility of this design approach. 

I. INTRODUCTION 

T HE USE OF two-dimensional quantizers for encoding 
analog sources has been of increasing interest in recent 

years. Two-dimensional quantizers can offer advantages in 
the design of both optimum and suboptimum quantizers. 
These advantages may be offset by the difficulty in imple- 
menting many two-dimensional quantizers. In this paper 
we present a new approach to the design of two-dimen- 
sional, quantizers called prequantization. We show that for 
a number of examples prequantization simplifies the 
quantizer implementation and/or improves the quantizer 
performance. 
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The design of two-dimensional quantizers for optimum 
quantization is one area of interest. Consider the random 
sequence x,, x2, xs, . + . where the xi are all independent 
and identically distributed. The traditional approach to 
quantizing this sequence is to perform the quantization one 
sample at a time using a one-dimensional quantizer. Much 
of the early work in quantization theory has addressed this 
problem. As a result the design and implementation of 
optimum one-dimensional quantizers is straightforward. In 
addition these quantizers are often able to operate at high 
source rates. These properties make one-dimensional quan- 
tization an attractive choice for quantizing the above se- 
quence. The advantage of quantizing the independent iden- 
tically distributed (i.i.d.) sequence in two or more dimen- 
sions is discussed by Zador [l]. Simply stated, these results 
indicate that the minimum obtainable per sample distor- 
tion decreases as the quantizer dimension is increased. 
Therefore, the jpotential exists to improve the performance 
of digital encoders by replacing one-dimensional quan- 
tizers with two-dimensional quantizers. 

Zador’s results include derivations of both the upper and 
lower bounds on the distortion obtained when using an 
optimum quantizer. Unfortunately, these results do not 
provide insight into the structure of the quantizer. The 
design and implementation of optimum two-dimensional 
quantizers remains a largely unsolved problem. Recently 
the design of two-dimensional quantizers has been ad- 
dressed. Computer algorithms for designing optimum 
quantizers of two or more dimensions have been presented 

00 1 S-9448/82/0300-0232$00.75 01982 IEEE 


