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ABSTRACT The discrete Fourier transform (DFT) is widely employed for multi-beam digital beamforming.

The DFT can be efficiently implemented through the use of fast Fourier transform (FFT) algorithms, thus

reducing chip area, power consumption, processing time, and consumption of other hardware resources.

This paper proposes three new hybrid DFT 1024-point DFT approximations and their respective fast

algorithms. These approximate DFT (ADFT) algorithms have significantly reduced circuit complexity and

power consumption compared to traditional FFT approaches while trading off a subtle loss in computational

precision which is acceptable for digital beamforming applications in RF antenna implementations. ADFT

algorithms have not been introduced for beamforming beyondN = 32, but this paper anticipates the need for

massively large adaptive arrays for future 5G and 6G systems. Digital CMOS circuit designs for the ADFTs

show the resulting improvements in both circuit complexity and power consumption metrics. Simulation

results show similar or lower critical path delay with up to 48.5% lower chip area compared to a standard

Cooley-Tukey FFT. The time-area and dynamic power metrics are reduced up to 66.0%. The 1024-point

ADFT beamformers produce signal-to-noise ratio (SNR) gains between 29.2–30.1 dB, which is a loss

of ≤ 0.9 dB SNR gain compared to exact 1024-point DFT beamformers (worst case) realizable at using

an FFT.

INDEX TERMS Fourier transform, discrete fourier transform, approximation, VLSI, DFT, FFT, radix, fast

algorithm, beamforming, beamsteering, 5G, MIMO, massive MIMO.

I. INTRODUCTION

The discrete Fourier transform (DFT) is a linear transform

that is widely applied to convert a sampled signal into a rep-

resentation over the discrete frequency domain. Fully-digital

transmit and receive aperture arrays for radio-frequency (RF)

spectrum sensing, communications, and radar use the DFT

The associate editor coordinating the review of this manuscript and

approving it for publication was Pietro Savazzi .

for multi-beam beamforming. For example, simultaneous

receiver beams are imperative for high-capacity multi-input

multi-output (MIMO)wireless communication systems. Joint

spatial division and multiplexing (JSDM) is an approach to

multi-user MIMO downlinks that exploits the structure of

channel correlations in order to allow a large number of anten-

nas at the base station while requiring reduced-dimensional

channel state information at the transmitter [1], [2]. This

uses a multi-user MIMO downlink precoder obtained from
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an array pre-beamforming matrix, and incurs no loss of opti-

mality for a large number of array elements. A DFT-based

pre-beamforming matrix is near-optimal for uniform linear

arrays (ULAs) of antennas, and requires only coarse informa-

tion about the users’ angles of arrival and angular spread [3].

TheN -point DFT computesN uniformly spaced frequency

domain outputs (‘‘bins’’) using N uniformly sampled dis-

crete signal values by means of an N × N transform

matrix [4]. Because implementations of the multiplication

operation requires more chip area (or processing time,

for non-parallelized software implementations) compared to

addition operations, the computational complexity of com-

puting the DFT is expressed in terms of the multiplication

count [5]. The required number of multiplications depends

on the fast algorithm employed for the particular transform

length N in consideration. The computational complexity of

the N -point DFT using direct matrix-vector multiplication

is O(N 2) where O(·) represents the ‘‘big O’’ notation for

asymptotic complexity [6]–[8].

The computational complexity of computing the N -point

DFT can be reduced via fast Fourier transforms (FFTs),

which are fast algorithms for realizing DFTs that reduce

the computational complexity to O(N log2 N ) [5]. Thus,

multiple DFT beams for both wireless communications appli-

cations (e.g., JSDM) and multi-beam radar/imaging systems

are often generated by applying an N -point spatial FFT to

each temporal sample acquired by the ULA [9], [10].

The search for particular N -point FFT methods that min-

imize the multiplicative complexity is a separate field of

research in signal processing, computer science, and applied

mathematics, with a multitude of algorithms and implemen-

tations available [5], [11]–[14]. In [15], the theoretical lower

bound for the DFT multiplicative complexity was estab-

lished as a function of N . All FFT algorithms use sparse

factorizations of the DFT matrix to provide accurate imple-

mentations of the DFT at an arithmetic complexity that

approaches this lower bound. However, such high accuracy

is of limited practical relevance in digital multi-beam RF

beamforming applications, such as radar signal processing,

where the accuracy of the results is limited by other system

parameters or environmental conditions (e.g., thermal noise

in a receiver, or the practical implementation of an antenna

radiation pattern compared to ideal, harmonic distortion in a

microwave mixer or amplifier). In such applications, relent-

less pursuit of high accuracy in the exact computation of

the DFT is not relevant in terms of overall performance,

and smart system designers can exploit this fact for power

and cost optimization. High-precision VLSI implementation

of FFT algorithms may result in unnecessarily large cir-

cuits, exaggerated critical path delays, and wasted power. All

of those factors contribute to higher-cost circuits, reduced

frequency of operation, and higher operation costs. This is

because digital multipliers demand a large amount of circuit

resources when compared to simple adders. This makes the

reduction of the number of multipliers in a given system

crucial when chip area and power must be conserved and

high-speed operation is desirable. In particular, the adoption

of approximate DFT (ADFT) computations opens up new

possibilities for fast algorithms which do not compute the

DFT in the strictest mathematical sense, but nevertheless

can be good enough for digital multi-beam RF beamforming

applications, particularly at mmwave frequencies and above,

where reproducibility of antenna patterns become more prob-

lematic. Because ADFT applications are able to realize much

greater efficiencies than the theoretical lower bound N for an

N -point DFT proposed in [15], ADFT computations allow

greater reductions in computational complexity than tradi-

tional FFTs, albeit at the cost of a deterministic loss in

performance, namely a small increase in worst-case side-lobe

level [16].

The ever increasing data rate demands of wireless

communications led to the exploration of millimeter-

wave (mmW)/sub-THz/THz frequencies in 5G cellular net-

works [17], [18], where larger antenna array sizes (e.g. N =
64, 128, 256) for beamforming and massive MIMO have

become a general requirement [19]. For example, IoT and

robotics applications in emerging fifth-generation (5G) and

beyondmobile wireless networks will require 6D positioning,

which involves both spatial position and device orientation

(role, pitch, yaw) which require new algorithms that can

benefit from large number of closely packed low-complexity

digital beams [2], [20], [21]. A similar need occurs in the

design of systems for intelligent surfaces which provide

means of communication without line-of-sight [22]. In fact

mmW-based 5G MIMO cellular systems are already being

deployed [23]. Moreover, ongoing research in the sub-THz

range [2], [24]–[32] suggests that the W and G bands will

be commercially available within the next 5-10 years. Such

sub-THz carrier frequencies require large amounts of beam-

forming gain to mitigate free-space path loss in the first meter

of propagation from the antenna [2], [18], [33], [34]. Thus,

communication systems at these frequencies would require

much larger numbers of antenna elements in the transceiver

arrays; array sizes of the order of N = 1000 elements would

not be unrealistic for future sixth generation (6G) cellular

systems. Nevertheless, to the best of our knowledge, DFT

approximations in the literature are limited to N ≤ 32.

In this paper, we address this important beamforming chal-

lenge by introducing three new approximations to the very

large N = 1024 (1024-point) DFT. Fast algorithms that allow

low-complexity implementations of these approximations are

also developed and shown to provide remarkable accuracy

with significant cost and power reduction compared to DFT

and FFT approaches. The proposed 1024-point ADFTs are

based on a recently proposed 32-point DFT approximation

and multiplierless fast algorithm [7], [35] that furnish a ‘‘rea-

sonable’’ approximation of the 32-point DFT albeit without

using multiplications (i.e., using an adder-only signal flow

graph). The 1024-point exact DFT can be expressed in terms

of 32-point DFT. We use this fact to derive an approximation

for the 1024-point DFT matrix by means for our earlier

32-point ADFT. In particular, we propose three different
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FIGURE 1. Beamforming architecture of a 1024-element ULA receiver using the proposed method. The rewiring block performs spatial
multiplexing over the incoming in the input and the transformed signal at the output (see Fig. 5).

1024-point transforms with different trade-offs in compu-

tational complexity and computational accuracy compared

to the baseline exact DFT. These three transforms differ

from each other based on the use of 32-point ADFT in the

derivation and they can be used to replace the FFT while

generating N = 1024 beams from a 1024-element ULA as

shown in Fig. 1.

The paper is organized as follows. Section II reviews the

DFT and selected popular FFT algorithms. In Section III, we

discuss the mathematical background for the 32-point DFT

approximation introduced in [35] and describe its associated

fast algorithm in matrix form. In Section IV, we present

1024-point DFT approximations and discuss three different

algorithms to implement them. Section V explores the digital

VLSI realization of the proposed 1024-point DFT approxi-

mations. In Section VI, we summarize our conclusions.

II. REVIEW OF THE DFT AND FFT

In order to understand the method used to create accurate

ADFT algorithms, we will discuss the mathematical back-

ground related to the DFT definition and FFT algorithms.

A. MATHEMATICAL DEFINITION OF THE DFT

Let the vector x =
[

x[0] x[1] . . . x[N − 1]
]⊤

represent a

signal with N samples. The DFT maps the input signal x into

an output signal X =
[

X [0] X [1] · · · X [N − 1]
]⊤

according

to the following relationship:

X [k] , 1√
N

∑N−1
n=0 x[n] · ωnk

N , k = 0, 1, . . . ,N − 1, (1)

where ωN = e−j
2π
N is the N th root of unity and j ,

√
−1. On

the other hand, the inverse DFT (IDFT) is given as

x[n] = 1√
N

∑N−1
k=0 X [k] · ω−nk

N , n = 0, 1, . . . ,N − 1. (2)

The DFT of x can be expressed through a matrix-vector

multiplication X = FN · x, where

FN = 1√
N















1 1 1 ... 1

1 ωN ω2
N ... ω

(N−1)
N

1 ω2
N ω4

N ... ω
2(N−1)
N

1 ω3
N ω6

N ... ω
3(N−1)
N

...
...

...
. . .

...
1 ω

(N−1)
N ω

2(N−1)
N ... ω

(N−1)(N−1)
N















(3)

is the N -point DFT matrix [36].

B. FFT ALGORITHMS

DFT was originally the cornerstone of primitive DSP, until

the FFT was found to be vastly more efficient. Here we

extend FFTs to becomeADFTs. The computational complex-

ity associated with performing the N -point DFT operation

in direct form is O(N 2). This complexity is prohibitive for

most engineering applications since a high number of opera-

tions accounts for (i) higher energy consumption; (ii) higher

latency; (iii) higher number of gates; and, in consequence,

(iv) higher chance of system failure. To address these issues,

FFT factorizations furnish a product of sparse (mostly zeros)

matrices that reduces the DFT computational complexity

to O(N logN ). Different FFT algorithms can be identified

in the literature [37]–[40]. Here we consider three popular

algorithms, namely i) the Cooley-Tukey FFT [5], ii) the split-

radix FFT [38], and iii) the Winograd FFT [41]; each of these

is briefly described below.
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1) COOLEY-TUKEY ALGORITHM

A very popular form of the classical Cooley-Tukey algo-

rithm is the radix-2 decimation-in-time FFT, which splits the

N -point DFT computation into two N/2-point DFT com-

putations resulting in an overall reduced complexity [37].

Recursive use of this algorithm reduces the number of multi-

plications of the DFT from O(N 2) down to O(N log2 N ).

2) SPLIT-RADIX ALGORITHM

This is a variant of the Cooley-Tukey FFT algorithm which

uses a blend of radix-2 and radix-4 by recursively expressing

the N -point DFT in terms of one N/2-point DFT and two

N/4-point DFT instantiations [38]. The split-radix algorithm

can reduce the overall number of additions required to com-

pute DFTs of sizes that are powers of two without increasing

the number of multiplications [42].

3) WINOGRAD ALGORITHM

The Winograd algorithm implements an efficient FFT and

exploits the multiplicative structure on the data indexing

of DFT and converts it into a cyclic convolution compu-

tation [39], [40]. In several particular cases, the Winograd

algorithm achieves the theoretical minimum multiplicative

complexity [15] as shown in [39] making it more efficient

over the Cooley-Tukey and radix. For large DFT block

lengths that can be decomposed as a product of small

primes, the Winograd algorithm achieves nearly-linear com-

plexity [5].

C. MATRIX REPRESENTATION OF THE N2-POINT DFT IN

TERMS OF THE N-POINT DFT

Now we will use the matrix definition in sub section II-A

to derive a matrix representation for the computation of the

N 2-point DFT in terms of the N -point DFT via a radix-N

FFT approach. The goal of this is to derive a 1024-point DFT

in terms of 32-point DFT. Generally speaking, the N 2-point

DFT computation corresponds to a vector-matrix multiplica-

tion with a N 2 × N 2 matrix transformation:

X = FN 2 · x. (4)

The expression in (4) can be rewritten by directly invoking the

Cooley-Tukey algorithm in its more general form as detailed

in [5, p. 69]. By explicitly following the Cooley-Tukey algo-

rithm, the N 2-point DFT can be computed by means of:

1) address-shuffling the input column vector into a 2D

N × N array;

2) computing the N -point DFT of each array column

using FFTs;

3) element-wise multiplying the twiddle-factors (twiddle

factors are the coefficients containing roots of unity in

the DFT matrix [5]);

4) computing theN -point DFT of each resulting row using

FFTs; and

5) undoing the address shuffling to convert the obtained

2D array into the final output column vector.

The 1D to 2D mapping can be accomplished by means of the

inverse vectorization operator invvec(·) [43] (Cf. [44], [45])
which obeys the following mapping:

invvec





















x0
x1
...

xN 2





















=











x0 xN · · · xN (N−1)

x1 xN+1 · · · xN (N−1)+1

...
...

. . .
...

xN−1 x2N−1 · · · xN 2−1











.

(5)

Based on the 1D to 2D mapping in Eqn. (5) we can show

that the N 2-point DFT given in (4) can be represented in

the following matrix expression based on the Cooley-Tukey

algorithm:

X = vec

(

{

FN ·
[

�N ◦
(

FN · (invvec(x))⊤
)]⊤}⊤)

, (6)

where vec(·) is the matrix vectorization operator [46, p. 239],

◦ is the Hadamard element-wise multiplication [46, p. 251],

the superscript ⊤ denotes simple transposition (non Hermi-

tian), and �N is the twiddle-factor matrix given by �N =
(ωm·n

N 2 )m,n=0,1,...,N . Noting that �⊤
N = �N , (6) can be further

simplified. In particular, for N = 1024 = 322, we have

X = vec
([

�32 ◦
(

F32 · (invvec(x))⊤
)]

· F⊤
32

)

. (7)

The inner DFT call corresponds to row-wise transformation

of invvec(x), whereas the outer DFT performs column-wise

transformations on the resulting intermediate computation.

The formulation shown in (7) is the fundamental expression

on which the proposed approximations (eg. ADFTs) in this

work are based.

III. MULTIPLIERLESS 32-POINT ADFT

In this section, the adopted multiplierless 32-point ADFT,

first introduced in [7], [35], is presented, and its complexity

and error analysis are discussed. This is critical for under-

standing as the 1024-point ADFT is realized using 32-point

ADFT as the main building block.

A. MATRIX REPRESENTATION

The considered 32-point ADFT matrix denoted by F̂32 can

be computed through a product of sparse matrices whose

real and imaginary parts of its coefficients contains only ±1

entries. Such simple arithmetic leads to hardware designs that

can be realized with adders only.

To present the factorization of F̂32, we need the auxiliary

structures in eq. (8)- (17), since the auxiliary factors are key

for matrix factorization. Let Bt be a t× t real matrix given by

Bt =













































I(t−1)/2 Ī(t−1)/2

1

Ī(t−1)/2 −I(t−1)/2






, if t is odd,

[

It/2 Īt/2

Īt/2 −It/2

]

, if t is even,

(8)
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where Ik and Īk being the identity and counter-identity matrix

of order k , respectively. Let also Z1, Z2, and Z3 be the

following matrices (for clarity, only the non-zero elements

are shown):

Z1 =



























1 1
1
1
1
1 1
1
1
1

1 −1
1
1
1

1 −1
1
1
1



























, (9)

Z2 =































1
−1 1

1
1 1
1 1 1
1 1

1 −1
1 −1

1 −1
1 −1

1
1 1
1 1 1

1 −1
1 −1

1 1
1 −1































, (10)

and

Z3 =



























1 1 −1
1
1 1
1 −1

1 −1
1

1 1
1
1 1 −1
1
1 1
1

1 −1
1 −1

1 1



























. (11)

The 32-point ADFT matrix is factorized into eight sparse

matricesWk , for k = 0, 1, . . . , 7, according to

F̂32 = W7 · W6 · W5 · W4 · W3 · W2 · W1 · W0, (12)

where

W0 =
[

B17
B15

]

, W1 =
[

I16
[

0
I15

]

[

0
I15

]

I16

]

, (13)

W2 =
[

B9

B7
I16

]

, W3 =









B5
1
B3

1
B3

B3
Z1









, (14)

W4 =









B3
B2

B4
B4

B2
Z2









, W5 =
[

B2
I15

Z3

]

, (15)

W6 =































I16






































1 1
1 1

−1 1
1
1
1 1
1 −1

1 1
1 −1

1 1
1 −1

1
1 1

1 −1
1

1 −1





































































, (16)

and W7 is given in (17), as shown at the bottom of the next

page.

B. ARITHMETIC COMPLEXITY

In this section, we study the arithmetic complexity of the

proposed ADFTs by assuming execution is fully sequential.

That is, we consider all algorithms execute on a sequen-

tial processor by utilizing a central processing unit (CPU)

that furnishes arithmetic operations dictated by the particular

algorithm. The execution time is proportional to the num-

ber of arithmetic operations, and in general, multiplication

being more computationally intensive compared to addition,

takes longer to execute. Therefore, the number of multipli-

cations is the primary metric for quantification of arithmetic

complexity.

The discussed 32-point ADFT has a null complexity of

multiplications and no bit-shifting operations are required.

The only source of arithmetic complexity is the number of

additions in the factorization in (12). Considering complex

inputs, thematricesW0,W1, andW4 require 60 real additions

each, while the matrices W2, W3, and W5 require 28 real

additions each. Similarly, the matrix W6 requires 24 real

additions, while the only complex matrix in the factorization,

W7, requires 60 real additions. In total, the transform F̂32

thus requires 348 real additions and no bit-shifting. By com-

parison, the Cooley-Tukey radix-2 algorithm requires 88 real

multiplications and 408 real additions [5], [38]. In contrast,

the approach to represent a 32-point DFT using (4) and (7)

offers 1/8 the number of additions with no multiplications as

compared to the 88 multiplications needed by Cooley-Tukey.

C. ERROR ANALYSIS

The rows of a linear transform matrix can be understood as

a finite impulse response (FIR) filter bank [6]. Savings of

computation and exploitation of sparsity gives rise to slightly

inaccurate representations of the frequency response of the

filter bank. Thus we can assess how close the filter bank

implied by the proposed (in eq. (12)) ADFT approximations

are to the rows of exact DFT matrix. The filter bank fre-

quency responses for four of the bins of the 32-point DFT,

32-point ADFT, and the corresponding error plots are shown

in Fig. 2. The four bins shown are the ones corresponding

the the rows of the 32-point ADFT that performs the worst

in terms of frequency response; thus they can be understood

as worst-case scenarios. The figure shows that the 32-point

ADFT is ‘‘close enough’’ to the exact DFT to be useful in

VOLUME 8, 2020 96617
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many practical applications, especially for wireless commu-

nications and software-defined radio (SDR) where antenna

pattern, noise and semiconductor process variations induce

some errors themselves: its error level of about −10 dB

compared to the main lobe of exact DFT’s filterbank response

is within the margin of error of such systems (which include

both electronics and electromagnetics).

IV. APPROXIMATIONS FOR THE 1024-POINT DFT

A. APPROXIMATION METHODOLOGY

As section III-B illustrated the ADFT for N = 32, here we

exploit the square of N = 32 to create a family of ADFTs for

N = 1024. Motivated by the promising results achieved for

32-point ADFT, we will extend the approximation to 1024-

point case using the mathematics described in section II-C.

Here, we propose three ADFT algorithms which have small

deviations of their filter bank responses when compared to

the DFT. We assume that the applications at hand will be

tolerant of the given deviations of frequency response, and

that such deviations will be a small price to pay in exchange

for the significantly smaller circuit realizations and power

consumption over traditional fixed-point FFTs. It should be

noted that the implementation of such approximate methods

is not constrained by the minimum theoretical bounds of

multiplicative complexity [15], that apply to the exact DFT.

Indeed the proposed algorithms are not in fact calculating the

DFT, but furnishing approximations that are deemed reason-

able for most high-speed digital-RF applications.

Based on (7), we propose the replacement of the exact

32-point DFT F32 by the 32-point ADFT proposed in [35].

Therefore, a suite of approximations for theDFT computation

emerges. We propose three different algorithms based on the

position of ADFT matrix in the derivation:

• Algorithm 1: ADFT-ADFT. Substitute both row- and

column-wise 32-point DFT F32 with the multiplierless

32-point ADFT F̂32;

• Algorithm 2: Hybrid ADFT-DFT. Replace only the

row-wise 32-point FFTs with the multiplierless 32-point

ADFT in Section III leaving column-wise DFTs exact,

and;

• Algorithm 3: Hybrid DFT-ADFT. Replace only the

column-wise 32-point FFTs with the multiplierless

32-point ADFT in Section III leaving row-wise DFTs

exact.

Let X̂i for i = 1, 2, 3 denote approximations for X given

by Algorithm 1, Algorithm 2, and Algorithm 3, respectively.

Thus we have mathematically:

X̂1 = vec
([

�32 ◦
(

F̂32 · (invvec(x))⊤
)]

· F̂⊤
32

)

, (18)

X̂2 = vec
([

�32 ◦
(

F̂32 · (invvec(x))⊤
)]

· F⊤
32

)

, (19)

and

X̂3 = vec
(

[

�32 ◦
(

F32 · (invvec(x))⊤
)]

· F̂⊤
32

)

. (20)

The above combinations of ADFT and DFT yield low-

complexity approximations for the 1024-point DFT, which—

due to its relatively large block length—is a computationally

intractable task via usual direct numerical search methods.

Algorithms 1, 2, and 3 have considerably different computa-

tional complexities and performance trade-offs, as discussed

in subsection IV-B.

W7 =















































































1
−j 1

1 −j
−j −1

1 j
−j 1

−1 −j
−1 −j

1 −j
−j −1

1 −j
−j −1

−1 j
−j −1

1 j
−j −1

1
j −1

1 −j
j −1

−1 −j
j −1

1 j
j −1

1 j
−1 j

−1 j
j 1

1 −j
j −1

1 j
j 1















































































. (17)
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FIGURE 2. Magnitude of the filter-bank responses for (a) the exact 32-point DFT, (b) the 32-point ADFT and (c) error of the ADFT response for the least
performing rows. .

B. ARITHMETIC COMPLEXITY

1) TWIDDLE-FACTOR MATRIX

In the three proposed algorithms, only the DFT computa-

tion F32 is subject to an approximation; the twiddle-factor

matrix �32 is left unaltered in its exact form (cf. (7)). There-

fore, a minimum number of multiplications remains due

to �32. Considering only the nontrivial multiplications, the

twiddle-factor matrix requires 961 complex multiplications,

which translate into 2883 real multiplications and 2883 real

additions. The arithmetic complexity assumes sequential

operation in a CPU. This parameter will be used in the

arithmetic complexity calculations for each of the three algo-

rithms.

2) ALGORITHM 1

Here the only source of multiplicative complexity are

the twiddle factors in between the row- and column-wise

32-point ADFT blocks. Since the 32-point ADFT requires

348 additions and it is called 64 times, it contributes 64 ×
348 = 22272 real additions to the overall arithmetic com-

plexity of Algorithm 1. The resulting arithmetic costs are:

2883 real multiplications and 2883 + 22272 = 25155 addi-

tions.

3) ALGORITHM 2

Here multiplicative costs stem from the twiddle factors and

the column-wise 32-point exact DFT. The column-wise exact

DFT is computed using the Cooley-Tukey radix-2 FFT [5],

[38] (see Section III-B). Since this algorithm requires 32

calls to the exact 32-point DFT and 32 calls to the 32-point

ADFT, we have a total of (32 × 88) + 2883 = 5699 real

multiplications and (32×408)+ (32×348)+2883 = 27075

real additions.

4) ALGORITHM 3

Here the operation count follows the same rationale as for

Algorithm 2, with the difference that the roles of the row

and column-wise transforms are swapped. Therefore, Algo-

rithms 2 and 3 have the same arithmetic costs. The arith-

metic complexity of the proposed methods is summarized

in Table 1.

TABLE 1. Real arithmetic complexity for the exact 1024-point DFT and for
the proposed approximations.

C. PERFORMANCE OF THE PROPOSED APPROXIMATIONS

Considering the frequency response error expressed in log-

magnitude units, Fig. 3 shows (i) the upper and lower

envelopes and (ii) the first, second, and third quartiles of

the error resulting from the proposed approximate filter

banks [47], [48]. For ease of visual inspection, we show only

the normalized frequencies on the interval [−π/4, π/4]. The

error of the frequency response for the remaining parts of the

interval [−π, π] are just a repetition of the plots in Fig. 3.

Note that the three approximations resulting from Algo-

rithm 1, Algorithm 2, and Algorithm 3 have distinct fre-

quency responses. Fig. 3 indicates that the Algorithm 1 is the

one presenting the largest deviation for themain lobe from the

exact DFT. This is expected given that the transform resulting

from Algorithm 1 is obtained through the substitution of

both the row- and column-wise DFT block by the discussed

approximate 32-point DFT. This qualitative analysis is con-

firmed oncewe calculate the errors in the frequency responses

of the rows of the three proposed approximations. Table 2

displays the minimum (nonzero), mean, and maximum for

the squared magnitude of these errors. Notice in Fig. 3 that

the transform resulting from Algorithm 1 has the highest

deviations from the expected frequency response for its rows

with range of 5 dB compared to the filter bank response of the

exact DFT matrix. In Table 2, we also show the worst-case

side lobe in dB for each of the transforms. All transforms

considered here possess a low worst-case side lobe on the

order of −12 dB.
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FIGURE 3. Log-magnitude error of the frequency response of the rows of the proposed approximations. The errors are bounded to −60 dB for displaying
purposes.

Noise rejection of the proposedADFTs can be evaluated by

means of its SNR improvement per frequency bin. The noise

present from the antenna array can be modeled as additive

white Gaussian noise (AWGN) with zero mean and vari-

ance σ 2. The AWGN present in each frequency bin is σ 2/N .

For narrowband (monochromatic) plane wave received by the

array, the input signals to both the DFT and the three ADFT

algorithms follows exp(j2πnk/N ) for n, k = 0, 1, . . . ,N−1,

where k represents the DFT/ADFT bin number (correspond-

ing to specific spatial frequencies related to the direction

of propagation of each wave) and n is the antenna number

in the ULA. The monochromatic signal having frequency

exp(j2πk/N ) for bin k has its SNR improved by 10 log10(N ),

which is 30.1 dB for the 1024 point DFT. This is the best

case SNR improvement per bin for the DFTs. The adoption

of various ADFTs in place of the DFT causes a loss of SNR

performance observed as a hit in the SNR per bin. Let the

reduction in SNR for bin k be denoted 1γx where x ∈
{1, 2, 3} are for the three proposed approximation algorithms.

The worst-case SNR degradation for the ADFTs obtained

through simulations with 105 replicates for finding the

ensemble average for each bin of the ADFTs are shown

in Table 2. The SNR degradation shows that Algorithm 1 has

the largest worst-case degradation of SNR compared to the

DFT (1γ1 < 0.9 dB). There is no significant difference

betweenAlgorithm 2 andAlgorithm 3 in terms of SNR degra-

dation and has worst-case (1γ2,3 < 0.4 dB). The reduction

in SNR of the three ADFTs compared to SNR of DFTs can

be compensated by adding ≤ 0.9 dB of additional transmit

power and antenna gain at the transmit side. Fig. 4 shows the

SNR plot for each of the beams of the DFT and the three

proposed approximations. Notice that no approximation has

an SNR lower than 29.2 dB in any of the bins, demonstrating

that the SNR degradation is ≤ 0.9 dB compared to the DFT

where the SNR improves by 30.1 dB for every bin.

V. DIGITAL VLSI REALIZATION

Next, we explore digital VLSI realizations of the three ADFT

approaches outlined in (18), (19) and (19) using a time-

multiplexed approach. Traditionally, arithmetic complexity

amounts of counts of both multiplication operations and

addition operations. However, for semi-parallelized hardware

implementations on VLSI platforms, the existence of parallel

sub-systems offers a trade-off between circuit complexity

and algorithm execution speed as described by Amdahl’s

Law [49]. The proposed algorithms are based on radix-

32 SFGs, which imply the sequential nature is limited to

1024-point algorithm completion every 32 clock cycles. The

radix-32 SFG allows re-use of ADFT and DFT cores, and

twiddle-factor cores, using time-multiplexing up to 32 levels.

The use of time-multiplexed operations leads to the gener-

alization of the multiplier structures that do not distinguish

trivial multiplications by 0, 1, −1. Therefore, the number of

multiplications for the twiddle factor block is 1024 com-

plexmultiplications (compare to 961 complexmultiplications

for a sequential algorithm that can ignore trivial multiplica-

tions). However, radix-32 approach allows time-multiplexing

of 32 parallel complex multipliers for achieving the twiddle

factor matrix, leading to circuit complexity of 96 real multi-

pliers, and 160 real adders/subtractors, in the twiddle factor

block. To distinguish the mathematical operations from its

physical realization, hereafter we refer to the circuit imple-

mentation of the selected 32-point DFT and ADFT, respec-

tively, as DFT32 and ADFT32 cores. Also, the digital VLSI

hardware for the 1024-point exact DFT and each of the 1024-

point approximations resulting from Algorithm 1, Algo-

rithm 2, and Algorithm 3 are referred to as the DFT1024,

ADFT1024_1, ADFT1024_2, and ADFT1024_3 cores,

respectively. Fig. 5 shows the overall architecture of the

DFT1024 with the DFT32 cores. We focus on the design

of the ADFT1024_1 core. Because this design can be

easily extended to the other cores, the description of the

ADFT1024_2 (Algorithm 2) and ADFT1024_3 (Algo-

rithm 3) cores is omitted for brevity.

The core ADFT1024_1 is a radix-32 unit and there-

fore processes an input signal block of 1024 time-domain

samples in 32 clock cycles. Each signal block consists

of 32 rows of adjacent time-domain samples in 32 columns.

The first ADFT32 block sequentially computes the 32-point

ADFT of each row, which are given by: x[k], x[32+k], x[2×
32 + k], . . . , x[31 × 32 + k], for k = 0, 1, . . . , 31. Sam-

pled values in the intermediate frequency (IF) domain are
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FIGURE 4. The SNR for DFT and proposed Algorithm 1, Algorithm 2, and Algorithm 3. The SNR for the
proposed algorithms is no lower than 29.2 dB, against 30.1 dB for the DFT.

TABLE 2. Performance statistics of the proposed approximations: frequency response magnitude, worst-case side lobe level and SNR degradation.

FIGURE 5. Signal flow graph showing the VLSI architecture to be modified
for the proposed architecture based on the selected approximation.
Algorithm 1: Replacement of both 32-point DFTs with 32-point ADFT
blocks. Algorithm 2: Replacement of only row-wise 32-point DFT with
32-point ADFT blocks leaving column-wise DFT exact. Algorithm 3:
Replacement of column-wise 32-point FFT with 32-point ADFT blocks
leaving row-wise DFT exact.

passed to the transpose buffer, which realizes the matrix

transposition operation in digital VLSI hardware, while

operating in-step with the system clock. One complete matrix

transpose operation is achieved every 32 clock cycles. The

transpose buffer feeds the second time-multiplexed ADFT32

after suitable twiddle factors have been applied, which in

turn, furnishes the desired 1024-point ADFT values. In

order to minimize the chances of overflow, the second time-

multiplexed ADFT32 block in Fig. 5 uses a larger wordlength

by one bit than the first time-multiplexed ADFT32 block. Use

of a larger word length accommodates for the arithmetic oper-

ations that are carried on the first time-multiplexed ADFT32

and the twiddle factors.

A. TRANSPOSE BUFFER AND TWIDDLE FACTORS

The transpose buffer shown in Fig. 6 consists of a mesh

of 1024 delays and 32 parallel multiplexers, each of them

possessing 32 inputs. The transpose buffer block generates

the transpose of the first set of frequency bins. The transpo-

sition allows the column-wise DFT computation required in

eq. (18), (19) and (20).

Twiddle-factor multiplication count consists of 961 non-

trivial complex multiplications spread over 32 clock cycles.

However, these are implemented using 32 parallel com-

plex multipliers, which each consume 3 real multipliers

and 5 adders (Gauss Algorithm for complex multiplica-

tion). The twiddle factor block therefore furnishes the only
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FIGURE 6. Schematic diagram of the transpose buffer.

multiplications present in ADFT1024_1, which results from

Algorithm 1 in a radix-32 hardware realization. Each of the

column bins (after the transpose buffer) undergoes a multipli-

cation by ωm·n
1024, where 0 ≤ m ≤ 31 and 0 ≤ n ≤ 31.

Therefore, the precision of the twiddle-factor multipliers

plays a critical role in the final area A, area-time AT , and

area-time-squared (AT 2) metrics. In this paper, we have set

the twiddle-factor precision level to be equal to the system

word size of the inputs to the ADFT1024_1 core, which is a

design parameter and the choice of lower precision levels in

the twiddle factors would result in improvements in the VLSI

metrics for all three proposed algorithms. In a sense, hardware

designed with such conservative parameters can be thought

of as worst-case benchmark, with more coarsely quantified

twiddle factors leading to even better improvements in area,

area-time, and area-time-squared metrics.

B. CIRCUIT COMPLEXITY

All circuits operate for 32 clock cycles to produce one 1024-

point transform. Complex multiplication is realized using

3 real multiplier circuits and 5 real adder circuits follow-

ing the Gauss multiplication algorithm. The twiddle-factor

matrix based on Gauss multiplication �32 in (18) therefore

requires 96 real multiplier circuits and 160 adders circuits.

This block is common to all four 1024-point algorithms.

1) ADFT1024_1 CORE

Each ADFT32 requires 348 adders/subtractors and no multi-

pliers.

As shown in Fig. 5, the proposed radix-32 time-

multiplexed architecture for Algorithm 1 uses two ADFT32

cores. Thus, ADFT1024_1 has an overall circuit complexity

of 348∗ 2+ 160 = 856 adders/subtractor circuits and 96 real

multiplier circuits.

2) ADFT1024_2 CORE

In ADFT1024_2, the row-wise DFT block is substituted by

the ADFT32 block. The DFT32 requires a total 78 real mul-

tiplier circuits and 398 adder circuits. Because the ADFT32

requires 348 adder circuits but no multipliers, we have an

TABLE 3. Circuit complexity for the proposed architectures and the
1024-point DFT.

overall circuit complexity of 398 + 160 + 348 = 906 adder

circuits and 96 + 78 = 174 multipliers ADFT1024_2.

3) ADFT1024_3 CORE

The circuit complexity for the Algorithm 3 is the same as for

ADFT1024_2. The only change is in the placement of the

elements in the architectural level.

The 1024-point DFT (denoted DFT1024) obtained by

using two DFT32 cores for row- and column-wise FFTs

would require 78 ∗ 2 + 96 = 252 real multiplier circuits and

398 ∗ 2 + 160 = 796 + 160 = 956 adder circuits. This is

our reference radix-32 FFT circuit for baselining the circuit

complexities of the proposed ADFT1024 algorithms.

The circuit complexities for the proposed designs as well

as DFT1024 are presented in Table 3.

C. ASIC SYNTHESIS AND PLACE-ROUTE RESULTS: 45nm

CMOS

The proposed architectures were implemented on MATLAB

Simulink using Xilinx libraries and then mapped to 45-nm

complementary metal-oxide semiconductor (CMOS) tech-

nology cells (synthesis only). Each of the designs consists of

three main hardware components—first 32-point transform

block, transpose buffer with twiddle-factor multiplication

block, and second 32-point transform block. The complex-

ity of each 32-point transform block core depends on its

corresponding input word length. Key quantitative measure-

ments of performance for each 32-point transform block

core and transpose buffer with twiddle-factor multiplications

are shown in Table 4. In Table 5, we list the hardware

implementation metrics for ADFT1024_1, ADFT1024_2,

and ADFT1024_3. Metrics for the DFT1024 core were

included as reference values.

D. ANALYSIS OF THE RESULTS

The results in Table 4 shows that the 32-point ADFT

core demands considerably less hardware resources than the

32-point exact DFT core. On the other hand, the implementa-

tion of the transpose buffer with twiddle factor multiplication

adds a fixed hardware complexity to the system for both

the DFT and the approximate architectures. As a result, the

transpose buffer causes the highest area consumption and

a relatively high power consumption in comparison to that

of 32-point ADFT cores. Thus, it becomes the dominant
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TABLE 4. Key quantitative measurements of performance in digital 45 nm CMOS VLSI for each DFT core and transpose buffer with twiddle factor
multiplications.

FIGURE 7. The four worst bins for multi-beam beamforming: (a) exact DFT response, (b) ADFT response, and (c) error for algorithm
1; (d) exact DFT response, (e) ADFT response, and (f) error for algorithm 2; (g) exact DFT response, (h) ADFT response, and (i) error
for algorithm 3.
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TABLE 5. Key quantitative measurements of performance in digital 45 nm CMOS VLSI for each algorithm.

FIGURE 8. Linear plot of selected beams {200, 201, 202, 203} for exact and approximate transforms: (a) exact DFT response,
(b) ADFT response, and (c) error for algorithm 1; (d) ADFT response, and (e) error for algorithm 2; (f) ADFT response, and
(g) error for algorithm 3.
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factor in hardware complexity for the designs of the three

1024-point approximate transforms, as shown in Table 5.

The core ADFT1024_1 gives the best hardware utiliza-

tion, whereas ADFT1024_2 gives the worst as can be seen

in Table 5. Algorithm 3 gives the best error performance,

i.e., provides the most accurate approximation. Moreover,

the hardware resource consumption of its physical realiza-

tion ADFT1024_3 is also close to that of ADFT1024_2.

The error performance of Algorithm 2 does not differ much

from that of Algorithm 1, which also provides a hardware

realization ADFT1024_1 with the lowest resource con-

sumption. Therefore, we recommend either Algorithm 1 or

Algorithm 3 (i.e., its hardware realizations ADFT1024_1

and ADFT1024_3) as the best designs.

E. ADFT-BASED 1024-BEAM DIGITAL BEAMFORMERS

In the proposed system, each ADFT bin corresponds to a

unique direction in space. Ideally these bins should be identi-

cal to the spatial DFT bins, but their magnitude could deviate

because of the approximation. The four worst bins for each of

the three algorithms are shown in Fig. 7. The resulting errors

are small enough to be acceptable for the low SNR scenarios

seen in practical wireless systems.

Fig. 8 shows detailed plots of 4 consecutive beams (from

bins 200-203) for the three proposed algorithms, together

with the errors. We chose these four beams arbitrarily to

showcase the shapes of the obtained RF beams in sufficient

detail.

Note that practical realization of 1024-element ULAs for

generating narrow ADFT-based beams in currently-licensed

frequency bands (upto the V band) may be challenging

due to the large sizes of the resulting apertures. However,

due to ongoing research in the sub-THz range [24]–[32],

the W and G bands will soon be commercially available

for both licensed and unlicensed use. At a carrier frequency

of 300 GHz, λ/2 = 0.5 mm and thus the size of a Nyquist-

spaced 1024-element ULA would decrease to a reasonable

value of 51.2 cm.

VI. CONCLUSIONS

FFTs are used for reducing the computational costs of

evaluating the DFT. Generally, they decrease complexity

fromO(N 2) down toO(N logN ). In this paper, we show that

further savings can be accomplished by means of approxi-

matemethods. The resulting 1024-point DFT approximations

present a trade-off between performance and hardware com-

plexity without significant loss in terms of worst-side lobe

and SNR.

Our work shows that larger block-length DFT approxima-

tions can be obtained from the smaller-size approximations

derived using previously-described numerical optimization

methods. Our methodology can be directly applied to any

DFT for which the block length is a perfect square. Since the

current DFT approximations in the literature are restricted to

the sizes {8, 16, 32} [8], [35], [48], [50], [51], approximate

algorithms can be derived for N ∈ {64, 256, 1024}. In this

work, we focused on the 1024-point case. Assuming that a

multiplierless DFT approximation of size
√
N can always be

found, our derivations suggests that we can obtain an N -point

DFT approximation that requires only N − 2
√
N − 1 multi-

plications; effectively making the complexity of the resulting

N -point approximationO(N ). The proposed algorithms were

synthesized to digital VLSI using a 45-nm CMOS library.

Synthesis results confirm the expected improvements in lay-

out area and power consumption metrics compared to a con-

ventional 1024-point DFT implementation.

The choice of algorithm depends on the application and its

tolerance for computational error in the DFT block. Highly

error tolerant applications can greatly benefit from Algo-

rithm 1 which has the lowest complexity. Algorithm 2 or

3 maybe selected when Algorithm 1 does not furnish suffi-

cient performance.
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