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Fast Randomization for Distributed Low-Bitrate
Coding of Speech and Audio

Tom Bickstrom, Senior Member, IEEE, and Johannes Fischer

Abstract—Efficient coding of speech and audio in a dis-
tributed system requires that quantization errors across nodes
are uncorrelated. Yet with conventional methods at low bi-
trates, quantization levels become increasingly sparse, which
does not correspond to the distribution of the input signal
and importantly, also reduces coding efficiency in a distributed
system. We have recently proposed a distributed speech and
audio codec design which applies quantization in a randomized
domain such that quantization errors are randomly rotated
in the output domain. Similar to dithering, this ensures that
quantization errors across nodes are uncorrelated and coding
efficiency is retained. In this paper we improve this approach by
proposing faster randomization methods, with a computational
complexity of O(N log N). Presented experiments demonstrate
that the proposed randomizations yield uncorrelated signals, that
perceptual quality is competitive and that the complexity of the
proposed methods is feasible for practical applications.

Index Terms—orthonormal matrix, superfast algorithm, ran-
domization, distributed coding, speech coding, audio coding

I. INTRODUCTION

IGITAL compression of speech signals for transmission
and storage applications, known as speech coding, is
a classic topic within speech processing and modern speech
coding standards achieve high efficiency in their respective
application scenarios [1]-[5]. Though these standards are
high-fidelity products, they are constrained to configurations
with a single encoder. Designs which would allow using the
microphones of multiple independent devices could improve
signal quality, and moreover, it would allow a more natural
interaction with the user-interface as the speaker would no
more be constrained to a single device. If the codec can
flexibly use all available hardware, then the user does not need
to know which devices are recording, releasing mental capacity
from attention to devices to the communication at hand.
Such an ideal user interface is possible only if devices
cooperate in the speech coding task. The aim is that, through
cooperation, the acoustic signal should be flexibly captured
and transmitted to one or several decoders or fusion centers.
Clearly we thus require a distributed speech and audio codec.
A distributed system however requires substantial modifica-
tions to existing codec designs; most notably, 1) the increase in
algorithmic complexity due to added nodes becomes an issue
and 2) we need a method to ensure that each transmitted bit
conveys unique information. Specifically, conventional codec
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designs are based on an intelligent encoder and a simple
decoder, whereby a majority of the computational complexity
resides at the encoder. In a distributed system, the overall
computational complexity increases linearly with both the
encoder complexity as well as the number of nodes, whereby it
is important to keep encoder complexity low to be able to use
a large number of nodes. If we can move the main intelligence
of the codec from the encoder to the decoder, then the overall
complexity of the system would thus be much lower.

A majority of speech coding standards are based on the
code-excited linear prediction (CELP) paradigm [1]. It is based
on an analysis-by-synthesis loop, where the perceptual quality
of a large number of different quantizations are evaluated to
optimize output quality. While this approach provides the best
quality for bitrate trade-off, its usefulness in distributed coding
is limited by its computational complexity, rigid design and
error propagation issues. Frequency domain methods, on the
other hand, have not yet reached quite the same efficiency
as CELP, but it is clear that coding in the frequency domain
is computationally much simpler. Moreover, since most noise
attenuation and spatial filtering methods are defined in the
frequency domain [6], it will be straightforward to implement
such methods if we use frequency-domain coding, and we
follow the approach proposed in the current paper.

Another issue is the amount of interaction between encoder
nodes. Clearly communication between nodes requires some
administration, whereby it would be beneficial to minimize
or even avoid interaction between nodes if possible. If nodes
only transmit data and we avoid interaction between nodes,
then the overall system structure is simpler and we avoid the
computational complexity required for said interaction. The
question is thus whether interaction between nodes is required
for coding efficiency. At high bit-rates (say 100 kbits/s), very
small differences in the signal, such as variations in delay,
background noise or sensor noise, would be sufficient to make
quantization noise between nodes uncorrelated [7], whereby
each node will provide unique information. However, experi-
ence with lower bit-rates (such as 10kbits/s) has shown that
low-energy areas of the signal are often quantized to zero,
whereby quantization errors are perfectly correlated with the
input signal [1]. Multiple nodes transmitting zeros would then
convey no new information about the signal, whereby there is
little advantage of using multiple devices.

Our objective is to develop a distributed codec for speech
and audio, where coding efficiency is optimized, but which
can also be applied on any device, including simple mobile
or even wearable devices with limited CPU and battery re-
sources. Recently, we have proposed an overall design for
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such a method [8], [9]. The approach is based on randomizing
the signal before quantization, such that quantization error
expectations between devices are uncorrelated. We assume that
the randomizer uses a random-number generator whose seed is
communicated from the encoder to the decoder either offline
or sufficiently seldom that it has a negligible effect on the
bitrate. Overall, the randomizer in this context is similar to
dithering and was inspired by the 1bit quantization used in
compressive sensing [10], [11].

Randomization has several distinct benefits in the proposed
codec: 1) In low-bitrate coding (below 10kbits/s), we have
only a limited number of quantization levels which can be
encoded with the available bits. With decreasing bitrate, the
quantized signal distribution thus becomes increasingly sparse,
granular and biased. By applying a randomization and its
inverse before and after quantization, respectively, we can hide
the undesirably sparse structure. Similarly as dithering, we can
thus retain the signal distribution, without any penalty on the
signal to noise ratio. 2) In perceptual audio coding a too low
number of quantization levels for speech and audio signals
leads to artifacts known as musical noise, where components
which sporadically appear and disappear become coherent
sound objects in their own right. A standard approach for
avoiding musical noise in audio codecs is noise filling, a
method similar to dithering, where noise is added to spectral
areas quantized to zero [12]. In our approach, by quantization
in randomized domain, errors become incoherent and we
can avoid the reduction in SNR caused by noise filling.
3) Randomization of the signal can also work as a component
of encryption [13]. It provides diffusion in a similar way as
the Hill cipher [14], that is, it distributes the contribution of
the input vector evenly onto the bitstream. 4) In distributed
coding, we can apply two alternative approaches. If nodes
encode separate subspaces (or cosets in the vocabulary of
distributed coding), then increasing the bitrate by 1 bit/sample
yields a 6dB improvement in quality. The downside in an
ad-hoc network is that then the nodes have to negotiate
which subspaces/cosets to transmit, which requires extra band-
width, administration and increases the risk of eavesdropping.
Moreover, spatio-temporal filtering such as beamforming is
impossible if cosets do not overlap. On the other hand, if nodes
are independent, then we can get a 3dB improvement from
a doubling of the number of nodes, as long as the quanti-
zation errors are uncorrelated [6]. Randomized quantization
yields quantization errors which are uncorrelated, whereby
in difference to conventional quantization, we achieve the
3 dB improvement when doubling the number of microphones.
5) When transmission errors corrupt some transmitted bits,
conventional entropy coders (e.g. arithmetic coding) will loose
all data after the first corrupted bit. With the proposed entropy
coding which is enabled by the randomizing scheme, there is
no serial dependency of bits, whereby we can reconstruct the
signal also when some bits are corrupted. The transmission
errors will then be visible as noise in the reconstructed signal,
which can be attenuated by conventional noise attenuation
methods such as Wiener filtering [15], [16]. The details of
these benefits are discussed in the following sections.

In comparison, conventional single-device quantization and

coding methods all suffer from some constraints. Entropy
coders such as Huffman or arithmetic coders with uniform
quantization do not scale to very low bitrates (less than
2 bits/sample), since the output signal distribution becomes
unnaturally sparse [1], [17]. Lattice quantization does reduce
quantization error, but does not solve the issue of granularity
at low bitrates and moreover, it does not easily lend itself to
arbitrary probability distributions [1], [18]. Vector coding is
optimal in accuracy and does not suffer much from sparsity,
but computational complexity is high and it is challenging to
encompass variable bitrates [19]. Moreover, achieving robust-
ness to transmission errors is difficult with all of the above
methods.

Distributed source coding methods, on the other hand, do
provide methods for optimal joint encoding [20], [21]. These
methods make use of the correlation between the microphone
signals by binning in order to reduce the rates using the results
from distributed source coding. The most common way of
implementing this is by using error-correcting codes, but in
a practical setup due to complexity and other considerations,
such implementations will be highly suboptimal, leading to
higher complexity without significant gains. For these reasons,
in the current work, we do not focus on binning. Specifically,
we are not aware of distributed source coding methods for ad-
hoc networks, which would include signal-adaptive perceptual
modeling, which would solve the above mentioned problems
with sparsity and which would simultaneously apply signal-
adaptive source models. All of these properties are required
features of a speech and audio codec to retain a competitive
performance for the single-channel case.

The fields of speech and audio coding [1], [22], and
distributed source coding e.g. [20], [21], are well-understood
topics. Work on wireless acoustic sensor networks has how-
ever not yet made it to consumer products of the type
discussed here [23]-[25]. Some works have addressed higher
bitrates [26], or with the assumption that nodes are fully
connected and co-operating [7], [27], though both approaches
lack a perceptual model. Some early work do apply a per-
ceptual model [28], [29], but do not include other elements
of main-stream speech and audio codecs, such as source
modeling. A somewhat similar problem is design of hands-
free devices and the associated beamforming tasks [6], which
can be applied in a distributed system [30], though methods
usually require accurate synchronization of nodes to give
competitive performance [31]. Similar methods have also been
tried for hearing-aids, though distributed source coding gave
there only a negligible improvement [32]. More generally,
distributed processing of speech and audio can be also applied
for classification and recognition tasks [33]-[35], though those
remain well outside the scope of the current work.

In comparison, the proposed distributed scheme is now
a complete system, with the exception of speech source
modeling, which has not yet been incorporated into the system,
though we have studied it intensely, e.g. [36], [37]. Moreover,
since source modeling is a clearly distinct and large topic, we
have left it to a future publication. Specifically, while we do
apply a rudimentary entropy codec, in the current experiments
we do not include a model of the spectral magnitude envelope,
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of harmonic structure nor spatio-temporal correlations. While
many of the prior works have admirably fine theoretical
analyses, a central novelty of the current work is that the
design has no barriers against creating a practical system
whose single-channel quality is near state-of-the-art while si-
multaneously providing a benefit when increasing the number
of nodes. That is, by including the above mentioned source
models, the single-channel performance should be similar to
the performance of the TCX mode of the EVS standard [2].
It should be emphasized that we have not included all details
of best practices in lossy distributed source coding, since we
have opted to take incremental steps in order to retain the
single-channel quality near the state-of-the-art.

The current contribution addresses the complexity bottle-
neck of the system, namely, the randomization and its inverse.
The algorithmic complexity of generic quantization together
with randomization is O(N?). Moreover, at the decoder,
our original approach required the inversion of an N x N
matrix, which gives a complexity of O(N?) using Gaussian
elimination [38]. It is our objective here to present methods
which improve algorithmic complexity, and retain or improve
the randomization properties and coding efficiency as much as
feasible.

In addition to distributed coding, randomization and decor-
relation are used also in many other fields of speech, audio
and signal processing in general. For example, in upmixing of
audio signals from a low to a higher number of channels, we
need methods for generating uncorrelated source signals [39].
Randomization methods proposed in this paper may find appli-
cation in any such applications which require low-complexity
methods for generation of uncorrelated signals. Notably, more-
over, randomization can be used in single-channel codecs to
diffuse unnaturally sparse quantization levels which appear at
low bitrates.

II. RANDOMIZED ENTROPY CODING

The main objective of coding is to quantize and encode
an input signal x € RV*!, with a given number of bits B,
such that it can be decoded with highest accuracy possible.
The objective of randomization, on the other hand, is to
make sure that the resynthesised signal retains the continuous
distribution of the original signal and that the quantization
error is uncorrelated Gaussian noise. In other words, whereas
quantization by construction yields a signal with a discrete
distribution, our objective is to obtain a signal which follows a
similar distribution as the original signal. Moreover, the aim is
that if the signal is quantized and coded at multiple nodes, then
the quantization errors of the outputs would be uncorrelated.
Clearly we then need to introduce randomness in the signal
without reducing accuracy of the reconstruction.

To achieve such randomness, we discuss three aspects of
linear randomizing transforms (see Fig. 1); First, we show
that orthonormal projections are optimal for our error crite-
rion. Secondly, we discuss random permutations for diffusing
information across the input vector. Finally, we demonstrate
that low-order random rotations can be used in block-matrices
to diffuse quantization levels.

U
P74 T

Transmission

Fig. 1. Flow-diagram of the randomization process where P is a random
(orthonormal) matrix and @[] is a quantizer.

As objective design criteria for the randomization, we use
the following methods: 1) The accuracy of reconstruction is
measured by the minimum mean square error min E[||¢||?],
where e = x—2 is the quantization error and Z is the quantized
signal. 2) To measure the correlation between randomized
vectors, we measure the normalized covariance between the
original = and its randomized counterpart Pz. If the random-
ization is effective, then the normalized g}ovariance should
behave like the normalized covariance m between two
uncorrelated signals x and y. Speciﬁcaﬁy, the mean of the
normalized covariance should be zero and its variance % for
Gaussian signals (see Appendix for details). 3) The accuracy
with which the distribution of the output signal follows the
distribution of the input signal can be measured with the
Kullback-Leibler (KL) divergence. However, since analytic
analysis of divergences is difficult, we apply the KL-diver-
gence only experimentally in Sec. IV. 4) Finally, algorithmic
complexity is characterized with the Big-O notation.

A. Orthonormal Randomization

To introduce randomness in the signal without compromis-
ing accuracy, we propose to multiply the signal with a random
orthonormal matrix P before quantization. At the decoder we
then need to multiply with the inverse P” (see Fig. 1). It
is important that the transform is orthonormal, since it pre-
serves signal energy, such that the transform provides perfect
reconstruction and a minimal white noise gain. Specifically,
let the output signal be & = PTQ[Px| where Q-] signifies
quantization. If the quantization is perfect, v = Qlu], then
we have # = PTQ[Px] = PTPx = x. In other words, the
randomizing transform P does not corrupt the signal in any
way; all information is retained and the signal can be perfectly
reconstructed.

Moreover, if the quantization error is v = u — , then the
output error energy will be

2
e I

2=z —z|?= ||a: — PTQ[Px]

(1
= ||Pz — Q[Pz]||* = |lo|*.

In other words, since for an orthonormal P we have |le||?> =
|| Pel|?, it follows that quantization error energy in the trans-
form domain is exactly equal to the error in the output domain.

If we would relax the constraint from orthonormal matrices,
and consider matrices P whose samples are uncorrelated and
have unit variance, then we would have E[PT P] = I and the
matrices would be orthonormal with respect to the expectation.
However, as is known from random matrix theory [40], the
eigenvalue distribution of such matrices is significantly off
unity. It follows that PT would not be an accurate inverse
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of the transform but we would have to use the actual inverse
P~ or a pseudo-inverse. Consequently, the inverse transform
P~! would emphasize the quantization errors corresponding
to small eigenvalues, whereby the inverse transform would, on
average, increase the error energy. Orthonormal random matri-
ces are thus preferable to random matrices since they provide
perfect reconstruction and unit white noise gain. Orthonormal
matrices have also computational benefits with respect to noise
attenuation at the decoder side (see Section III).

B. Random Permutations

Permutations are computationally fast operations which
correspond to orthonormal matrices, whereby their use in
randomization is interesting. As a matter of definition, we will
say that a permutation perfectly diffuses input information over
the output vector if the output location of all input samples are
uniformly distributed over the whole vector. Specifically, if an
input sample &, has an input location h € [0, N — 1], then the
probability that it will appear at location k after permutation
is p(k) = %, whereby the input and output locations are not
correlated.

The covariance cp of the original signal  and the permuted
signal y = Px is

N
cp=a"y=2"Pz= Z Ek€q(k)> 2
k=1

where ¢(k) is the permutation function. If we define the set
of fixed points of the permutation as S = {k |k = q(k)}, that
is, this is the set of samples which do not move due to the
permutation, whereby

cp =Y l&l+ > G 3)

keS kgS

While the expectation of the latter sum is zero E[{;&,] = 0,
for k # h, the former sum has a non-negative expectation.
It follows that the expectation of the covariance has a non-
negative bias E[cp] > 0, which is in contradiction with our
objective. The set S is, however, small when N is large,
whereby the deviation is not large. Nevertheless, for the sake
of completeness, we can easily remedy the problem.

Let AL be a diagonal matrix whose diagonal elements are
randomly chosen as £1. Clearly this matrix is also orthonor-
mal. We can thus apply a randomization y = A Px, whereby
the correlation is

N
cp=a"y=a"ALPr = Z &,y (k)- “4)

k=1
If both signs have equal probability, then clearly
E[£&&,u)] = 0 and Elcp] = 0 as required. The

combination of random signs and permutations thus
decorrelates the signal in the sense that the covariance has
zero mean and we simultaneously achieve perfect diffusion.
Moreover, multiplication by A1 can be readily generalized to
orthonormal block-matrices, which are discussed below.

Random permutations can be easily generated at algorithmic
complexity O(N log N) [41]. A heuristic approach is for

example to apply a sort algorithm, such as merge sort, on
a vector of random uncorrelated samples. The sort operation
then corresponds to a permutation, which is uniformly dis-
tributed over the length of the vector.

C. Block-wise Random Rotations

Multiplication with matrices has in general an algorithmic
complexity of O(N?). To reduce complexity, consider N x N
random orthonormal block-diagonal matrix rotations B of the

form
Q1 0

Qs
B- § : 5)

0 QK
where K is the number of blocks and )y are random or-
thonormal matrices of size Nj, x Ny, such that Z,ﬁil N, =N.
The complexity of the transform is O(Zszl N?). Clearly the
random sign operation Ay is a block-matrix of this form with
Ny =1and K = N.
Specifically, consider size 2 x 2 orthonormal matrices ) of

the form )
cosa  sina
Q= {— sina  cos a] ©)
The related covariance is
13 Tlcosa sina I3
T St 1
cQi=a Qu= |:€2:| {— sina cos Oé:| |:€2] 7

— (& + &) cosa

If o is uniformly distributed on o € [0, 27, then clearly
co has zero mean, Elcg] = ||z||? E[cosa] = 0 as desired.
Moreover, if y = Qx = [771,172] , then the parameters 7y
follow the arcsine-distribution on the range |n;|? < 2| z|%.

In other words, by applying 2 x 2 blocks of random rotations
on the quantized signal 4, we can diffuse the quantization
levels to make the distribution of the output less sparse. Note
that since the outputs of the 2 x 2 transforms have symmetric
distributions, sign-randomization by Ai becomes redundant
and can be omitted. The 2 x 2 matrices were chosen since they
are simple to implement and any larger orthonormal rotation
can be implemented as a combination of 2 x 2 rotations.

Diffusion of the quantization levels is however not yet
complete; the arcsine-distribution is less spiky than the dis-
tribution of the quantized signal, but it is still far from the
normal distribution. To obtain an output distribution which
better resembles the normal distribution, we therefore apply a
sequence of permutations Pj and block rotations By as

M
P= H By Py, (8)
k=1

where each block rotation By, is of form Eq. 5 with 2 X 2 rota-
tions @), of the form in Eq. 6. Each consecutive randomization
By, Py, will then further diffuse the output distribution. We will
experimentally determine a number of rotations M such that
the output distribution is sufficiently diffused. However, the
algorithmic complexity of applying the above rotation will in
any case be O(M N), while generation of such permutations
has complexity O(N log N).
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D. Conventional randomization methods

Generating random orthonormal matrices, with uniformly
distributed rotations is not as easy as it would seem. With 2 x 2
matrices such as those in Eq. 6 we can get uniform distribution
if « is uniformly distributed on [0, 27|, however, with N >
2 such heuristic approaches are not as simple anymore. The
reason is easy to understand in the 3 x 3 case, where uniform
rotations along each axis would yield a higher concentration
of points around the poles of the sphere.

In the general case, however, the problem is equivalent with
choosing N random points on the unit N-sphere, such that
the corresponding unit vectors are orthonormal. We can thus
choose N random vectors of size N x 1 from a distribution
with spherical symmetry, and orthogonalize the set of vectors.
A numerically stable and efficient algorithm which generates
such orthonormal vectors is the QR-algorithm [38]. Specifi-
cally, we first generate an N x N matrix X with uncorrelated
and normally distributed samples with zero mean and equal
variance. Secondly, we apply the QR-algorithm to obtain an
orthonormal matrix Pgr. The overall algorithmic complexity
of this approach is O(N?) [38], [41].

A simplification of the QR-algorithm is to apply House-
holder transformations with each of the columns of X [42].
While this approach is efficient for small matrices, in informal
experiments we found that for large matrices, the simplifica-
tion does not provide a uniform distribution. We also tried
the subgroup algorithm presented in [43], [44]. Though this
algorithm is faster than the Householder-based algorithm by
a factor of 2, unfortunately however, it suffers from the same
issues as the Householder-based algorithm. The QR-algorithm
applied on random matrices thus remains our high-quality and
-complexity method for reference.

E. Algorithmic complexity

In application of each of the proposed orthonormal ma-
trices, we have two sources of algorithmic complexity; one
which emerges from generation of the matrix and a second
which is related to application of the matrix and its inverse.
Furthermore, we should evaluate storage requirements for the
generated matrices. In each case, we shall assume that we have
access to a pseudo-random number generator, which produces
a pseudo-random sequence of scalars & with independent and
identically distributed values from the uniform distribution on
& € [0, 1}.

The simplest case is generation of random signs for the
matrix AL. For each of the N diagonal samples we need a
random sign with equal probability, which can be obtained by
thresholding & at 0.5. Given the sequence &, the algorithmic
complexity for generation and application is thus O(N).

For the block rotations, the number of 2 x 2 blocks is
N/2, whereby we need N/2 random scalars to generate the
matrix B. Application of B involves N/2 multiplications
by a 2 x 2 matrix at complexity O(2N), as well as N/2
evaluations of cosa and sina at O(N), though evaluation
of trigonometric functions can have a high constant multiplier
for the complexity.

(a)
Envelope Perceptual 3 Parametric |
estimation modeling I coding |

e

Transmitter

Speech Perceptual Random —
input MbCT weighting | rotation _k-
(b)
3 Parametric |
5 ' decoding }
= |
o
3
& Inverse Inverse Inverse Inverse Speech
quantizer rotation weighting MDCT output

Fig. 2. Structure of the (a) encoder and (b) decoder of one node of the
distributed speech and audio codec. Dashed boxes indicate modules which
were not included in current experiments to facilitate isolated evaluation of
randomization.

Application of permutations is straightforward; it is essen-
tially a mapping of sample indices, whereby it does not involve
computations other than moving operations, O(N). Here we
have to, though, store both the permutation indices and we
need to store the permuted vector, whereby the storage require-
ments are @O(2N). Generation of permutations can be applied
by sorting a vector of random scalars &, with, for example,
the merge sort algorithm [41]. It requires also a storage of
O(2N), but not at the same time as the application of the
permutation, whereby it does not add to the overall storage
requirements. The algorithmic complexity for generating the
permutation is O(N log N) [41].

To generate a random orthonormal matrix, the QR-algorithm
can be applied with arbitrary accuracy with an algorithmic
complexity of O(N?) and storage O(N?) [38]. Application
of the randomization and its inverse are then simply multi-
plications by a matrix and its transpose, both at complexity
O(N?). It however requires N2 random scalars as input,
whereby also the complexity of generating pseudo-random
numbers becomes an issue. Moreover, the random values at the
input should have rotational symmetry, whereby the uniformly
distributed scalars & variables are not sufficient. We thus need
to apply a transform such as the inverse cumulative normal
distribution on & to obtain normally distributed variables,
which comes at a considerable extra computational cost.

Each of the above algorithms assume that we have access
to a sequence of pseudo-random numbers &;. If we choose to
generate the randomization on-line, then we need to consider
the complexity of generating pseudo-random numbers. The
algorithmic complexity of generating pseudo-random numbers
is in general linear O(NN) with the number N of scalars to be
generated [45]. A commonly used generator is the Mersenne-
twister, though there are also lower-complexity versions avail-
able [46], [47]. The trade-off is that if the random sequence
is not generated on-line, then it needs to be stored. In any
case, we assume that the seed of the random sequence is
communicated either off-line, or sufficiently seldom such that
it does not induce a significant penalty on the bit-rate.

In summary, algorithmic complexity of generating ran-
dom matrices is O(M N log N), while their application has
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O(MN), where M is the number of iterations (typically
M = 4) and N is the vector length. If the random coefficients
are not generated on-line but stored, then we need storage of
%M N coefficients, while working memory must be always at
least 2N coefficients.

A typical speech and audio codec, such as the TCX mode of
the EVS, would use a step of 20 ms between windows [1], [2],
whereby the spectra would be of length N = 256 at a sampling
rate of 12.8 kHz, N = 320 at 16 kHz or N = 882 at 44.1 kHz.
A typical frequency domain codec will have no components
which require a complexity more than O(N log N). Since
the proposed randomization is also O(N log N), in terms of
algorithmic complexity, we are now in-line with conventional
TCX codecs. The complexity bottleneck thus returns to the
rate-loop of the entropy codec [1], [48].

III. APPLICATION IN DISTRIBUTED CODING OF
SPEECH AND AUDIO

As a demonstration of the proposed randomizer, we ap-
plied the randomized quantizer in coding of the fine-spectral
structure in a distributed speech and audio codec. The overall
structure is similar to that of the TCX mode in 3GPP EVS [2]
and the implemented codec structure is illustrated in Fig. 2.
First, we apply the MDCT time-frequency transform and half-
sine windowing on the input signal [22] to obtain spectral
representations x; of each time-frame at a node k. Here
the window length was 20ms with 10ms overlap, and the
sampling rate was 12.8 kHz. The sampling rate was chosen to
match the core-rate of EVS in wide-band mode [2]. In EVS,
the remaining bandwidth is coded with bandwidth-extension
methods, to obtain a total sampling rate of 16 kHz.

We then analyze the signal envelope and perceptual model,
using the LPC-based approach as in EVS [1], [2]. The signal
is then perceptually weighted and multiplied with random
rotation matrices to obtain randomized vectors. As a last step
of the encoder, the signal is quantized and coded.

We used a fixed-bitrate entropy coder with 2 bits/sample
as follows; the distribution was split into four quantization
cells such that each cell had equal probability and each input
sample was quantized to the nearest quantization cell. The
quantization levels are thus fixed and the system does not
require a rate-loop. This corresponds to entropy coding the
spectral fine structure alone with a bitrate of 25.6kbits/s.
Perceptual envelopes and signal gain are usually transmitted
with a rate in the range 2-3 kbits/s, whereby the overall bitrate
is approximately 28 kbits/s. This does not strictly qualify as
a low-bitrate codec, but on the other hand, we have here not
implemented an explicit source model nor a rate-loop. Our
experience with the EVS codec suggests that inclusion of a
source model (such as a fundamental frequency model) and a
proper rate-loop, would reduce bitrate to below 10 kbits/s with-
out reduction in perceptual quality, whereby this experiment
is representative for low-bitrate coding. Conversely, we chose
the bitrate such that it roughly corresponds to the accuracy
achieved in TCX in the EVS standard well below 10 kbit/s.

At the decoder, the operations are reversed, with the excep-
tion of the perceptual model estimation, which is assumed to

Distributed

Decoder node
encoder nodes

—+[ Decoder 1]
|
g
Speech —| Encoder 2 | i [ Decoder 2 P\ie @ || Specch
input -~ T . g N I .~ Enhance output
\L ,,,,,,,, = [
—

Fig. 3. Encoder/decoder structure of the distributed speech and audio codec
with N encoder nodes and a single decoder node.

be transmitted. Note that we want to focus on the performance
of the randomizer, whereby in the current application, we did
not include an explicit source model, rate-loop nor quantize
the perceptual model. The quality of the output signal could
be further enhanced with noise attenuation techniques such as
Wiener filtering [6], [49]. Here, however, we chose to omit
noise attenuation such that we can avoid tuning parameters
and keep the comparison of different methods fair.

To demonstrate performance in a multi-node scenario, we
implemented a distributed codec as illustrated in Fig. 3,
where each individual encoder node follows the configuration
of Fig. 2. As described above, the decoder can then con-
tain the inverse randomizations and a “merge & enhance”
-block can implement Wiener filtering independently from
the randomization. As long as the quantization errors are
orthonormal and quantization accuracy is uniform, we would
not gain anything from joint processing of the randomization
and enhancement, whereby independent blocks give optimal
performance. We chose not implement Wiener filtering here,
since it would present additional perceptual tuning factors,
whereby the design of a fair comparison would be difficult.
Instead we took here merely the mean of the two channels
and study only the objective quality of the two-channel case.

IV. EXPERIMENTS

To evaluate the proposed randomization methods, we per-
formed objective experiments corresponding to the perfor-
mance measures described in Section II as well as subjective
perceptual experiments with the distributed speech and audio
codec described in Section III.

A. Statistical properties

To quantify the influence that randomization has on the
coding error magnitude, we created N x N matrices with
N = 100, such that 1) the matrices P, were orthonormal
POT P, = I and 2) the matrices P, were orthonormal with
respect to the expectation E[PT P,.] = I. Specifically, we used
a random number generator to produce uncorrelated, normally
distributed samples with zero mean and variance %, which
form the entries of P,. It follows that E[PTP,] = I. By
applying the QR-algorithm on P,, we then obtain a random
orthonormal matrix, which we define as P,.

We then generated K = 1000 vectors x of length N,
whose samples are uncorrelated and follow the normal dis-
tribution. Each vector was randomized with the two matrices
u, = P,z and u,, = P,x, quantized with the sign quantization
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Method | Orth  Rand  None
SNR (dB) ‘ 4.52 2.25 4.52
TABLE 1

SIGNAL TO NOISE RATIO (SNR) OF SIGN QUANTIZATION WITH
ORTHONORMAL RANDOMIZATION (ORTH), RANDOMIZATION WITH A
RANDOM MATRIX (RAND) AND WITHOUT RANDOMIZATION (NONE).

N=4 N=8 N=64

Histogram for P

Histogram for A,L

, o

Histogram for A\jL P

Histogram for BP

0 0
A A

. . . . . T
Fig. 4. Illustration of histograms of the normalized covariance A = ZHT"?QZ

for different N X N orthonormal matrices: the random permutation matrix
P, the random sign matrix A4, the combination A+ P as well as the
block-matrix (with random 2 X 2 rotations) in combination with permutation
BP, evaluated over K = 10000 matrices. The dashed line indicates the
theoretical distribution of normalized covariance between random Gaussian
vectors, scaled to fit to each histogram.

i, = sign(u,) and 4, = sign(u,.) and the randomization was
reverted by &, = POT U, and &, = P,T u,. As reference, we
used quantization without randomization as x,.; = sign(z).
Finally, each of the vectors z,, z, and .y were individually
scaled for minimum error, and the quantization error energy
for each vector was calculated.

The results of this experiment are listed in Table 1. Clearly
randomization with the random matrix P, yields a much lower
SNR upon reconstruction, whereas randomization with the
orthonormal matrix P, has no influence on accuracy. The
results thus exactly follow the theory in Section II and we
should always use randomization by orthonormal matrices.

To determine the efficiency of randomization in terms of
df%correlation, we then calculated normalized covariances A =
W for the different orthonormal matrices A. Fig. 4 illus-
trates the histogram of K = 1000 iterations of the normalized
covariances for matrices of different sizes N = {4, 8, 256}
as well as for random permutations P, random signs Ay and
random permutations with random signs PA_. As a reference,
we used the theoretical distribution illustrated with a dashed
line (see Appendix for details).

We observe that the distribution of the random permutation
P follows the the theoretical distribution (dashed line) at
higher N. However, it is biased to positive values especially
at lower N. The random sign A yields a covariances whose
variance (width of histogram) is higher than the theoretical

o
o0

o
=

<
i

e
)

Occurences (normalized)

(=}

Value of sample

Fig. 5. Normalized histograms of the output samples after M/ consecutive
randomizations, as well as the theoretical distributions of normalized Gaussian
(NNorm, dashed line) and Laplacian (NLap, gray line), for a vector of length
N = 16.

distribution. Clearly neither method is sufficient alone in
decorrelating the signal. The combination of random signs
and a permutation AL P performs much better in that the bias
to positive values is removed and the variance is similar to
the theoretical distribution. At N = 4, however, we observe
that the input signal x cannot be treated as a random variable
anymore, but since samples of z frequently get multiplied
with itself (though with random sign), we obtain peaks in the
histogram corresponding to £1 and 0. The situation is further
improved by replacing the random signs with block-matrices
B, where the 2 x 2 blocks are calculated with uniformly
distributed angles «. The peaks at £1 and 0 for N = 4
have almost completely disappeared and the histogram nicely
follows the theoretical distribution. Overall, we find that the
decorrelation performance of randomization improves with
increasing vector length, as well as when we use a combination
of at least two orthonormal matrices.

The third objective performance measure is the ability of
randomization to diffuse the quantization levels in the output
signal. Specifically, the aim is that the distribution of the output
is transformed from a sparse distribution to something which
resembles the input distribution. We have already found that
application of random permutations and block-matrix rotations
is an effective combination, whereby our aim is to evaluate
how many such pairs we have to apply to get proper diffusion.
To that end we define

M
Py =[] BePr, ©)
k=1

where By and Py are random block-matrix rotations and per-
mutations, respectively. Fig. 5 illustrates the output histogram
when applying sign-quantization and the inverse rotation Py,
for different values of M. We have here chosen to use sign-
quantization since it is the worst-case in terms of sparsity.
We observe in the figure that the original quantized signal
has a sparse distribution, where all samples are 41, but
each consecutive randomization makes it resemble more the
normalized Gaussian distribution (dashed line). Note that the
normalized Gaussian is here the reference distribution, since
the normalized covariance has a limited range (see Appendix
for details). At M = 4 iterations the histogram has already
converged to a unimodal distribution and at M = 16 the
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Fig. 6. Convergence of distribution with increasing number of rotations M to
(a) the normalized Gaussian and (b) the normalized Laplacian, as measured
by the Kullback-Leibler divergence, for different vector lengths IN. As a
reference, randomization with the QR-algorithm is depicted with crosses *x’,
representing a high-complexity and high-performance target level.

histogram is very close to the the normalized Gaussian dis-
tribution. The rate of convergence depends, however, on the
vector length N.

As a final test of statistical properties, we therefore test
the rate of convergence to the normalized Gaussian distri-
bution with increasing number of iterations and different
vector lengths N. As a measure of convergence, we use the
Kullback-Leibler divergence between the normalized Gaussian
distribution and the histogram of the output. As reference, we
used randomization based on the QR-algorithm. The results
are illustrated in Fig. 6(a).

We can see that convergence is faster for the shorter vectors,
as is to be expected, since in a large space we need more
rotations to reach all possible dimensions. The performance of
the QR algorithm is illustrated with crosses *x’ and we can see
that after 16 iterations, for all vector lengths NV, the proposed
randomizers have more or less reached the diffusion of the QR
algorithm. In fact, for N = 4 and N = 8, the performance
saturates already after 5 and 7 iterations, respectively.

It is however clear that speech signals are not normally
distributed, but we can often assume that spectral components
follow the Laplace distribution [50], illustrated by the gray line
in Fig. 5. Adding further rotations will not reduce the distance
to a normalized Laplacian distribution, but it will saturate
at some point, as is illustrated in Fig. 6(b). The divergence
between the obtained histograms and the target distribution
levels off after a few iterations. Moreover, when applying
noise attenuation at the decoder, such as Wiener filtering, the
distribution will be further modified. We therefore conclude
that as few as M = 4 iterations should be sufficient to diffuse
the quantization levels of a speech signal.

B. Application in a Speech and Audio Codec

To evaluate the performance of randomization in a practical
application, we implemented the proposed speech and audio
codec, whose generic structure was described in Sec. III
as follows. As mentioned before, the LPC-based perceptual
model was copied as-is from EVS [2]. The perceptually
weighted frequency representation was then quantized with

Perceptual SNR (dB)
Method

Single node  Two nodes
None 4.08 4.08
QR 8.79 11.67
Proposed 6.42 8.02
TABLE II

PERCEPTUAL SNRS OF EACH EVALUATED METHOD.

randomization using the QR-algorithm, the proposed low-
complexity randomization (Eq. 9) with M = 4 iterations, as
well as without randomization.

For the randomized signals we used an assumption of Gaus-
sian distribution and for the signal without randomization, we
used the Laplacian distribution. Our previous experiments have
shown that the Laplacian works best for speech signals [48],
[50]. Above we have, however, shown that randomized signals
are closer to Gaussian, whereby the choice of distributions is
well-warranted. Informal experiments confirmed these choices
as the best in terms of perceptual SNR. Here, the perceptual
SNR refers to the signal to noise ratio between the perceptually
weighted original and quantized signals [22].

As test-material, we randomly chose 6 samples (3 male and
3 female) from the TIMIT corpus [51]. For each coded sample,
we calculated the window-wise perceptual SNR in decibel, and
calculated the mean perceptual SNRs of respective methods,
which are listed in Table II.

Even though all methods use entropy coding with the same
bitrate, we get rather large differences in perceptual SNR.
The QR method is over 4.8 dB better than no randomization,
and the proposed low-complexity falls in between the two.
Informal experiments show that an increase in the number
of iterations used for creating the proposed randomization,
will improve the SNR. The number of iterations is therefore
directly proportional to complexity and SNR. It should be
noted, however, that we have here not applied source modeling
explicitly (such as that in [48]), which would most likely
increase the performance of all methods, but especially the
version without randomization. The obtained results should
therefore be treated as provisional results until a source model
has been implemented (length restrictions prevents us from
including a discussion about source models in this paper).

To evaluate the perceptual influence of the randomization on
the quantization noise, we conducted a MUSHRA listening
test [52]. Thirteen subjects, aged between 22 and 53, were
asked to evaluate the quality of the different approaches. Seven
of the thirteen test persons referred to themselves as expert
listeners. As test items we used the same six sentences of the
TIMIT database as above.

For each item we used five conditions: no randomization,
the proposed fast randomization approach and as an upper
bound, randomization using the QR approach, as well as a
3.5 kHz low pass signal as a lower anchor, and the hidden
reference, in accordance with the MUSHRA standard.

The results of the listening test are presented in Figure 7.
The results show that there is a clear trend that randomization
improves the perceived quality, as both the QR and the fast
randomization approach are rated higher than the approach
without randomization. Moreover, with the exception of item
3, the QR approach has higher scores than the proposed
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Fig. 7. The results of the MUSHRA test, given for the different items, and
an average over all items. The reference was omitted as it was always rated
to 100.

method. The coding quality of all methods is in the same
range as the anchor, which is arguably low, even for a low
bitrate codec. However, since the experiments did not include
proper source modeling, the perceptual results overall should
be treated as preliminary. In any case, for all items combined,
the 95% confidence intervals do not overlap, and there is
a clear difference between all three conditions under test,
where the proposed approach performs on average about 20
MUSHRA points better than the conventional, and the QR
approach can improve the quality by approximately 15 points.

To determine whether there is a statistically significant dif-
ference between the ratings of the proposed approach (Median
= 42.5) and the lower anchor (Median = 40), hypotheses
testing was applied. Since a Shapiro-Wilk test of the score
differences (W = 0.917, p < 0.01) as well a visual inspec-
tion of Q-Q-plots indicated non-normally distributed data, a
Wilcoxon signed rank test was performed which indicated no
significant difference (V' = 1469, p = 0.87) between the
anchor and the proposed approach. However, it is unclear
whether a comparison between the proposed method and lower
anchor is relevant anyway, since the characteristics of the
distortions in the two cases are very different, rendering a
comparison difficult, and since we have not yet included a
source model, whereby the absolute quality level was rather
arbitrarily chosen. The anchor thus serves only as way to
roughly characterize the absolute quality level used in the
experiment.

The difference scores in Figure 8 support the findings of the
above analysis. Taking the proposed approach as the reference
point, the proposed approach performed always significantly
better than the conventional. Moreover, with the exception of
item 3, the QR approach performed always better than the
proposed approach. It is unclear why QR does not have an
advantage for item 3, but we suspect it is merely a statistical
outlier. In any case, the low-complexity proposed method is
always better than no randomization, which was our target.
This argument also validates our choice of not using source
modeling; by source modeling, we can improve quantization
accuracy, but our experiments show that the perceptual quality
of a codec can be improved by randomization even with a fixed
quantization accuracy.

Finally, to determine how well quantization errors are
decorrelated, we applied the randomization methods on two
independent encoders (without difference in delay and without

0| |
01 e . ot o . . ‘ . A

0t |E { (SN R

TN e B w5 16 an

‘-No Randomization +QR ‘

® Proposed

Fig. 8. The difference scores of the performed MUSHRA test, where the
proposed approach was used as a reference point. The lower anchor and the
hidden reference were omitted.

background noises) and took the mean of the outputs. In
theory, taking the mean of two signals with uncorrelated noises
should increase SNR by 3 dB. From Table II we see that ran-
domization with the QR-algorithm almost reaches this target
level, with an improvement of 2.88 dB. The proposed low-
complexity randomizer achieves an improvement of 1.6 dB. It
is thus again a compromise between complexity and quality, as
the higher-complexity QR-method gives better SNR than the
proposed low-complexity randomizer. In a real-life scenario
we expect to see higher numbers, since any differences in
acoustic delay and background/sensor noises would further
contribute to decorrelate the quantization errors.

V. CONCLUSION

Quality of speech and audio coding can be improved in
terms of both signal quality and ease of interaction with
the user-interface by including, in the coding process, all
connected hardware which feature a microphone. For this
purpose, we have recently proposed a distributed speech and
audio codec design based on randomization of the signal
before quantization [8]. This paper addresses the complexity
bottle-neck of the proposed codec, that is, the randomizer.

The proposed low-complexity randomizer is based on a se-
quence of random permutations and 2 x 2 block-rotations. Our
experiments show that by successive randomizations we obtain
high-accuracy decorrelation, such that the covariance of the
original and the randomized signal behaves like uncorrelated
signals, and such that the quantization levels of the output
signal are diffused.

The proposed randomization has multiple benefits for low-
bitrate coding, distributed coding, perceptual performance,
robustness and encryption. Our experiments confirm these
benefits by showing that randomization improves perceptual
SNR and subjective quality. Though inclusion of a randomizer
shows here an SNR improvement of 2.4dB, we expect this
benefit to be reduced when a proper source model is included.
However, we show that if quantization errors are randomized,
taking the mean of signals improves SNR as much as 2.8 dB,
whereby we can always improve quality by adding more
microphones.

The algorithmic complexity of the proposed randomizer is
O(N log N), where the main complexity is due to generation
of random permutations. If the permutations are generated
off-line the overall complexity is O(M N), where M is the
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number of iterations. Typically M = 4 is sufficient, whereby
complexity is O(N). Storage requirements are in all cases
O(N). We believe that the complexity of the encoder therefore
becomes viable even on low-performance nodes, such as
wearable devices. Generation of the randomizer requires a
sequence of pseudo-random numbers. We assume that the seed
of the pseudo-random number generator is either known at
both the encoder and decoder or seldom communicated as
side-info.

Overall, with this work, the distributed speech and audio
codec takes a large step forward to become a full system. Only
source modeling was here omitted from a full system, due to
space constraints. The randomizer is, however, a necessary
and important part of the overall design, whereby finding a
low-complexity solution was crucial.

APPENDIX
THE DISTRIBUTION OF
NORMALIZED GENERALIZED GAUSSIANS

When a signal which follows a Gaussian or Laplacian
distribution is normalized by its norm, its range becomes
limited. Consequently, normalization of a signal changes its
distribution and the purpose of this appendix is to determine
the form of such distributions. In interest of generality, we
study the generalized normal distribution, which includes both
the Gaussian and Laplacian distributions as special cases.

Suppose = is an N x 1 vector whose entries xj are
uncorrelated and follow the generalized normal distribution
with zero mean and equal variance o2:

_ p Ty |P
T@r) = Spri7p) &P (‘ ‘?‘ )
where the scaling factor is b = 02, / 11:83%; and where T'(-) is
the Gamma function [53].

By normalizing z with its £,-norm ||z||,, we obtain a new
random variable y = m, which is closely related to x
but does not follow the generalized normal distribution. In
particular, in difference to x, the entries y; of y have a limited
range

(10)

N
> lyklP =1,  whereby g, €[-1, +1]. (11
k=1

To derive the marginal distributions of g, we begin by

studying the entries xj of x. Let v, = 2 |%’” P whereby we

can find the distribution of 7y by substitution of variables
dry 'y%*le 2

fOw) =21 () o = Sy ~ X (12)) '

dvk
In other words, v follows the Chi-squared distribution with
% degrees of freedom. We can then define

12)

p p
A= gl = 12D o (13)

ey JaslP + Donzw TRl
Since the z’s follow the generalized normal distribution, then
|zx[P and >, |25 |P will follow the Chi-squared distribution
with % and (N — 1)% degrees of freedom, respectively. Ratios

such as A\, of Chi-squared distributed variables will follow

the Beta-distribution with parameters o = ]% and 8 = %,

or specifically [54, Sec. 4.2]

r (%> p1 NoL1 g
fw) = 1“(1)F(N1>/\k (I=X) 7 . (19
p p
Moreover, from Eq. 11 it follows that
N
D A=1, and 0< N\ <1 (15)
k=1

The joint distribution of the A;’s therefore follows the Dirich-
let distribution with oy, = % [55].
We can then substitute Ay, = |yx|P to get the distribution of

Yk as
N-1_4

o ()0 lwl)

f(yk):%f()‘k)@: 21_‘(1_’_1)1_‘(@)

(16)

This is the marginal distribution of the normalized Gaussian yy,
for any k. We can readily see that it is a scaled and translated
version of a symmetric Beta distribution. Note, however, that
the entries y;, are correlated with each other due to Eq. 15.
The distribution is symmetric around zero, whereby the mean
is zero Elyx| = 0 and the variance is (omitting subscripts for

brevity)
: r()ri)
E [lyf? =/ FW) lyPdye = —~~22ts, (D)
o] = [ 00 P = oy
where we used the substitution A\ = |y|P and recognized

that the integrand is similar to the Beta-distribution, whereby
solution is simple. In particular, we have the variances

1
1 for p = 2
Ely) =4~ op (18)
—2 _ forp=1
~Ntnn torp=L
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