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Abstract The era of fast radio bursts (FRBs) was open in 2007, when a very bright
radio pulse of unknown origin was discovered occasionally in the archival data of
Parkes Telescope. Over the past fifteen years, this mysterious phenomenon have
caught substantial attention among the scientific community and become one of
the hottest topic in high-energy astrophysics. The total number of events has a
dramatic increase to a few hundred recently, benefiting from new dedicated surveys
and improved observational techniques. Our understanding of these bursts has been
undergoing a revolutionary growth with observational breakthroughs announced
consistently. In this chapter, we will give a comprehensive introduction of FRBs,
including the latest progress. Starting from the basics, we will go through population
study, inherent physical mechanism, and all the way to the application in cosmology.
Plenty of open questions exist right now and there is more surprise to come in this
active young field.
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Introduction

Fast radio bursts (FRBs) are newly-discovered bright millisecond radio transients
that flash randomly in the sky. Dating back to 2007, an unknown bright single pulse
was found in the archival data of Parkes telescope [83], marking the beginning of this
research field. At first, there is a doubt among the community whether this signal is
astrophysical, especially at the moment when “perytons” were found [15]. This query
finally came to an end as a new sample of FRBs were discovered in 2013, meanwhile
the possibility of terrestrial origins was excluded [152]. Since then, scientists showed
growing research interest on this kind of bursts and various source models have
been proposed. This field became highly active with observational breakthroughs
announced consistently in every single year. In 2014 an FRB was found in the
archival data of a second telescope other than Parkes [145], further confirming the
astrophysical origin. In 2015 Parkes detected a real-time FRB for the first time and
multi-wavelength follow-up was triggered [121]. In 2016 the first repeating FRB
20121102A was identified [141, 146] and then localized to a dwarf galaxy in the
next year [21, 100, 149]. This landmark discovery refreshed our knowledge of these
bursts and their source models need to be reconsidered. From 2018 Australian Square
Kilometre Array Pathfinder (ASKAP) and Canadian Hydrogen Intensity Mapping
Experiment (CHIME) started taking data and the total events of FRB accumulated
rapidly [142, 26]. More and more repeating and localized events were reported in
the following years [25, 27, 5, 135, 47, 99, 150]. Things became more interesting
in 2020 that the periodic activity of FRB 20180916B was found for the first time
[28]. Then a Galactic FRB 20200428A was found to be associated with X-ray bursts
from the magnetar SGR 1935+2154 [29, 14, 106, 77, 137, 148], This is such an
important milestone that we finally knew the source of these radio bursts. In 2021
several new results were announced, such as the chromatic periodic activity [119],
sub-second periodicity [151], highly polarized micro-structure [112] and unique
energy distribution [78]. With the upgrade of existing instruments and the complete
of new facilities, we shall expect more and more important observational progresses
coming in the near future.

Synchronized with these observational achievements, theorists have been propos-
ing and optimizing their models continually. Several topics are under hot debate at
this moment. First, the classification of FRBs by repeating behaviour is phenomeno-
logical. A repeater could be misidentified as a non-repeating event due to selection
bias [118, 33, 32]. There are dichotomous opinions on whether all FRBs can repeat
(maybe just with different repeating modes ?) [18]. Second, it remains controver-
sial where the periodic behaviour comes from (orbital motion, precession or spin
of the source ?) [189]. Moreover, the chromatic active window is hard to under-
stand. Third, the radiation mechanism of these bright radio bursts is an unsolved
issue, even for pulsar radio emission [105]. Different ways of generating coher-
ence have been discussed, all of which, however, have certain limitations. Actually,
there are many more mysteries waiting to be explored in this young research field
[68, 129, 122, 34, 188, 173]. Before a discussion in depth on these topics, we first
give a basic introduction on our current understanding of FRBs.
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General Properties and Propagation Effects

The definition of an FRB is descriptive. Basically, a radio burst satisfying three
requirements is regarded as an FRB. First, the burst should be really “fast”, with a
duration of milliseconds. Second, the brightness temperature of this burst should be
significantly higher than that of pulsar radio emission, which is obtained by

𝑇B ∼ 𝐹a𝑑
2
A/2𝜋𝑘 (a𝑇)

2

' 1.1 × 1035 K
(
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) ( a
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)−2 (
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Gpc
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where a is emission frequency, 𝐹a is flux density, 𝑑A is angular diameter distance,
𝑘 is Boltzmann constant and 𝑇 is duration. Typical FRBs have at least 𝑇B > 1030 K.
Third, the total dispersion measure (DM) of this burst is expected to exceed the
value that Galactic electrons can contribute in order to distinguish it from a rotation
radio transient. However, the last requirement seems loose now since a Galactic FRB
was detected. Before reaching the Earth, an FRB signal has experienced multiple
propagation effects caused by the plasma on its path.

Dispersion

The dispersion of radio waves by free electrons in the plasma is just similar to visible
light spreaded by a prism. It leads to an arrival time delay between high-energy and
low-energy photons. Considering two photons with frequencies a1, a2 (a1 < a2), the
delayed arrival time relates to DM as

Δ𝑡 =
𝑒2

2𝜋𝑚𝑒𝑐
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− 1
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2

) ∫
𝑛𝑒

1 + 𝑧 d𝑙

' 4.15 s
[( a1

1 GHz

)−2
−

( a2
1 GHz

)−2
]

DM
103 pc cm−3 , (2)

where DM ≡
∫
𝑛𝑒d𝑙/(1 + 𝑧) is the the electron number density integrated along the

traveled path. Generally, the total DM of an FRB at redshift 𝑧 consists of four terms,

DM = DMMW + DMIGM + DMhost + DMsource
1 + 𝑧 , (3)

corresponding to four kinds of intervening plasma from the observer to the burst
location, i.e., Milky Way, intergalactic medium, host galaxy and source environment.
The Milky way contribution has been well modeled based on the Galactic electron
density distribution [35, 182]. The second term is of particular interest, the average
of which can be written as a function of 𝑧 [43],
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〈DMIGM〉 = 3𝑐Ωb𝐻0
8𝜋𝐺𝑚𝑝

∫ 𝑧

0

𝐹 (𝑧′)
𝐸 (𝑧′) d𝑧′, (4)

where 𝐻0 is the Hubble constant, Ωb is the cosmic baryon mass density fraction,
𝐸 (𝑧) = 𝐻 (𝑧)/𝐻0 and 𝐹 (𝑧) ≡ (1+ 𝑧) 𝑓IGM (𝑧) 𝑓e (𝑧) with 𝑓IGM being the fraction of the
baryon mass in the IGM. Further, 𝑓e (𝑧) = 𝑌H𝑋e,H (𝑧) + 1

2𝑌He𝑋e,He (𝑧), where 𝑌H, 𝑌He
are the mass fractions of hydrogen and helium, and 𝑋e,H, 𝑋e,He are the corresponding
ionization fractions of them, respectively. Due to the close relation between DMIGM
and cosmic parameters, Eq. (4) has been applied widely in cosmology, which will
be discussed later.

Scattering effect

Radio photons can be easily scattered by particles on the path, leading to a change
of direction. Scattered photons travel a longer way than unscattered ones, and FRB
pulse profile may exhibit a tail feature due to different arrival time of photons caused
by multi-path propagation. Therefore, the observed pulse width is broadened and we
can define a scattering timescale 𝜏. Actually, the observed width 𝑇 is a combination
of intrinsic width 𝑇i and several broadening terms [122],

𝑇 =

√︃
𝑇2

i + 𝜏2 + 𝑡2samp + Δ𝑡2DM + Δ𝑡2DMerr, (5)

where 𝑡samp is the data sampling interval. The receiver has finite channel bandwidth
Δa, leading to a dispersion smearing term [36]

Δ𝑡DM = 8.3 `s DMΔaMHza
−3
GHz. (6)

Further, the error of dispersion measure DMerr could cause additional smearing [36],

Δ𝑡DMerr = Δ𝑡DM (DMerr/DM). (7)

Usually, the long tail of FRB pulse appears as an exponential decay. This can be ex-
plained as FRB photons scattered by a thin, extended screen. The scattering timescale
is expected to depend sensitively on frequency 𝜏 ∝ a−4.0 in this case. If more realistic
scattering medium is assumed, for instance, a Kolmogorov turbulence may change
the above dependence to 𝜏 ∝ a−4.4 as long as the minimum turbulence scale is
smaller than the diffractive length scale [175]. In practice, 𝜏 is determined by fitting
FRB pulse profile on the basis of making assumptions on the intrinsic pulse shape
and instrumental broadening. Recent measurements of FRB scattering timescale
range from sub-milliseconds to tens of milliseconds. Compared with Galactic pul-
sars, FRBs look under-scattered in the 𝜏-DM plane [134, 130]. Astoundingly, a
population with large scattering 𝜏 > 10 ms was found in the first catalog of CHIME
FRBs, which is difficult to reproduce with current models [150].
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Scintillation

Similar to the fact that turbulent atmosphere of the Earth leads to the twinkling
of stars, turbulent intervening plasma leads to a variation of observed FRB flux
density. If the turbulent plasma has a velocity in the direction perpendicular to our
line of sight, the interference and diffraction patterns at the position of the observer
would vary accordingly. Scintillation has been well studied before in pulsar field
[136, 110]. As the plane waves passing through a turbulent screen, random phase
fluctuations are generated. The transverse radius at which the root mean square
phase difference is 1 rad can be defined as the diffractive length scale 𝑟diff . We
have two different regimes according to the values of 𝑟diff and the Fresnel scale
𝑟F ≡

√︁
_𝐷/2𝜋, where _ is wavelength and 𝐷 is the distance between the screen and

the observer. If 𝑟diff > 𝑟F, perturbations to wavefronts are weak and the scintillation
timescale is just the Fresnel timescale 𝑡scint ' 𝑡F = 𝑟F/𝑉 , with 𝑉 being the transverse
velocity. This is called the weak scattering regime. In the opposite strong scattering
regime 𝑟diff < 𝑟F, diffractive interstellar scintillation is important, giving rise to a
scintillation timescale of 𝑡scint ' 𝑟diff/𝑉 . The scintillation bandwidthΔascint is related
to scattering timescale by 2𝜋Δascint𝜏 = 𝐶1 where𝐶1 is a constant of order unity [37].
Scintillation has been found in several FRB events and it might be responsible for
the spectral structure of the Galactic FRB 20200428A [143]. However, scintillation
could hardly be the main reason for the fast variability of light curves in most FRBs
[8]. Sometimes, the refractive interstellar scintillation may be relevant on a scale of
𝑟ref = 𝑟

2
F/𝑟diff , and the corresponding scintillation timescale is 𝑡scint ' 𝑟ref/𝑉 , which

could be even longer than FRB itself [141].

Plasma lensing

Refraction is a common phenomenon occurring when the medium that photons are
passing through has a sudden change. Ionized plasma is refractive with an index
of refraction 𝑛p =

√︃
1 − 𝜔2

p/𝜔2. From this index we can see that plasma lenses are
diverging and highly chromatic [31]. If the plasma lens lies exactly on the line of
sight, the observed flux will be in the minimum. However, a large magnification
could also be achieved if a moderate offset of the lens exists. Different source-lens-
observer geometry leads to different time variability of FRB light curves. Practically,
we can model plasma lensing in a way similar to gravitational lensing and the ma-
jor difference is effective deflection potential [157]. The deflection angle depends
sensitively to the electron number density distribution on the lens plane. Assum-
ing a one-dimension Gaussian lens, the influence of plasma lensing on FRB light
curve and spectrum has been discussed [38]. Meanwhile, an additional frequency-
dependent delay of the arrival time is introduced and this effect should be corrected
when inferring DM value [44]. The complex time-frequency pulse structure of FRB
20121102A might be explained by plasma lensing [59]. With this effect, both up-



6 Di Xiao, Fayin Wang, and Zigao Dai

ward and downward frequency drift in a sequence of bursts are expected. However,
downward drifting appears more frequently for repeaters in observation [126]. Note
that the downward drifting behaviour has been discussed both in near-field and far-
away source models [164, 107]. Furthermore, a relation between sub-burst slope and
duration was discovered recently [20], and it was claimed to be well explained by a
simple dynamical model [132].

Absorption

Radio emission can be absorbed by a few processes, among which the most important
is the free-free absorption. Free electrons can gain energy after absorbing photons.
For a given electron density, the optical depth can be obtained with the cross section
calculated from quantum mechanics. Generally, we can neglect the absorption in
the interstellar and intergalactic medium since the number density is usually very
low. However, significant absorption can happen if the circumburst medium is dense
enough. Models have been proposed that FRB source might reside in a wind nebula
[179, 101, 196]. In this environment, even synchrotron self-absorption may become
relevant. The absorbed radio bursts may heat the electrons in the nebula and give
rise to the observed persistent radio source (PRS) accompanying FRB 20121102A
[79]. The other signature of absorption is a low-energy cutoff in FRB spectrum.
The current lowest frequency of detection is near 110 MHz for FRB 20180916B
[119, 127], indicating that the local environment of this FRB is relatively clean. The
lack of bursts below 100 MHz may be due to either absorption or intrinsic FRB
radiation spectrum.

Faraday rotation

If the plasma is magnetized, another propagation effect emerges, i.e., the Faraday
rotation. For a linearly-polarized electromagnetic (EM) wave, its electric field vector
will rotate an angle with respect to the initial direction after passing through this
plasma. The observed polarization angle (PA) is

Ψobs (_) = Ψ0 +
𝑒3_2

2𝜋𝑚2
𝑒𝑐

4

∫
𝑛𝑒 (𝑙)𝐵 ‖ (𝑙)d𝑙, (8)

where Ψ0 is the initial PA, and 𝐵 ‖ represents the component of the magnetic field
along the line of sight. We can define rotation measure as

RM =
𝑒3

2𝜋𝑚2
𝑒𝑐

4

∫
𝑛𝑒 (𝑙)𝐵 ‖ (𝑙)d𝑙, (9)

and for cosmological sources, it is usually scaled as
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RM
[
rad
m2

]
= 0.812

∫
𝑛𝑒 [cm−3]𝐵 ‖ [`G]

(1 + 𝑧)2 d𝑙 [pc] . (10)

The RM value has a positive sign if the magnetic field points towards us, otherwise
it can be negative. We can estimate the RM value by fitting the dependence of Ψobs
on _ in Eq. (8). In practice, more precise values can be obtained via RMFIT, RM
Synthesis or QU-fitting [62, 98, 117]. If a same plasma medium dominates the DM
and RM value, then the magnetic field strength within this medium can be estimated
as [17]

〈𝐵 ‖〉 =
RM

0.812DM
' 1.232

(
RM

rad m−2

) (
DM

pc cm−3

)−1
`G. (11)

The typical RM value is from tens to hundreds of units except for an outlier FRB
20121102A, which has extremely large RM ∼ 105 rad m−2 and is decreasing with
time [108, 60].

The polarization properties are diverse for the whole population. Some FRBs
show highly linear polarization , while others are partially polarized or unpolarized.
Repeaters like FRB 20121102A and 20180916B are nearly 100% linearly polarized
and their PAs do not vary obviously with time [48, 108, 27, 112]. Non-repeaters
usually have different degrees of polarization and their PAs evolve with time [30, 41].
However, no clear dichotomy has been established since a repeater FRB 20180301A
showed complex PA swing [90]. A recent study found that the polarization degree of
repeaters depends on frequency, which can be explained by multi-path scatter [45].
This is a reminder that the observed polarization is not the polarization at source.
Therefore, it remains questionable whether intrinsic polarization property can be
used to classify FRBs.

Global Statistical Properties and Population Study

With the increase of FRB event number, it is possible to study the statistical properties
of them. Till now the total number has exceeded six hundred on Transient Name
Server 1, of which 24 are found to repeat and 19 are well localized. Many statistical
studies have been done and put strong constraints on source models. Besides, a
comparison of FRBs with other short-duration transients such as magnetar outbursts,
giant pulses and solar radio bursts have been carried out [159, 24, 91, 162].

Energy, pulse width and waiting time distribution

The burst energy can be calculated as

1 https://www.wis-tns.org/
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𝐸 =
4𝜋𝑑2

L𝐹ac

1 + 𝑧 , (12)

where 𝑑L is luminosity distance and 𝐹 is burst fluence. Here the central frequency
ac is used instead of the bandwidth of the receiver Δa, which is reasonable if the
emission extends beyond Δa [186]. However, some FRBs are so narrow-banded that
the bandwidth of the burst itself should be used in energy estimation [1]. Early studies
showed that the energy distribution of FRB 20121102A followed a power-law form
[74, 54, 160]. Recently, a bimodal energy distribution of this FRB was found thanks
to the low energy threshold of FAST telescope [78].

The width distribution looks distinct for different burst samples. A power-law
distribution was found for FRB 20121102A using GBT data [24], while a log-
normal fit was adopted for the FAST sample [78]. Detailed analysis of CHIME FRB
catalog suggested that the width distribution seems different between one-off events
and repeaters. Repeating FRBs tend to have longer duration and more complex
morphology (sub-burst structures) [126]. The intrinsic width is directly related to
the radiation mechanism and it remains unclear what dependence it has.

The waiting time distribution is an important factor characterizing repeating
FRBs. A Possionian distribution for FRB 20121102A has been disfavored [159,
116, 39], implying that bursts are unlikely to occur from a pure stochastic process.
Intriguingly, double peaks showed up in the waiting time distribution for the FAST
sample. One is around several milliseconds and the other is around tens of seconds
[78]. Besides, the second peak was found to be consistent with Poisson statistics
and this was confirmed by Arecibo observation soon later [65]. It is worth further
discussion whether two types of burst process exist.

Host galaxy properties

At the moment 19 FRBs have been precisely localized with identified host galaxies.
The detailed information of these galaxies can be found in FRB host database 2. It
is obvious that there is a diversity among host galaxies and their stellar mass spans
a wide range. Most FRB hosts are moderately star-forming galaxies and lie offset
from the star-forming main sequence. Also, a dearth of red galaxies was found [11].
Substantial analysis showed FRB hosts do not track stellar mass or star formation
rate (SFR). The population is statistically consistent with hosts of short gamma-ray
bursts (SGRBs) and core-collapse supernovae (CCSNe) [11]. Some FRBs have large
offsets from galaxy center that consistent with SGRBs, indicating that they might
originate from similar events like binary neutron star (NS) mergers [161]. No clear
difference in host galaxy properties for repeating and one-off FRBs has been found
yet. All the above results need further justification with a larger sample of FRB hosts
in the future.

2 http://frbhosts.org
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Luminosity function and redshift evolution

The all-sky rate of FRB is as high as 103 ∼ 104 sky−1 day−1 given the current tele-
scope sensitivity. This rate also depends on the observing frequency, as most FRBs
are discovered in L-band and CHIME observing band (400-800 MHz). Basically,
the event rate density is more relevant for characterizing transients. However, most
FRBs except 19 localized events do not have credible distance measurements, there-
fore the redshift evolution Ψ(𝑧) is highly uncertain. The errorbar in the estimation
of the cosmological volumetric rate can be reduced with the accumulation of local-
ized events. Beforehand, method of constraining luminosity function and redshift
evolution using statistical properties has been proposed [9, 16, 96, 97, 111].

It is unknown whether the luminosity function evolves with redshift, and usually a
non-evolutionary luminosity functionΦ(𝐿a) is assumed just for simplicity. Therefore
a separable function can be defined Θ(𝐿a , 𝑧) ≡ Φ(𝐿a)Ψ(𝑧) to incorporate both
factors. Different Θ(𝐿a , 𝑧) can be constructed if special forms of Φ(𝐿a) and Ψ(𝑧)
are adopted. The commonly-used forms for Φ(𝐿a) include standard candle, power-
law, log-normal and Schechter functions [16, 111, 46, 88]. Meanwhile, the most
natural model for redshift evolution is that Ψ(𝑧) traces the cosmic SFR [16, 111],
or a delayed SFR model if FRBs are produced by compact mergers [191, 82].
Also, the possibility that Ψ(𝑧) traces cosmic stellar mass density has been discussed
[111]. With a constructed Θ(𝐿a , 𝑧), it is possible to predict the distributions of some
observational properties and compare with the real data [97]. Feasible observational
properties include the cumulative distribution of FRB flux density/fluence [96, 120,
66], value of 〈𝑉/𝑉max〉 test [142, 82], DM distribution [42, 191, 13, 84, 86] and
sensitivity-dependent detection rate [75, 10]. Note that there is a degeneracy of
Θ(𝐿a , 𝑧) with FRB spectral index [111], hence a Bayesian method is recommended
[84, 89].

FRB classification

Now we have hundreds of FRBs and the sample is enlarging very quickly. Individual
FRBs look distinct in many ways such as pulse morphology, spectro-temporal be-
havior and polarization property. A fundamental question is now under hot debate:
are there two or more populations of FRBs and how can they be classified?

A straightforward classification is via repetition behavior. FRBs are deemed
repeaters if a second burst is detected, otherwise are deemed one-off events. This
classification method was favored by the evidence that repeaters and one-off events
seem to be different in a few aspects such as pulse morphology and spectral property
[126, 199]. However, this result is not conclusive enough using current FRB sample.
Moreover, this criterion is phenomenological and suffers from selection bias. If the
subsequent burst is beyond the observing band or is much dimmer than the original
burst, the probability of missing it in observation is quite high [33, 118]. In this
case, a real repeater is misidentified as a non-repeating one. In a conservative way,
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maybe all FRBs can repeat just with different repeating modes [18]. Several studies
have explored this possibility and it has been proposed that the number fraction of
repeaters can judge [2, 51]. The conservative scenario will be verified if this fraction
approaches unity with accumulating observing time in the future. Otherwise, this
fraction will peak at a certain time, then the classification by repetition is non-trivial.

Alternatively, it is worthwhile to look for more physical criteria of classification.
One feasible candidate is brightness temperature [172]. Besides FRBs, there are many
kinds of short-duration radio transients such as pulsar radio emission, giant pulses
and nanoshots. They cluster in different regions on the spectral luminosity-duration
phase space plot, and the main difference between them is brightness temperature
[113]. The large FAST sample of FRB 20121102A has been classified in this way
and even a two-parameter correlation for the classified bursts was found [172]. This
has been further confirmed by a classification of FRBs in CHIME catalog [19].

Periodicity

The periodic activity of repeaters is an interesting phenomenon discovered in 2020
[28]. The period of FRB 20180916B is about 16 days, and was further found to be
chromatic. The active window arrives earlier and looks narrower at higher frequen-
cies [119]. Except for this event, a plausible period of ∼ 160 days has been claimed
for FRB 20121102A [133, 39]. Searches for periodicity of other frequent repeaters
like FRB 20190520B and FRB 20201124A have reported null result [174, 114].
More intriguingly, sub-second periodicity has been found for FRB 20191221A with
a significance of 6.5 sigma and for FRB 20210206A and 20210213A with lower
confidence levels [151]. It remains largely unknown what causes periodic behaviour
and how common it is among all repeaters.

There are a few studies dedicated to solve this problem and three kinds of origin
exist in current models. However, these models can not explain all the observational
properties [167]. The first possible origin is orbital motion. The FRB-emitting NS is
in a binary system and the companion could be an O/B type stars or a compact object
[95, 193, 57, 64, 187]. FRBs can be observed once these two objects are in a certain
orbital phase. Recently the chromatic active window has been reproduced in a Be/X-
ray binary scenario [80]. The second option is that periodicity is due to NS precession,
with both free and forced precession being discussed [76, 176, 185, 144]. Forced
precession could be caused by the surrounding disk [22, 154]. The third possibility
is that the rotational period of NS could be relevant [8]. This model might have
advantages in explaining the sub-second periodicity, in turn, is unlikely responsible
for days-long period. There is no evidence for the existence of such a slow-rotating
NS and it can hardly produce FRBs even if there exists.
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Physical Mechanism of FRBs

FRBs are diverse in so many aspects that it is not easy to figure out what are the
sources and by which mechanism they are produced. As a comparison, the radiation
mechanism for pulsar radio emission is still under debate after half a century, and
the FRB radiation mechanism seems more complicated. In consideration of the
much higher brightness temperature of FRBs, the physical conditions of the NS are
generally more extreme. This is the core issue of FRB field and we might have a
long way to go. However, the accumulating observational data have been giving us
clues consistently (see [188] for a review).

Radiation mechanism

The brightness temperature of FRBs is so high that the emission must be coherent. In
general, there are three ways to generate coherence in astrophysics [105]. The first one
is antenna mechanism. Charged particles form a bunch and they emit in a same phase
almost simultaneously. The emitted power is in proportion to the square of particle
number [7]. The second way is maser. Somehow population inversion is realized and
there is available free energy leading to negative absorption [61]. The third option
is relativistic plasma emission by reactive instabilities [104]. The particles’ kinetic
energy is initially transferred to Langmuir waves through a streaming instability
and finally converted to escaping radio emission. All three ways above have been
discussed extensively for pulsar radio emission and the first two have been applied
to FRBs in detail.

Antenna mechanism

Coherent curvature radiation by bunches is a close-in mechanism that happens inside
the magnetosphere of a NS. Let us consider an electron moving along a field line with
a curvature radius 𝜌, the characteristic angular frequency and radiation spectrum is

𝜔𝑐 =
3
2
𝛾3 𝑐

𝜌
,

d𝑃
d𝜔

=

√
3𝑒2𝛾

2𝜋𝜌
𝜔

𝜔𝑐

∫ ∞

𝜔/𝜔𝑐

𝐾5/3 (𝑦)d𝑦, (13)

where 𝛾 is the Lorentz factor of this electron and 𝑃 is the integrated power over solid
angle. Once a bunch of 𝑁e electrons is formed, coherence can be generated if the
emitted wave phases of individual electrons are almost the same. The total radiation
intensity of this bunch is
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d𝐸tot
d𝜔dΩ

=
𝑒2𝜔2

4𝜋2𝑐

�����∫ +∞

−∞

𝑁e∑︁
𝑗

𝒏 × (𝒏 × 𝜷 𝑗 )𝑒𝑖𝜔 (𝑡−𝒏 ·𝒓 𝑗 (𝑡)/𝑐)d𝑡

�����2 , (14)

where 𝒏 is the unit vector pointing to the observer, and 𝜷 𝑗 , 𝒓 𝑗 are the velocity, position
vector of the 𝑗-th electron respectively. Since the emission is highly beamed, Eq.
(14) can be approximated by

d𝐸tot
d𝜔dΩ

' 𝑒2𝜔2

4𝜋2𝑐

����∫ +∞

−∞
𝒏 × (𝒏 × 𝜷)𝑒𝑖𝜔 (𝑡−𝒏 ·𝒓 (𝑡)/𝑐)d𝑡

����2
×

����� 𝑁e∑︁
𝑗

𝑒−𝑖𝜔 (𝒏 ·Δ𝒓 𝑗/𝑐)

�����2 . (15)

where 𝒓 (𝑡) is the position vector of the first electron and Δ𝒓 𝑗 (𝑡) ≡ 𝒓 𝑗 (𝑡) − 𝒓 (𝑡) is the
relative displacement of the 𝑗-th electron. Defining a frequency 𝜔𝐿 ≡ 2𝑐/(𝐿 cos \)
with \ being the observing angle and 𝐿 being the bunch length, then the phase
stacking term

𝐹𝜔 ≡
����� 𝑁e∑︁

𝑗

𝑒−𝑖𝜔 (𝒏 ·Δ𝒓 𝑗/𝑐)

�����2 '

𝑁2

e , 𝜔 � 𝜔𝐿 ,

𝑁2
e

(
𝜔
𝜔𝐿

)−2
, 𝜔𝐿 � 𝜔 � 𝜔coh.

(16)

where 𝜔coh ∼ (𝜌/𝐿)2𝜔𝐿 is the maximum frequency for coherence [178]. Therefore,
the emission power of a bunch is usually taken to be proportional to 𝑁2

e for sim-
plicity. The detailed radiation spectrum for a three-dimensional bunch filled with
electrons of power-law energy distribution has been calculated analytically [178].
Some commonly-used expressions for estimating the total luminosity are listed be-
low. If Eq. (13) is integrated over𝜔, the curvature radiation power of a single electron
is

𝑃curv =
2
3
𝛾4𝑒2𝑐

𝜌2 ' 4.61 × 10−15 erg s−1𝛾4
2.5𝜌

−2
8 . (17)

The emission of different bunches is generally incoherent [178], thus the total lu-
minosity 𝐿curv is proportional to the number of bunches 𝑁b. We can express it
as

𝐿curv = 𝑁b𝑁
2
e 𝛾

2𝑃curv. (18)

This mechanism works inside the NS magnetosphere, in which the typical electron
number density is characterized by Goldreich-Julian (GJ) density [53]

𝑛GJ = Ω𝐵/(2𝜋𝑒𝑐) = 6.94 × 107 cm−3𝐵s,15𝑃
−1𝑅−3

8 , (19)

where a magnetar engine with surface field strength 𝐵s ∼ 1015 Gauss, rotational
period 𝑃 ∼ 1 s and emission radius 𝑅 ∼ 108 cm is assumed. Usually a multiplicity
factor M is needed. Coherence requires the length of the bunch being smaller than
the emission wavelength _. Meanwhile, the transverse size of causally connection is
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∼ 𝛾_ [73]. Therefore the number of electrons in one bunch is approximated as

𝑁e ' M𝑛GJ𝜋𝛾
2_3 = 5.89 × 1017M𝛾2

2.5a
−3
GHz𝐵s,15𝑃

−1𝑅−3
8 , (20)

and Eq. (18) turns into

𝐿curv ' 1.60 × 1031 erg s−1𝑁b,5M2𝛾10
2.5a

−6
GHz𝜌

−2
8 𝐵2

s,15𝑃
−2𝑅−6

8 . (21)

This expression is useful for the rough estimation on the properties of the source. It is
worth mentioning that coherent inverse Compton scattering (ICS) has been proposed
as a possible mechanism for FRBs [190]. In this case the emission power of a single
electron is enhanced by several orders of magnitude and the total luminosity can be
much higher than the value in Eq. (21).

The applicability of antenna mechanism for FRBs has been widely discussed and a
few models based on it have been proposed [40, 72, 85, 165]. Since FRBs are regarded
to originate inside the magnetosphere, the diverse PA swing, nano-second variability
and frequency drift can be explained by this mechanism [90, 87, 164]. However, a
long-standing problem of this mechanism is the formation and maintenance of these
bunches [139, 23, 67]. Further, the coherent emission is suppressed if the density
of surrounding plasma is too high [52]. It will take a while to solve these leftover
problems from pulsar field.

Synchrotron maser emission from magnetized shocks

The other plausible mechanism that has caught substantial attention is synchrotron
maser emission. It occurs as a shock propagating through a magnetized medium.
Basically, charged particles behind the shock front can achieve bunching in gyration
phase. Particle-in-cell (PIC) simulation suggested that the distribution of these par-
ticles in momentum space shows a cold “ring” structure [3, 49, 4, 128], which can
be expressed as

𝑓 (𝑢⊥, 𝑢 ‖) =
1

2𝜋𝑢0
𝛿(𝑢⊥ − 𝑢0)𝛿(𝑢 ‖), (22)

where 𝑢 is four-velocity and symbols ‖, ⊥ are with respect to the magnetic field
direction. This implies that population inversion is reached and synchrotron maser
instability can develop [3]. The dispersion relation leads to two unstable branches
corresponding to electromagnetic and magnetosonic waves. The growth of the former
can be very effective therefore coherent emission is produced [61, 4]. This signal
precedes the emission of shock-heated particles in the downstream, thus is called an
EM precursor. Traditionally in the conservation equations of energy and momentum
for the shock jump condition, this EM precursor is unexpected for ideal MHD
plasma [49]. However, PIC simulations show that additional wave fluctuations exist
and could dissipate the flow energy [4, 128]. The fraction of energy carried away
by EM precursor 𝑓b can be expressed using the fluctuation parameter b of upstream
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field [49],

𝑓b ≡ b

1 + 1/𝜎
1 − 𝛽shock
1 + 𝛽shock

, (23)

where 𝜎 is the magnetization parameter of the upstream medium and 𝛽shock is the
shock velocity. Simulations show that this fraction peaks at 𝜎 ∼ 0.1 with a value of
∼ 10%, and has an asymptotic form of 𝑓b ' 7 × 10−4/𝜎2 for the case of 𝜎 � 1
[128]. Meanwhile, the radiation spectrum has a peak at 𝜔peak ' 3𝜔p max[1,

√
𝜎]

in the post-shock frame, where 𝜔p is plasma frequency. Overall, the spectrum is
irregular and narrow-banded with Δ𝜔/𝜔peak ∼ a few [128].

A big advantage of this mechanism is that it is the only process supported by
first-principle calculations (PIC simulations). It should work in various situations
within the whole universe. Its application in FRBs has been discussed and the flat
PA curve, downward drifting of repeaters are naturally expected [107]. Besides, the
predicted high-energy counterpart has been observed for Galactic FRB 20200428A
[106, 77, 137, 148]. Another simulation showed that low-amplitude Alfvén waves
from a magnetar quake can be convert to plasmoids, afterwards, collision with the
wind will lead to blast waves [184]. However, this mechanism also have some defects
as being disfavored recently by observations, such as the baryonic mass budget [169],
the PA swing [90] and nano-second variability [112].

To conclude this section, there are far more than two mechanisms proposed for
FRBs, many of which was reinvented from pulsar field [93]. At the moment, none
of them seems perfect since distinct burst morphology and weird spectral structures
have not been explained well. It is unclear whether multiple mechanisms can work
for FRBs. The debate on radiation mechanism may last a while, just similar to the
situation of pulsar and GRB field.

Source models

The source of FRBs has been discussed extensively in literature. The number of
proposed models exceeds that of FRB events once for a time [125]. The first extinction
of models occurs with the discovery of the repeating FRB 20121102A, since many
models are catastrophic and only viable for one-off events. Later on, the range of
source models has been further narrowed down as the Galactic FRB 20200428A was
found to originate from a magnetar [29, 14]. There is an evidence that magnetars
can produce all the observed FRBs from population synthesis [50]. However, it is
still early to conclude that magnetars do it all. Multiple sources may be responsible
for different FRBs, and different predictions will be tested by future observations.

Source models can be classified as “close-in” and “far-away” depending on
whether the site of emission region is inside or outside the magnetosphere. Based
on coherent curvature radiation, a detailed close-in model has been developed and
is introduced here [72, 85]. The crustal quake of a magnetar will launch Alfvén
waves moving along the field lines. These waves propagate outward in the polar cap
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region where plasma density decreases with radius. Charge starvation occurs beyond
a critical radius where the density is too low to support the electric current. A parallel
electric field will develop and electrons, positrons get accelerated. Bunches can form
due to the counter-streaming of pairs and coherent emission is produced. Assuming
an amplitude 𝛿𝐵 and wavelength component perpendicular to the magnetic field _⊥
of the Alfvén waves, the critical density for charge starvation as a function of radius
𝑅 is

𝑛c (𝑅) = (1016 cm−3) 𝛿𝐵11
_⊥,4

(
𝑅∗
𝑅

)3
, (24)

where 𝑅∗ is the magnetar radius. The isotropic FRB luminosity is then

𝐿iso '
16𝑒2𝑐𝑅5𝛾2𝑛2

c 𝑙 ‖

3𝜌2 , (25)

where 𝑙 ‖ is the bunch length. This model has been applied to FRB 20200428A and
the spectra can be explained [181]. Note that in this model the X-ray bursts should
arrive earlier than the FRB [85], and radio emission needs to break out from the
X-ray fireballs [63].

The other well-developed model is far-away and based on sychrontron maser
emission mechanism [107, 6]. A magnetar born from a CCSN has a strong wind, and
a nebula could form due to wind interacting with SN ejecta. This active magnetar
produces flares irregularly and the flare ejecta may collide with the wind or the
leftover ion shell from the previous flare, leading to strong shocks. Both the wind
and ion shell are magnetized, however, with different 𝜎 values. Assuming that the
upstream medium has a density profile of 𝑛ext ∝ 𝑟−𝑘 , the dynamical evolution of the
system is similar to that of GRB afterglow [140]. The Lorentz factor of the shocked
region Γ evolves with time 𝑡 as

Γ ∝
{
𝑡

(𝑘−2)
2(4−𝑘) , 𝑡 � 𝛿𝑡

𝑡
(𝑘−3)

2(4−𝑘) , 𝑡 � 𝛿𝑡
, (26)

where 𝛿𝑡 denotes the crossing time of reverse shock. The intrinsic spectrum of
synchrotron maser emission peaks at apk ≈ Γ𝜔peak/(2𝜋) in lab frame. However,
the induce Compton scattering could be important and the observed peak frequency
amax is higher than this value. The time evolution of amax is

amax ∝ a5/4
pk 𝑡

1/4 ∝
{
𝑡
− 2+7𝑘

4(8−2𝑘) , 𝑡 . 𝛿𝑡,

𝑡
− 2𝑘+7

4(8−2𝑘) , 𝑡 & 𝛿𝑡.
(27)

Therefore the downward drifting can be explained. Meanwhile, the fraction of flare
energy that goes into FRB emission is further reduced to 𝑓 ∼ 10−6 − 10−5 � 𝑓b
[107, 171], thus

𝐿maser ∼ 𝑓 𝐸flare/𝑇 ∼ 1037 erg s−1 𝑓−6𝐸flare,40𝑇ms. (28)
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where the flare energy 𝐸flare is scaled with the typical X-ray bursts energy [55, 56].
Giant flares with 𝐸flare > 1043 erg is needed to produce high-luminosity FRBs. This
model has also been applied to FRB 20200428A and the observed radio to X-ray
ratio 𝐸radio/𝐸𝑋 ∼ 10−5 matches model prediction [102, 171]. Further refinement of
this model can be realized if more realistic upstream medium is assumed [6, 171].
Also, simulations show that such relativistic shocks can be produced from magnetar
quakes [184].

Except for these two, there are many other variants of magnetar models [40,
156, 155, 94, 92]. The mystery of source has not been completely solved and it is
possible that multiple sources can produce FRBs. Besides, it remains unclear whether
repeaters and one-off events have the same origin. This points to FRB classification
problem again and at this time it is hard to tell whether a genuinely one-off FRB
exists. This can be verified once an association with a cataclysmic event is observed
in the future.

FRB counterpart

Up to now, only two kinds of EM signal are found to accompany FRBs. One is PRS
for FRB 20121102A and 20190520B [21, 114], and the other is X-ray bursts for
FRB 20200428A [106, 77, 137, 148]. The counterparts of FRBs are closely related
to sources, and different models have predicted dozens of them. For instance, one
source model suggested that FRBs can be produced from the inspiral of two NSs
[163]. We can naturally expect gravitational wave (GW) signal following FRBs and
various GW counterparts may also be there such as GRBs and kilonovae. However,
these counterparts are usually very faint and the event needs to be close enough
for them to be detected. Right now only two extragalactic FRBs are within the
detection horizon of current LIGO/Virgo, i.e., FRB 20181030A from a star-forming
spiral galaxy NGC 3252 [12] and FRB 20200120E from a globular cluster in M81
[71]. The rarity of nearby FRBs may be the main reason for the absence of multi-
wavelength and multi-messenger counterparts.

Nevertheless, it is meaningful to search for counterparts for the current FRB
sample. Generally, there are three kinds of strategies. First one is the direct rapid
follow-up of luminous FRB events [115]. The second is searching for an association
in archival data. The aim is to find any transient consistent with an FRB in sky
position and occurrence time. Many kinds of coincident transients can be searched
such as SNe, kilonovae and high-energy bursts. Also, the association with GWs
and high-energy neutrinos can be tested. The third strategy is monitoring some
special repeaters regularly and hope for a good luck. Unfortunately, most of the
observational campaigns designed to search for FRB counterparts has returned null
results, however, some upper-limits can be given [70]. The other reason for non-
detection may be that the optical counterparts can be as short as FRBs [180],
therefore high-cadence observation is needed for future searches [153].



Fast Radio Bursts 17

Applications in Cosmology

The cosmological origin and precise DM measurements of FRBs make them an
attractive cosmological probe [173]. The dispersion of FRBs accounts for every
single ionized baryon along the line of sight. Therefore, they can be used to study
the baryonic matter of the Universe [103, 99], including the amount and locations.

A more ambitious goal is to use the DM-𝑧 relation to measure the proper distance
the Universe [183], the equation of state of dark energy [200, 158, 195, 131], Hubble
constant [81, 58, 170], Hubble parameter [168], dark matter [109, 166] and the
cosmic Helium and hydrogen reionization history [198, 194]. This would require
at least two conditions. First, a large sample of FRBs should be localized with
measured distances. This can be achieved by future Square Kilometre Array (SKA).
Second, different DM contributions should be separated well. According to Eq.
(3), the cosmological information containing in DMIGM is attractive. However, the
inhomogeneity of IGM has a significant effect on the DM-𝑧 relation. Meanwhile, the
DM contributed by host galaxies is hard to be determined from observations now.

DM contribution of host galaxy and source environment

The DMs of FRBs could contain significant contributions from host galaxies or local
environment of FRBs. The best way to estimate the DM contribution of host galaxies
is using cosmological simulations. By choosing a large sample of galaxies from the
IllustrisTNG simulation [147], the distributions of DMhost were derived to have a
long tail, indicating some light paths pass through the whole galaxy. A log-normal
function could be used to fit the DMhost distribution [192],

𝑃(𝑥; `, 𝜎) = 1
𝑥𝜎

√
2𝜋

exp
(
− (ln 𝑥 − `)2

2𝜎2

)
, (29)

The mean and variance of this distribution are 𝑒` and 𝑒 (2`+𝜎2) [𝑒𝜎2−1], respectively.
In Figure 1, the red lines are the best fits and the histograms are derived from the
IllustrisTNG simulation.

For the source contribution, it may depend on specific origin models. The associ-
ation of FRB 20200428A with the Galactic SGR 1935+2154 indicates that at least
some FRBs are powered by magnetars. It is generally believed that magnetars could
form via CCSNe and compact binary mergers. Since the ejecta mass of compact
mergers is usually very low, the corresponding contribution DMsource is negligi-
ble [161, 197]. However, for the core-collapse case, this DMsource could be large
[123, 177]. The observation of FRB 20190520B with the largest host contribution
supports this scenario [114, 69, 196].
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Fig. 1 The distributions of DMhost at different redshifts for repeaters like FRB 20121102A.

Fluctuations in IGM

The free electrons along different sight-lines in IGM is not uniform, so it is hard to
determine the true value of DMIGM. A quasi-Gaussian function was proposed to fit
the distribution of DMIGM [103], which includes random variations in the electron
distribution. This function can be expressed as
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Fig. 2 The distributions of DMIGM at different redshifts (dash lines) from the IllustrisTNG simu-
lation. The solid lines are the best fits using Eq. (30).

𝑃IGM (Δ) = 𝐴Δ−𝛽 exp

[
− (Δ−𝛼 − 𝐶0)

2𝛼2𝜎2
DM

]
,Δ > 0, (30)

where Δ ≡ DMIGM/〈DMIGM〉. Two parameters are adopted as 𝛼 = 3 and 𝛽 = 3.
From Figure 2 we can see that this model provides a good fit of those derived from
cosmological simulations [194]. Therefore, in order to properly handle the DM-𝑧
relation of FRBs, the distributions of DMhost and DMIGM should be considered
carefully [99, 170]. Especially, taking DMhost as a constant or Gaussian distributed
is not reliable.

Figure 3 shows the Hubble constant 𝐻0 derived from 18 localized FRBs after
taking the above distributions of DMhost and DMIGM. The best-fitting value is 𝐻0 =

69.15+5.47
−4.88 km/s/Mpc [170], which is consistent with those derived from cosmic

microwave background [124] and type Ia supernovae [138] at 1𝜎 confidence level.

Future Prospect

The research field of FRBs is very young and undergoing rapid development right
now. A lot of mysteries and weird features need to be explored in the future. We
summarize three main categories of open questions here.

The first thing is the source and radiation mechanism. Although a magnetar
was found to be capable of producing FRBs, it remains questionable whether all
magnetars can do so. What is the key required physical condition? Can other objects
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Fig. 3 The Hubble constant 𝐻0 measured by 18 localized FRBs. The 𝐻0 value derived from cosmic
microwave background, type Ia supernovae and GW170817 are also given.

or systems produce FRBs as well? Does repeaters and one-off events have the same
origin? Is is possible that one-off FRBs originate from some catastrophic events (like
NS-NS mergers)? The observed total energy of FRBs spans a wide range, are they
produced by a single mechanism or multiple coherent mechanisms? Where is the
emission site, inside or outside the magnetosphere? Finally, what kind of observation
is needed to settle these debates?

The second aspect is about the population study. Can all FRBs repeat? What
makes the difference in repeating modes? Are there any other physical criteria of
classification (e.g., brightness temperature or inherent polarization)? Is the periodic
behaviour common among all repeaters? Why does the periodicity vary from sub-
seconds to tens of days? How can we narrow down the luminosity function and
redshift evolution jointly using different observations? Where is the FRB location in
the host galaxy and what is the typical ambient environment? What dominates the
diversity of FRB observational properties, inherent physics or propagation effects?

Last but not the least, it would be very helpful to study FRBs in a multi-messenger
point of view. Therefore, searching for FRB counterparts is a timely and meaningful
approach. Till now only two kinds of counterparts have been identified, i.e., the
PRS of FRB 20121102A, 20190520B and the X-ray bursts accompanying FRB
20200428A. Are they ubiquitous for other FRBs but currently unobservable? If
not, what are the physical requirements and radiation mechanisms for them? Are
there any other kinds of counterparts, for instance, multi-wavelength “afterglows”
similar to GRBs? Is it possible to find an association with GW events or high-energy
neutrinos? All of the above questions need further investigation and hopefully some
answers can be found in the next decade.
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