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Fast Randomized Point Location Without Preprocessing 

in Two- and Three-dimensional Delaunay Triangulations 

Ernst P. Miicke Isaac Saias Binhai Zhu 
Los Alamos National Laboratory, Los Alamos, New Mexico 

Abstract 

This paper studies the point location problem in Delau- 
nay triangulations without preprocessing and additional 
storage. The proposed procedure finds the query point 
simply by “walking through” the triangulation, after se- 
lecting a “good starting point” by random sampling. The 

analysis generalizes and extends a recent result for d = 2 

dimensions by proving this procedure to take expected 

time close to O(nl/(d+l)) for point location in Delaunay 
triangulations of n random points in d = 3 dimensions. 
Empirical results in both two and three dimensions show 
that this procedure is efficient in practice. 

1 Introduction 

Point location is one of the classical problems in compu- 

tational geometry and has various applications of practi- 

cal relevance, e.g., in the areas of geographic information 
systems (GIS) or computer-aided design and engineering 
(CAD/CAE). The problem is well studied in the com- 
putational geometry literature and several theoretically 

optimal algorithms have been proposed. Unfortunately, 
algorithms that are optimal in theory do not necessarily 
yield to good practical performance. This is also true in 
the case of point location, mainly because of the neces- 
sary preprocessing time and additional storage require- 
ment s. 

The Authors may be contacted at: E. P. Mucke, epm@ansys. com, 

ANSYS, Inc., 201 Johnson Road, Houston, PA 15342-1300, USA. 

I. Saias, isaac@ladl.gov, and B. Zhu, bhz@lanl.gov, both at 

Los Alamos National Laboratory, CIC-3 Computer Research & 

Applications Group, M.S. K987, Los Alamos, NM 87545, USA. 

The best known practical algorithm uses “bucketing” 
and is due to Asano et al. [AEIf85]. It achieves optimal 
logarithmic time complexity; however, it, too, requires 
some extra preprocessing, especially within each bucket, 
and additional storage. Actual engineering implementa- 
tions also often use tree structures to  guide the point 

location, e.g., the “alternating digital tree” described 
in Bonet and Peraire [BP91]. Obviously they, as well, - 

require building and maintaining additional data struc- 
tures. Here, we will discuss a technique that is efficient in 
practice, uses no preprocessing time, no additional stor- 

age, and, as a bonus, could not be easier to implement. 

The point location problem in its full generality deals 
with locating query points in arbitrary subdivisions. 
This work, however, focuses on point location in trian- 
gulations (in fact, the analysis is even further restricted 
to Delaunay triangulations of random points). This is 
justified because regions of arbitrary subdivisions can be 
triangulated; moreover, the query problem in triangula- 
tions itself occurs quite frequently in practice, e.g., in 

mesh generation and finite-element analysis (FEA) . 

Simple walk-through. The basic idea is straightfor- 
ward and not at all new; it goes back to early papers 
on constructing Delaunay triangulations in 2D and 3D 

[GS78, Bow811. The underlying assumption is that the 
Delaunay triangulation D of a set X E lRd of n points is 
given by an internal representation Sikh that constant- 
time access between neighboring simplices (i.e., triangles 
for d = 2, tetrahedra for d = 3) is possible. This can be 
achieved by using, e.g., the 2D quad-edge data struc- 
ture [GS85], the edge-facet structure in 3D [DL89], its 
specialization and compactification to the domain of 3D 
triangulations [E93], or its generalization to d dimen- 
sions [Bri93]. Now, in order to locate a query point q, 

select some simplex of D, consider the line segment L, 
from a vertex of the initial simplex to the query point q, 

and simply “walk towards” q by traversing all simplices 
intersected by L. 

This method has been ignored by most theoreticians 
in computational geometry since not much can be said 
about its performance theoretically, other than it is “ex- 
pected” to take time proportional to n’ld when the 
points are randomly distributed [GS78, Bow811. How- 
ever, because of its exceptional simplicity, the method is 
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indeed used by practitioners in the geometric computing 

community, in particular, in FEA, e.g., [GH92]. 

Improved jump-and-walk. We can improve the 

simple walk-through by “jumping” to a “good start- 

ing point” via random sampling on the point set 

{ X I ,  X2, . . , Xn}. Given the Delaunay triangulation D 
of these n points, and a query point q, the following pro- 
cedure locates the simplex of D, if any, which contains q. 

(1) Select m points Y’, . . . , Y, at random and without 
replacement from X I ,  . . . , X,. 

(2) Determine the index j E { 1,. . . , m} minimizing the 
distance d(5 ,q ) .  Set Y = y j .  
(3) Locate the simplex containing q by traversing all 
simplices intersected by the line segment (Y, q). 

Step (3), i.e., the simple walk-through, can be imple- 
mented in constant time per simplex visited, once the 
initial simplex, intersected by L and incident to “start- 
ing point” Y, is determined. 

Motivated by the positive empirical results of [E93], 
where the jump-and-walk is used to implement the ran- 
domized incremental flip algorithm to construct 3D De- 
launay triangulations, this procedure was recently an- 
alyzed for R2, with the result that the expected query 
time is O(n1i3) when the points are randomly distributed 
[DMZ95]. This result, in turn, builds on the work of 
Bose and Devroye [BD95] who prove that for any line 
segment L the expected number of intersected triangles 
in proportional to ILln1/2. 

In the following, we extend both results to R3, showing 
that jump-and-walk point location in spatial Delaunay 
triangulations of n random points has an expected run- 
ning time of 0 (6(n)’j4 n1/4 (log n/ log 1 0 g n ) ~ / ~ ) ,  where 
6(n) denotes the expected degree of a Delaunay vertex. 
A result of Bern et al. [BEY911 on the expected maxi- 

mum degree would give 6(n) = O(logn/loglogn). On 
the other hand, Dwyer [Dwygl] shows that 6(n) = O(1) 
for any fixed dimension d, assuming that the points are 
chosen uniformly at random in a d-dimensional ball. In 
any case, it is always a fair assumption that Delaunay tri- 
angulations occurring in problems of practical relevance 
are only of linear size (rather than worst-case quadratic 
size), and we can immediately argue that d(n) is constant 

for all practical purposes, yielding an expected running 
time close to O(n1i4). This compares well to the the- 
oretically optimal O(log n) bound, at least for practical 
sizes of input data; e.g., n1/4/log2n < 2.5, for n in the 
range up to io7. 

On a theoretical side, our work addresses and solves two 
difficult issues. First, when proving “probabilistic im- 
possibility results” for Delaunay triangulations one is 
naturally led to define volumes and to argue that these 
volumes are likely to  contain some Delaunay vertices. 
One must be careful though to define (as much as possi- 
ble) these volumes independently from the vertices. We 

achieve this difficult task in 3D. Second, the perturbing 
effect of the boundary is very well-known. The prob- 
abilistic model of [BEYSl], for instance, was designed 

to analyze typical properties of Delaunay triangulations 

away from the boundary. Here, we provide a specific es- 
timate of the range of this perturbation. Our methods 
seem well suited to bring even more precise results. 

Outline. The paper is organized as follows. In Sec- 
tions 2 and 3, we first generalize the result of [BD95] 
regarding the intersection of a line segment with a ran- 
dom Delaunay triangulation to 3D. Then, we generalize 

the proof of [DMZ95] to 3D. In Sections 4 and 5, we 
present empirical results over randomly generated point 
sets ranging from n = 1000 to 50000. Our tests confirm 

that the method is efficient in practice, and is also com- 
parable with the optimal O(logn), at least in the above 
range, which seems to be of most relevance for practi- 
tioners in GIS and CAD. 

2 Statement of Results 

Let C be a convex domain of R3 and let a and p be 
two reds such that 0 < a < P. We say that a probabil- 
ity measure P is an (a,P)-measure over C if P [ q  = 1 
and if we have aA(S) 5 P[SI 5 pX(S) for every mea- 
surable subset S of C, where X is the usual Lebesgue 
measure.’ An R3-valued random variable X is called an 
(a, P)-random variable over C if its probability law C ( X )  
is an (a,  P)-measure over C. A particular and important 
example of an (a, P)-measure P is when P is a probabil- 
ity measure with density f(z) such that a 5 f(z) 5 j3 
for all z E C. One of the advantages of our more gen- 
eral notion is that it allows for a probability measure 

charging only points with rational coordinates: this is 
the case for most computer simulations. This probabilis- 
tic model was introduced in [BD95]. The Poisson model 
of [BEY911 is related to ours in the-sense that, condi- 
tioned on the number n of points observed over a finite 
volume, the probability distribution is uniform, i.e., an 
(a, a)-measure. 

Below is our main result on the expected running 
time of the jump-and-walk algorithm, when applied 

on D, the Delaunay triangulation of n random points 
X I ,  X 2 , .  . . , X, in R3. 

Theorem 1. Let C be a bounded convex set of IR3 
having small curvature. Let XI,. . . , X ,  be n points 
drawn independently in C from an (a, P)-measure. Then 
there exist constants c1, c2 and c3 depending only upon 
a,P and C such that the following holds. Assume that 
m 2 n1/5 and that the query point is selected inde- 
pendently of X I , .  . . , x,  and is at distance of at least 

lNote that the relation X(C) 5 l / a  < CCI implies that C has 
finite area. The convexity of C then implies that C is bounded 
(i.e., that C is included in some finite ball.) 
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c1 /nl/" from the boundary dC. Then the expected time 
of the jump-and-walk algorithm is bounded by 

c2mb(n) + c3(n/m)1/3 logn/loglogn , 

where 6(n) is the expected vertex degree of the Delau- 
nay triangulation. In particular, the expected time is op- 
timized to 0 (S(n)lI4 n1/4 ( l ~ g n / l o g l o g n ) ~ / ~ )  with the 

choice of m = 0 (n1/4/6(n)3/4 ( l ~ g n / l o g l o g n ) ~ / ~ ) .  

The proof of Theorem 1 rests on the following theorem. 

Theorem 2. Let C be a bounded convex set of R3 
having small curvature. Let XI,. . . , Xn be n points 
drawn independently in C from an (a, @)-measure. Then 
there exist constants c4 and c5 depending only upon a, @ 
and C such that the following holds. Let L be a segment 
in C being at distance of at least ~ q ( l o g n / n ) ~ / ~  from 
the boundary dC. Let N be the number of intersections 

between L and D. Then: 

E[Aq 5 c5 (1 + JLJ)n1/3 logn/loglogn. 

We can easily extend Theorem 2 to the case 
where L is a random segment independent of the 
n points XI ,..., X,. For this, define the event 
B = {d (L ,dC)  2 ~4(1ogn/n)~/~}.  We then have 

E [ N  I B ]  5 cs( l+E[ILI  I B])n1 j3  logn/loglogn. 
In Section 3, we first prove Theorem 2 following the same 
ideas as [BD95]; however, we would like to point out that 

the technical details are quite different in 3D and more 
difficult. Given Theorem 2, it is easy to generalize the 
result of [DMZ95] to obtain Theorem 1. 

3 Probabilistic Analysis 

For every bounded domain D of R3 let B(D) denote 
the smallest 3-dimensional ball containing D; we will say 
that B(D) is the canonical ball circumscribed to D. Also, 
for every point x and r 2 0 let B(z,r) denote the ball 
of radius r centered at point x. A plane xyz, passing 
through the center of a ball 23, cuts B into two hemi- 
spheres. We will sometimes for emphasis speak of xyz- 
hemispheres and refer to zyz as the equator of B. The 
following property of a Delaunay triangulation which will 
be used in the sequel; if follows straightforwardly from 
the definitions. 

Lemma 3. Consider the Delaunay triangulation of n 
points in R3 and a triangle F defined by three of these 
points. Then, F cannot be a Delaunay face if the 
open ball B ( F )  contains (at least) one point in both F- 
hemispheres above and below F. 

We select now two positive numbers kl and k2 with 
k1 < 162 such that the following holds. Consider the 
situation described in Figure 1. We have a circle of ra- 
dius Oq = 1/2 centered at a point 0. The two spokes qr 

Figure 1: Defining kl and k2. 

and qs are of length k1 and form a 4 5 O  angle. A ball A1 
of diameter k2 is attached at the end of qr; a similar ball 
A2 is attached at the end of qs. The ball A1 is tangent . 

to the line Oq. We begin with assigning to k1 and k2 two 
values such that kl + k2 < 1/2 and such that the ball 
A2 lies in the interior of the ball B(0,1/2). We will add 
further restrictions to kl and k2 when necessary below. 

Let I be a positive number. We define an I-spindle to be 
a geometric object composed of an axle surrounded by 8 
concentric little balls: 

0 The axle is a segment of length 1. 
0 At the middle of the axle are attached 8 spokes of 

length k1l. The spokes are in a plane perpendicular to 

the axle and are placed in a regular octagonal fashion 
(i.e., at 45 degrees from each other). 
0 At the end of each spoke is attached a little ball of 

diameter k2l. Hence the distance from the axle to the 
outer side of a little ball is (kl + k2)l. 

The collection of the 8 little balls is called the wheel of 
the spindle. 

Lemma 4. There exists a number k3,O f k3 < 1 such 
that the following holds. Let 2, y,xl,. . . ,xn be points 
of R3. We let l = d(z,y) denote the distance between 
x and y. Let S be any I-spindle whose axle is zy. Let 

A I , .  . . ,As be the 8 balls of the associated wheel. Con- 
sider the Delaunay triangulation based on the points 
x, XI, . . . , x,. Then no Delaunay triangulation face in- 
cident to z touches or crosses the ball B(y, k3Z) when all 
8 balls A I , .  . . , A8 each contain a point xj . 

Proof: Base case: We consider first the case where 

y is also a point xi and show that there is no Delaunay 
face xyz incident to both x and y (i.e., for which cy is 
an edge) when all 8 balls A I ,  . . . , A8 each contain a point 

Xj. 

Working by contradiction, assume the existence of such 
a Delaunay face xyz. Consider the canonical ball B(xyz) 
circumscribed to zyz. The center of B(zyz) is equidis- 
tant to 5 and y and therefore lies in the plane PO per- 
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Figure 2: The base case for Lemma 4. 

Figure 3: The edge t‘z‘ intersects B(y, k3Z) 

pendicular to  xy and going through the middle point q 

of x and y: this plane contains also the centers of the 8 
balls Al, . . . , As. We can therefore visualize the situation 

within PO as represented in Figure 2. 

By definition, the point q is the center of the spindle and 
lies in the plane xyz inside B(xyz). The radius of B(xyz) 
is at least equal to the distance d(x,  y)/2 = Z/2. By our 

choice of kl and k2, B(zyz) contains (at least) one ball 
Ai in each 7’1-hemisphere. 

An argument by continuity (omitted here) shows that 
there exists a value k3 > 0 such that, for every y‘ E 

B(y,ksZ), and for every z E R3, the canonical ball 
B(xy’z) similarly contains (at least) one ball Ai in each 
of the hemispheres defined by xy’z. 

General case: We fix k3 to be (one of) the value(s) just 
found. Let xtz be a triangle incident to x and crossing 
the ball B(y,ksE). Let 7’1 denote the plane defined by 
xtz. We now set out to  prove that the canonical ball 
B(xtz) contains at least one ball Ai in each of its 7’1- 
hemispheres. 

(a) Assume that the edge t z  does not intersect B(y, k3Z). 
Consider a sub-triangle xt’z’ of xtz  obtained from xtz 
by homothetie (i.e., scaling) through x and such that 
t‘z’ intersects B(y,k,Z); see Figure 3. As the canonical 
ball B(xt’z‘) is included in B(xtz)  it suffices to show that 
B(xt‘z‘) contains at least one ball Ai in each of its 7’1- 
hemispheres. This allows us to reduce the analysis to 
when tz  intersects B(y, I$). 

Figure 4: The canonical balls B(xtz) and B(xy’z), the 
wheel W of the spindle surrounded by B(q, (kl -k k2)2), 

the plane P2, the half-space U .  

(b) 
tained in B(y,k3Z) and consider the case where the ball 
B(q, (kl + k2)E) intersects both zt and Z Z . ~  This hap- 
pens only if one of the three angles xtz, tzx or zTt is 
“small.” This implies that B(xtz) contains a “big” cap 

of each PI-hemisphere of B(W), and more specifically, 
that, in this case, the center o of B(xtz) is either close 
to q, in which case B(xtz) fully contains B(q, (k1+ k2)Z), 
or is very far, in which case B(xtz) cuts close to half of 

B(q,  (kl  + k2)Z). (The details are omitted here.) 

( c )  We can therefore restrict ourselves to the case 
where B(q,(kl + k2)1) does not intersect either with 
xt or with xz. Assume without loss of generality that 

B(q, (kl  + k2)Z) does not intersect with xz;  see Figure 4. 
Consider the plane P2 containing xz  and perpendicu- 

lar to the plane xtz. The fact “B(q,(kl + k2)Z) does 
not intersect xz” means that B(q, (kl + k2)Z) (and hence 
the spindle S) is fully contained in one of the two half- 

spaces defined by PZ . Let U denote that half-space: 

B(q, (k1 + k2)Z) U .  For every point y‘ in the segment 
tz  one verifies that B(xy‘z) n U C_ B(ztz)  n U. Therefore 
a ball Ai of the spindle S is included in the northern 

(resp. southern) PI-hemisphere of B(xy‘z) only if it is 
included in the northern (resp. southern) PI -hemisphere 

Assume now that neither t nor z are con- . 

A h  

- 

of B(zt2). 

We now specialize yl to be a point in the intersection 
of t z  and B(y,k3Z). By the discussion in the base case 
above, B(xy’t) contains at least one ball Ai in each of its 
PI-hemispheres. We conclude that B(atz) similarly con- 
tains at least one ball Ai in each of its 7’1-hemispheres. 

In summary, we have established that, for every trian- 
gle xtz incident to x and crossing the ball B(y, IC&, the 
canonical ball B(xtz) contains at least one ball Ai in 
each of its PI-hemispheres. The following application of 
Lemma 3 closes the argument: no triangle xtz incident 
to x and crossing the ball B(y,k3Z) is a Delaunay face 
when all 8 balls AI,. . . , As each contain a point zj . 

2Recall that B(q, (ki + k2) l )  is the smallest 3-dimensional ball 
B ( W )  containing the spindle wheel W .  
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Lemma 5. Let X I  be a random variable drawn from 
an (a,p)-measure over a bounded convex set C. Then 
there exist constants r o  > 0 and y > 0 such that for 
every r 5 TO 

inf P [ d ( X l , y )  5 r ]  2 y r 3 .  
VEC 

Proof: This follows easily from the (a,,B)-measure 

hypothesis and from the convexity of C. 

Lemma 6. Consider n points X I , .  . . , X ,  drawn inde- 

pendently from an (a,P)-measure over a bounded con- 
vex set C with small curvature. Then there exist positive 

constants a, b, c and d, depending upon a, ,B and C only, 
such that the following holds. Let y be any point in C 
at distance ~ ( l o g n / n ) ~ / ~  from the boundary dC. Let 
r,r 5 1/2d(y,dC) be a positive quantity. Let N1 de- 
note the number of Xi’s with the property that one of 
its incident Delaunay faces intersects B(y, r ) .  Then 

E[N1] 5 b + ~ r ~ n ~ / ~  + dnr3 .  

Proof: By linearity of the expectation, E[N1] = np  
wherep is the probability that X1 has one of its Delaunay 

faces intersecting the ball B(y,r). Let L = d(X1,y); L 
is itself a random variable. In the following we condition 
on the value of X I .  The points X1 and y are then fixed, 
and we let SX,  be any L-spindle whose axle is Xly.  As 
before, AI, . . . , A8 denote the 8 little balls of the wheel. 
Remark that the event {Sx ,  E C} = {the 8 balls of the 
spindle SX,  are included in C}. To simplify notation let 
event B1 = (k3L 2 r ,  SX,  C C}. 

The first inequality of the following derivation is a di- 
rect consequence of Lemma 4. In the third inequality, 

l k z ~ < T o  denotes the random variable equal to 1 when 

k2L 5 TO and 0 else. 

P [ X I  has one of its incident Delaunay faces 

intersecting ~ ( y ,  T )  I XI, B1 ] 

5 P [one of AI, . . . , As contains 

nopointxz,  ..., X ,  I x I , B ~ ]  

P [ Aj contains none of X2,.  . . , X, I Xi, Bi ] 
8 

- < 
j =  1 

8 n  

Equation (1) is a consequence of the (conditional) in- 
dependence of the events X i  # Aj.  This independence 
comes both from the fact that the random variables X i  
are independent and the fact that the 8 balls A I , .  . . , As 
are defined independently of the points X2,. . . , X,. The 
necessity of this last independence is not always recog- 
nized and leads to frequent mistakes in the literature. 

We now justify the last inequality. Note first that, by 
Lemma 5, ~ ( k ~ 2 L ) ~  5 1 when k2L 5 7-0. The expression 
(1 - ~ ( k ~ L ) ~ ) ~ - l  is therefore well-defined. The condi- 
tioning on Sxl C C ensures that each ball Ai is fully 

contained in C. This implies in particular that the center 
y i  of each ball Ai is in C. We can then apply Lemma 5 

(which determines the values y and T O )  using the fact 
that the random variables Xi are all drawn indepen- 
dently according to an (a, P)-measure. 

Integrating the previous inequality with respect to  XI 
therefore gives: 

P I P [ k L < r ]  

f P  [ Sx, 9 C, XI has one of its incident 

Delaunay faces intersecting B(y, r )  ] 

+8 (1 - rT i )n - i  P [ k2L > To; k3L 2 r ] 

gf I + I I  + 111 + I V .  

The fact that X1 is drawn from an (a,P)-rneasure im- 
plies that I = P [  k& < r ]  5 (4/3) P ~ ( r / k 3 ) ~ .  Also 

IV 5 8e-(”-l)7‘;, which is exponentially small with n 
sufficiently large. We now turn to I I I .  Note first that 

fore, I I I  5 8E e--(n-1)7(k2L)3 l k 3 ~ z r  . To estimate 

this expression we use spherical coordinates and obtain 

(1 - y ( k 2 ~ ) ~ ) ~ - ~  l kzL<To < - e-(n-l)7(kzL)’ and there- 

c 1 
I I I  5 16r2 p (3(n:)k;7 + k z k ; ( 7 ( n - l ) ) ’ / s  2r2 Lr(+)). 3 

We now turn to expression 11 = P I S x l  e C, X1 has 
one of its incident Delaunay faces intersecting B(y, r )  1 .  
The majoration of I I  will involve showing that only “lo- 

cal” vertices XI have a Delaunay face extending to y.3 

We will use this general fact in the vicinity of the bound- 
ary aC of C. Part of our assumptions is that C has low 
curvature. Therefore, at the very small distances that 
we consider, dC appears flat. We will take advantage 

of this fact and model locally the boundary dC to be a 
plane P: C appears locally like a half-plane U? 

To simplify we set K = Z(k1-t k2) and recall that K < 1. 

Recall also that we defined Sx, to be any arbitrary, ex- 
ternally fixed, spindle whose axle is yX1: Sxl is not 
uniquely determined by X I .  For every XI define S&, 
to be the 3-dimensional “tire” span by SX, when ro- 

tating around its axle. S i ,  is uniquely determined by 
X1 (along with y , K )  and contains SX,  so that, clearly, 

{SX, g U }  {Ski g U}.  To further simplify introduce 
S;, to be the following (simpler) object. S;, is com- 
posed of (i) the axle X l y ,  and (ii) a circle of diameter 
K ,  the wheel, perpendicular to Xly  whose center is the 
mid-point q of Xly. We sometimes write Sj;, ( K )  to em- 
phasize the value of K .  F’urthermore, let P be a plane, 

of y: a quantity asymptotically small. 
3Here, “local” means being within distance O((l0g 

4This is valid only locally. Recall: C is bounded. 
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Plane P 

Figure 5: A spindle Ssl crossing P. 

line 1 B(xx 
\ X 

atleasth' i" line 1 

Figure 6: The cone C contained in every B(z, t ,  z, u)  con- 
taining y and such that d(z, y) > Lo(h). 

(y 6 P) ,  let U denote the P-half-space to which y be- 
longs, and let h denote the distance d(y, P )  from y to P. 
We only consider points X in U and say that the spindle 
Sg1 crosses P if its wheel crosses P. As before, we set 

Claim: The following is true: 

(a) Ssl ( K )  crosses P only if L 2 Lo(h) ef d m ' h .  
(b) {S&,(K) g U} 2 {Sgl(1.02K) g U} for K 6 0.2. 

We just show (a); see Figure 5. Assertion (b) implies 
that only a minute adjustment in K allows to consider 
{SZl g U }  in place of {Sk, g U}. 

Consider a given value of L. It is clear that, if an 
L-spindle S,, crosses P ,  then every L-spindle S, with 

z E P does also cross P. To prove impossibility re- 
sults we can therefore consider only z E P. Con- 
sider such an z. As the spindle crosses P, d(q,A) = 

(K/2)L 2 L/2tanB where 8 = arcsin(h/L). This imme- 

diately implies L2 2 w h 2 .  

We say that a ball B(Xi,, Xi,, Xi,, Xi,) is Delaunay if it 
contains no other point Xi in its interior, and are now 
ready for the majorations below. 

L = d(X1,y). 

P [S;, g U, X1 has one of its incident 

Delaunay faces intersecting B(y, T )  ] 
= P [ s;, g u, 3xi2, xi, s.t. (Xl, xi,, Xi,) 

is a Delaunay face intersecting B(y, T-)  ] 

5 max P[3xi2>xi3,xi4; d(X1>y) 2 Lo(h>, 
Y'EB(Y,T) 

B (XI, xi,, xi, , Xi,) is 

Delaunay and contains y' J 

B(x1, x2 7 x3, x4) is 

Delaunay and contains y'] 

dPXl ,XZ,X,,X* (z, t ,  2, u) 3 

where TYl % { (2, t ,  z, u)  E U4; d(z, y) 1 LO@), and y' E 

B(z,  t ,  z, u) }. Pxl,x2,x3,x4 denotes the probability law 
of the random variable (XI, X2, X3, X4). 

We now compute an upper-bound for the expres- 
sion P[X5 $2 B(z,t ,z ,u)] when the points z,t,z,u 

of U are such that d(z,y) 2 Lo(h), and such that 

y' E B(x,t,z,u). We define K' gf ,/-. 2 Hence 

Lo(h) = K'h. We also set K" 2K' - 1. We need the 
following claim. 

Claim: If d(z, y) 2 Lo(h) and y' E B(z ,  t ,  z,  u) nB(y, T - )  

p a  ) 1 / 2  h3 gf Clh3. 
then VOl(B(S, t ,  z,  .) n u> > &( 1-1/p2 

The situation is presented in Figure 6.  The ball 

B(x,t ,z ,u) cuts minimally U only when (i) z is on 
the boundary P, (ii) when y' is on the boundary of 
B(x, t ,z ,u) ,  and (iii) when the center o of B(z,t ,z ,u) 
is such that the plane xoy' is perpendicular to P. We 
therefore consider the situation within plane xuy', as in 
Figure 6.  

The center o is located on the line I perpendicular to 
y'z and going through the mid-point a of y'z. Let b 

be the intersection of I with P. Consider the cone C 
issued from b and whose base is the circle with diameter 

11'2. We claim that C is included in the ball B(z ,  t ,  z,  u)  

cutting minimally U. (i) This ball B ( z ,  t ,  z,  u) must have 
its center o below a: if not, at least half of B(z,  t ,  z,  u) 

is in U. (ii) If o is under b, then b is in the convex hull 

of the 3 points y', z,o. All 3 points are in B(z,  t ,  z,  u)  

and hence so is 6.  B(z ,  t ,  z ,  u) then-clearly contains C. 
(iii) Every point c belonging to the segment ab verifies 
d(c,b) 6 d(c,  y'). Thus, if o E [a,b] then b E B(z, t ,z ,u)  
and B(z,t ,z ,u) contains C as before. 

This shows that w Vol(B(z,t,z,u) n U) 2 Vol(C). 
Using the fact that d(y,y') 5 r 5 h/2, we 
find that w is at least equal to $(L'/2)3tan(B'/2), 

where h' h - h/2 = h/2, L' Lo(h) - h/2 = K"h' 
and where 8' = arcsin(h'/L'). We obtain v 2 dh3, where 

c' = E (  24 l - l , K l , 2 ) 1 / 2 ,  K'" and have thus proven: 

P [S;, g C, X I  has one of its incident 

Delaunay faces intersecting B(y, r)] 

Selecting h(n) = (& 4 * ) gives I1 = O(l/n), as 

needed. Then, multiplying by n the bounds found for 
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I ,  I I , I I I  and IV and summing establishes the result, 

and concludes the proof of Lemma 6 

Lemma 7. Under the hypothesis of Lemma 6 

E[N~] 5 e(b -t- ~ ' 7 2 ~ 1 ~  + dnr3) log n/ log log n , 

where N2 is the number of Delaunay tetrahedra that 
intersect B(y,r) and where e is a constant depending 

solely on G, a and p. 

To prove this, we need the following result, very similar 

to the result derived by [BEY911 in their Theorem 7. 

Lemma 8. There exists a constant c" such that 

P[do(X1) > c"logn/ loglogn] 5 l/n4. Therefore 

~ [ 3 i ,  d0(xi) > c"logn/loglogn] 5 iln3. 

Proof: The proof of this result follows very closely the 
proof for the Poisson model given in Lemmas 8 and 9 
of [BEYSl]. The only technical difference is that they 
bound the first probability by l /n2 instead of l/n4. We 

show here that l /n4 is similarly valid. A careful read- 
ing of their proof shows that we only need to establish 
that, with probability at least 1 - l/n4, the maximum 
Delaunay edge length is 0 ((10gn/n)l/~) .5 We compute: 

P [ d(X1, XZ) 1 h and X1X2 is a Delaunay edge] 

I P[d(X1,X2) L h and 

3 3 ,  i4 s.t. B(XlX2Xi3Xi,) is a Delaunay ball] 

5 n2(1 - r(h/2)3)n-d-1 0 ( ~ 2 ~ - 7 ( ~ 2 ) ~ n ) .  

Hence P[3XiIXi, s.t. d(Xi,,Xi,) 2 h and Xi,Xi, is 

a Delaunay edge] 5 O(n4e-7(h/2)3n). This is o(l/n4) if 

h >  (7%)1'3. 
Proof of Lemma 7: By Euler's formula, there is a 
constant K such that the tetrahedron-degree is equal 
to K times the edge-degree. Let B2 denote the event 
{Vi, do(Xi) 5 c" log n/ loglogn}. Then B2 is also equal 
to {V i ,  tetrahedron-do(Xi) 5 Kc" logn/ loglogn} and 
Lemma 8 impIies P[EJ 5 l/n3. We have: E[N2] = 

E[N2; B2] + E[N2;%]. The two terms E[N2;  Bz] and 
E[ N2 ; E] need to be bounded separately. We begin 
with E[&; B2]: 

E[N2 ; B21 

= m 3 2 1  E[N2 I B21 

5 Kd' P[B2] E[  N11 B2 ] log n/ log log n 

= Kc"E[Nl; B2] logn/ loglogn 

5 Kc" E[NI] log n/  log log n 

- < KC" (b  + m2n2l3 + dnr3) log n/  log log n . 

5Theorem 1 of [BEY911 establishes that the maximum edge 

length is at most 0 ((logn)ll3) with high probability. Our addi- 

tional factor l/n1/3 comes from the fact that they consider a cube 
of variable side length l/n1I3. 

On the other hand, E[ N2 ; E] 5 O(n2) P [ E ]  5 
O(n2) i/n3 = O(l/n). 

Corollary 9. Consider n points XI,. . . , X, drawn in- 
dependently from an (a, p)-measure over a bounded con- 
vex set C with small curvature. Then there exist posi- 
tive constants a, b, c, d and e, depending upon a, p and C 
only, such that the following holds. Let y be any point in 
C at distance ~ ( l o g n / n ) ~ / ~  from the boundary aC. Let 

T,T 5 an'/a a be a positive quantity. Let N2 denote the 
number of Delaunay tetrahedra that intersect B(y, T). 

Then 

E [ N ~ ]  5 e(b + c ( u / ~ ) ~  + d ( ~ / 2 ) ~ )  log n/ log log n . 

Proof of Theorem 2: We set c1 = a, where a is the 
constant of Lemma 6 and Corollary 9. The segment L 

may be covered by 1 w n 1 / 3 )  a circles of radius & 
each and centered on points yi of L. The number N of . 

intersections between L and the Delaunay triangulation 
is bounded by the sum of the number of intersections 
with these circles. By Corollary 9, the expected number 
of intersections with each of these circles is bounded by 

Klognl  loglogn for some constant K. Hence: 

Proof of Theorem 1: We have in mind to apply The- 
orem 2 to the segment L = qY. We are faced with 

two difficulties. First, both Y and L are defined in 
terms of Y1,. . . , Y, and are therefore not independent 

of XI, . . . , X,. Second, Y can possibly be within dis- 
tance ~ q ( l o g n / n ) ~ / ~  from the boundary dC. We will 
solve the first difficulty by considering a slightly different 
Delaunay triangulation with respect to which L is inde- 
pendent. We will solve the second difficulty by showing 
that Y is with high probability at Tistanke of at least 
~ q ( l o g n / n ) ~ / ~  from X .  

Let us first recall that q and Y are defined in very differ- 
ent ways. The condition that they be "far enough" from 
the boundary must therefore be handled differently. The 
query point q is not in the control of the algorithm. It is 
instead decided externally and the algorithm is claimed 

to perform well for all admissible choices of q. Thus, the 
assumption "q  is at distance of at least n1/18 from d ~ "  
is merely a restriction on the set of query points against 
which the algorithm has to measure. On the other hand, 
the point Y is chosen randomly, as described in the al- 
gorithm on page 2. The fact that "Y is at distance of 
at least ~4( logn/n) l /~  from dC" cannot therefore be im- 
posed externally. 

Let us relabel {XI,. . . ,X,} - {Yl,. . .,Yrn} into 

{Xi,. . . ,XLwm}. As usual, let D denote the Delau- 
nay triangulation associated to the n points XI, . . . , X,, 
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and let Vm denote the Delaunay triangulation associ- 
ated to the n - m points X i , .  . . ,XLFm. The random 

variables X i , .  . . , XA-m are independent from the ran- 
dom variables Y1,. . .,Ym. This implies that, for ev- 

ery query point q, ( X i ,  . . . , XL-,) is independent from 
Y ,  which allows us to make the following two con- 

clusions. First, L = (Y,q), the line segment con- 
necting Y and q, is independent of the n - m  data 
points defining V,. Second, the probabilistic behav- 

ior of X i , .  . . , XA-, is unaffected when conditioning on 

the event B3 (d(Y,dC) 2 ~ q ( l o g n / n ) ~ / ~ } .  In formal 

terms, the probabilistic law L(Xi, . . . , Xb-,) is equal to 
the conditional law L ( ( X i ,  . . . , XLdm) I B3). In particu- 

lar, the random variables X i ,  . . . , Xb-m are independent 
identically distributed (a, P)-random variables under the 
conditional probability distribution P[ - JB3]. 

Let N denote the number of tetrahedra in V, crossed by 
L. We have E[N] = E[N;  B3] + E[N;&] where 5 de- 
notes the complement of B3. We provide upper bounds 
for the two terms E[N;  B3] and E[N;  B3]. 

We begin with E[N;&]. It is well known that 

N = O(n2).  Hence E[N;&] 5 O(n2)P[G].  We 
fix c1 to be a constant such that, for every n, 
~ q ( l o g n / n ) ~ / ~  5 a(1/n)l/l8. 2 Recall that P[%] = 

P[d(Y, aC) < ~ q ( l o g n / n ) ~ / ~ ]  and that, by assumption, 
d(q, X) 2 c1 (l/n)'/''. By triangular inequality, this 

The estimation of E [ d(Y, q ) ]  is done as in [DMZ95]. The 
beginning of the argument is similar to the estimation of 
P[ B3] above. Lemma 5 is then used. We let diam(C) 
denote the diameter of C. Note that Y and q are in C 
so that P[d(Y,q) > t ]  = 0 if t > diam(C). 

-W(Y,q)l = /mp[d(Y,q) > tl d t  

ldium(c) 

0 

diam(C) = J d  P I W , q )  > tl d t  

e--mP[d(Yl ,Q) 5f1 dt 

diam(C) 

e-m'Yro3 dt 5 IT" e-myt3 d t  + lo 
5 I" dt + diam(C)e-m'Yros 

1 
= O ( Z ) .  

We have therefore shown that 

E[N] = 0 ((n/m)1/3 log n/ log log n) . 

Ntotal, the total number of tetrahedra in V crossed by 
L is not more than that for Dm, i.e., above N ,  plus 
the sum S of the tetrahedra degrees of (i.e., the number 
of tetrahedra ad.jacent to) Y1,. . . ,Ym in the Delaunay 

implies that: 

P[%1 L 

- - 

triangulation 23. -To see this, note that L either crosses a 
tetrahedron without one of the Yi's as a vertex (in which 
case the tetrahedron is both in 23 and V,) or one for 
which yi is a vertex (in which case the tetrahedron is in 
2) but not in 23,). The total number of the latter kind 
of tetrahedra does not exceed S. The expected value of 

S is, by linearity of expectation, 3m times the expected 
(vertex) degree 6(n) of Y1, where the constant 3 results 
from Euler's formula. Combining all this we have: 

E[N,,,,,I = o ((n/m)1/3 log n/ log log n + mb(n)) . 
e -mP[d(Y l , e )<  3-*] 

4 r  3 3 
p a d z )  * " 

o( 1/n2). The time complexity T of the jump-Gd-Galk algorithm 
on page 2 is proportional to m + Ntota,; the sample 

This shows that E[  N ; z] = o(1). We now turn 
to E[  N ;  B3] = E[ N I B3 ] P[B3]. Theorem 2 (see 
the remark after Theorem 2), along with the fact 

pendently identically distributed under the measure 
P[ . IB3], implies that: 

size m Comes into Play because of steps (1) and (21, 
Ntotal is due to step (3). E[T] can thus be optimized 
to 0 (6(n)1'4n1'4 (1% n/ 1% 1% n)3/4) with the choice Of 

H that Xi,. . . , XA-, are (a, /?)-random variables, inde- m = 0 (n1/4/6(n)3/4 (log n/ log log n)3/4). 

4 Empirical Results in 2D 
E[ N 1 B3 1 

c5 (' + E [d(Y' ' B3 I )  (n - m)1'3 log n/ log log ' This section presents some empirical results on the pla- 
nar jump-and-walk, or better, a variation of it. To ease 
the implementation even further, we sample n1i3 edges of 
the Delaunay triangulation D, rather than points. Then, 
we choose the edge whose midpoint has minimum dis- 
tance to the query point q. We find the triangle contain- 
ing q by traversing the triangles intersected by L = (y , q),  

where y is the midpoint of the initially chosen edge. 

Hence, 

E[N;  B3] 

I c5 (P[&] + E [@", 4) ; B3 ]) 

cg ( 1  + E [c~(Y, q) 1 )  n1l3 logn/ loglogn . 
(n - m)1/3 log n/ log log 

I 
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We tested this procedure for random point sets of size 
n = 1000,2000, .... 50000; the coordinates were chosen 
randomly out of the unit square. In Figures 7 and 8, 
M, denotes the sample mean of the number of triangles 

visited, over a sample of 999 queries, and for a point set 
of size n; the coordinates of q (and the point set) are 
again chosen by random out of the unit square. Thus, 

Mn corresponds to  the E[N,,,,] in the analysis. Since 
O(1ogn) is the best known theoretical bound for planar 
point locations, see, e.g., [PS85], Figure 9 plots the ra- 
tio Mn/ log, n to give a measure for the efficiency of the 

method. Note that the best known planar point location 
algorithm [DL761 is obtained by two binary searches, one 
horizontally and one vertically, thus has at least a con- 
stant of 2 in front of the log, n. 

45 

I .  
4 0 -  ................ 

........... -.. 8 6 -  

30- ...... 
z5. ..... 
20 . .- 
IS - . 

0 , m m z m m r m o M m o r a a o  

Figure 7: The sample mean M, of the number of trian- 
gles visited, for a sample of 999 random query points q 

for each data set of size n. 

Figure 8: The ratio Mn/n1I3. 

Sb . 

25. .................. ............... ....... 
2 .  ..... 

f. 
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Figure 9: The ratio Mn/log, n. 

It should be noted that it might be difficult to compare 
our algorithm with that of the bucketing algorithm of 
[AEI+85]. Although the latter algorithm takes an aver- 
age constant query time, the constant depends on the 
size of the buckets, hence depends on the amount of pre- 

processing performed in the buckets. We believe that 
when n is significantly big, e.g., n is greater than a mil- 
lion, the bucketing method might be the best solution for 

planar point locations. In any case, remember that buck- 
eting requires preprocessing and additional data struc- 
tures. 

5 Empirical Results in 3D 

Let us now see how well the jump-and-walk performs in 
3D. For convenience, we again implement only a slight 

variation of the original procedure; cf. [E93]. First, we 

sample triangles rather than vertices. The size of the 
sample is set to rn = 2n1I4, for Delaunay triangulations 

of n points. The “distance” of a triangle to the query 
point q is calculated simply as the minimum distance of 

its three vertices to q. The triangle T that scores with the 
minimum distance is selected. We adjust its orientation 
such that q is on its positive side, i.e., q E r+. 

Figure 10: The sample mean M ,  of the number of tetra- 
hedra visited, for a sample of 999 random query points 
q for each data set of size n. 

31. 

2.5 ..... .............................................. 
1s.  
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Figure 11: The ratio Mn/nl/*. 
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Figure 12: The ratio M,/log, n. 

Second, we do a jump-and-stroll rather than a jump- 
and-walk: namely, for each visited (oriented) triangle r 
we select some other face CY of the tetrahedron incident 
to r (and in r+) such that CT has the same orientation 
than r and q E CT+. If no such u exists, the tetrahedron 
containing q has been found. If the new triangle u is a 
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