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For binary classification we establish learning rates up to the order of
n−1 for support vector machines (SVMs) with hinge loss and Gaussian RBF
kernels. These rates are in terms of two assumptions on the considered dis-
tributions: Tsybakov’s noise assumption to establish a small estimation error,
and a new geometric noise condition which is used to bound the approxima-
tion error. Unlike previously proposed concepts for bounding the approxima-
tion error, the geometric noise assumption does not employ any smoothness
assumption.

1. Introduction. In recent years support vector machines (SVMs) have been
the subject of many theoretical considerations. Despite this effort, their learning
performance on restricted classes of distributions is still widely unknown. In par-
ticular, it is unknown under which nontrivial circumstances SVMs can guarantee
fast learning rates. The aim of this work is to use concepts like Tsybakov’s noise
assumption and local Rademacher averages to establish learning rates up to the
order of n−1 for nontrivial distributions. In addition to these concepts that are used
to deal with the stochastic part of the analysis we also introduce a geometric as-
sumption for distributions that allows us to estimate the approximation properties
of Gaussian RBF kernels. Unlike many other concepts introduced for bounding the
approximation error, our geometric assumption is not in terms of smoothness but
describes the concentration and the noisiness of the data-generating distribution
near the decision boundary.

Let us formally introduce the statistical classification problem. To this end let
us fix a subset X ⊂ R

d . We write Y := {−1,1}. Given a finite training set T =
((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n, the classification task is to predict the label y

of a new sample (x, y). In the standard batch model it is assumed that the samples
(xi, yi) are i.i.d. according to an unknown (Borel) probability measure P on X×Y .
Furthermore, the new sample (x, y) is drawn from P independently of T . Given a
classifier C that assigns to every training set T a measurable function fT :X → R,
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the prediction of C for y is signT f (x), where sign(0) := 1. The quality of such a
function f is measured by the classification risk

RP (f ) := P
({(x, y) : signf (x) �= y}),

which should be as small as possible. The smallest achievable risk RP :=
inf{RP (f )|f :X → R measurable} is called the Bayes risk of P and a function
attaining this risk is called a Bayes decision function and is denoted by fP . Ob-
viously, a good classifier should at least produce decision functions whose risks
converge to the Bayes risk for all distributions P . This leads to the notion of uni-
versally consistent classifiers which is thoroughly treated in [14]. The next nat-
urally arising question is whether there are classifiers which guarantee a specific
convergence rate for all distributions. Unfortunately, this is impossible by a result
of Devroye (see [14], Theorem 7.2). However, if one restricts consideration to cer-
tain smaller classes of distributions, such “learning rates,” for example, in the form
of

P n(
T ∈ (X × Y)n :RP (fT ) ≤ RP + C(x)n−β) ≥ 1 − e−x, n ≥ 1, x ≥ 1,

where β > 0 and C(x) > 0 are constants, exist for various classifiers. Typical as-
sumptions for such classes of distributions are either in terms of the smoothness
of the function η(x) := P(y = 1|x) (see, e.g., [19, 38]), or in terms of the smooth-
ness of the “decision boundary” (see, e.g., [18, 35]). Moreover, the corresponding
learning rates are slower than n−1/2 if no additional assumptions on the amount of
the noise in the labels, for example, on the distribution of the random variable

min{1 − η(x), η(x)} = 1
2 − ∣∣η(x) − 1

2

∣∣(1)

around the critical level 1/2, are imposed. On the other hand, [35] showed that
ERM-type classifiers can learn faster than n−1/2, if one quantifies how likely the
noise in (1) is close to 1/2 (see Definition 2.2 in the following section). Unfortu-
nately, however the ERM classifier considered in [35] requires substantial knowl-
edge on how to approximate the desired Bayes decision functions. Moreover, ERM
classifiers are based on combinatorial optimization problems and hence they are
usually hard to implement and in general there exist no efficient algorithms.

On the one hand SVMs do not share the implementation issues of ERM since
they are based on a convex optimization (see, e.g., [12, 26] for algorithmic as-
pects). On the other hand, however, their known learning rates are rather unsatis-
factory since either the assumptions on the distributions are too restrictive as in
[28] or the established learning rates are too slow as in [37]. Our aim is to give
SVMs a better theoretical foundation by establishing fast learning rates for a wide
class of distributions. To this end we propose a geometric noise assumption (see
Definition 2.3) which describes the concentration of the measure |2η − 1|dPX—
where PX is the marginal distribution of P with respect to X—near the decision
boundary. This assumption is then used to determine the approximation proper-
ties of Gaussian kernels which are used in the SVMs we consider. Provided that
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the tuning parameters are optimally chosen our main result then shows that the
resulting learning rates for these classifiers can be as fast as n−1.

The rest of this work is organized as follows: In Section 2 we introduce the main
concepts of this work and then present our results. In Section 3 we recall some ba-
sic theory on reproducing kernel Hilbert spaces and prove a new covering number
bound for Gaussian kernels that describes a trade-off between the kernel widths
and the radii of the covering balls. In Section 4 we then show the approximation
results that are related to our proposed geometric noise assumption. The last sec-
tions of the work contain the actual proof of our rates: In Section 5 we establish
a general bound for ERM-type classifiers involving local Rademacher averages
which is used to bound the estimation error in our analysis of SVMs. In order to
apply this result we need “variance bounds” for SVMs which are established in
Section 6. Interestingly, it turns out that sharp versions of these bounds depend on
both Tsybakov’s noise assumption and the approximation properties of the kernel
used. Finally, we prove our learning rates in Section 7.

2. Definitions and main results. In this section we first recall some basic no-
tions related to support vector machines which are needed throughout this text. In
Section 2.2, we then present a covering number bound for Gaussian RBF kernels
which will play an important role in our analysis of the estimation error of SVMs.
In Section 2.3 we recall Tsybakov’s noise assumption which will allow us to es-
tablish learning rates faster than n−1/2. Then, in Section 2.4, we introduce the new
geometric assumption that is used to estimate the approximation error for SVMs
with Gaussian RBF kernels. Finally, we present and discuss our learning rates in
Section 2.5.

2.1. RKHSs, SVMs and basic definitions. For two functions f and g we use
the notation f (λ) � g(λ) to mean that there exists a constant C > 0 such that
f (λ) ≤ Cg(λ) over some specified range of values of λ. We also use the notation
� with similar meaning and the notation ∼ when both � and � hold. In particular,
we use the same notation for sequences.

If not stated otherwise, X always denotes a compact subset of R
d which is

equipped with the Borel σ -algebra.
Recall (see, e.g., [1, 6]) that every positive definite kernel k :X × X → R has

a unique reproducing kernel Hilbert space H (RKHS) whose unit ball is denoted
by BH . Although we sometimes use generic kernels and RKHSs, we are mainly
interested in Gaussian RBF kernels, which are the most widely used kernels in
practice. Recall that these kernels are of the form

kσ (x, x′) = exp(−σ 2‖x − x′‖2
2), x, x′ ∈ X,

where σ > 0 is a free parameter whose inverse 1/σ is called the width of kσ . We
usually denote the corresponding RKHSs which are thoroughly described in [32]
by Hσ(X) or simply Hσ .
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Let us now recall the definition of SVMs. To this end let P be a distribution on
X × Y and l :Y × R → [0,∞) be the hinge loss, that is,

l(y, t) := max{0,1 − yt}, y ∈ Y, t ∈ R.

Furthermore, we define the l-risk of a measurable function f :X → R by

Rl,P (f ) := E(x,y)∼P l(y, f (x)).

Now let H be a RKHS over X consisting of measurable functions. For λ > 0 we
denote a solution of

arg min
f ∈H

b∈R

(
λ‖f ‖2

H + Rl,P (f + b)
)

(2)

by (f̃P,λ, b̃P,λ). Recall that f̃P,λ is uniquely determined (see, e.g., [30]), while
in some situations this is not true for the offset b̃P ,λ. In general we thus assume
that b̃P ,λ is an arbitrary solution. However, for the (trivial) distributions that sat-
isfy P({y∗}|x) = 1 PX-a.s. for some y∗ ∈ Y we explicitly set b̃P ,λ := y∗ in or-
der to control the size of the offset. Furthermore, if P is an empirical distribu-
tion with respect to a training set T = ((x1, y1), . . . , (xn, yn)) we write Rl,T (f )

and (f̃T ,λ, b̃T ,λ). Note that in this case the above condition under which we set
b̃T ,λ := y∗ means that all labels yi of T are equal to y∗. An algorithm that con-
structs (f̃T ,λ, b̃T ,λ) for every training set T is called an SVM with offset. Further-
more, for λ > 0 we denote the unique solution of

arg min
f ∈H

(
λ‖f ‖2

H + Rl,P (f )
)

(3)

by fP,λ and for empirical distributions based on a training set T we again write
fT,λ. A corresponding algorithm is called an SVM without offset. Recall that under
some assumptions on the RKHS used and the choice of the regularization parame-
ter λ it can be shown that both SVM variants are universally consistent (see [29,
31, 39]); however, no satisfying learning rates have been established yet.

We also emphasize that in many theoretical papers only SVMs without off-
set are considered since the offset often causes serious technical problems in the
analysis. However, in practice usually SVMs with offset are used and therefore we
feel that these algorithms should be considered in theory, too. As we will see, our
techniques can be applied for both variants. The resulting rates coincide.

2.2. Covering numbers for Gaussian RKHSs. In order to bound the estima-
tion error of SVMs we need a complexity measure for the RKHSs used, which is
introduced in this section. To this end let A ⊂ E be a subset of a Banach space E.
The covering numbers of A are defined by

N (A, ε,E) := min

{
n ≥ 1 :∃x1, . . . , xn ∈ E with A ⊂

n⋃
i=1

(xi + εBE)

}
,
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ε > 0, where BE denotes the closed unit ball of E. Moreover, for a bounded linear
operator S : E → F between two Banach spaces E and F , the covering numbers
are N (S, ε) := N (SBE, ε,F ).

Given a training set T = ((x1, y1), . . . , (xn, yn)) ∈ (X×Y)n we denote the space
of all equivalence classes of functions f :X × Y → R with norm

‖f ‖L2(T ) :=
(

1

n

n∑
i=1

|f (xi, yi)|2
)1/2

(4)

by L2(T ). In other words, L2(T ) is an L2-space with respect to the empirical mea-
sure of T . Note that for a function f :X × Y → R a canonical representative in
L2(T ) is its restriction f|T . In addition, L2(TX) denotes the space of all (equiva-
lence classes of) square integrable functions with respect to the empirical measure
of x1, . . . , xn.

The proof of our learning rates uses the behavior of N (BHσ (X), ε,L2(TX)) in ε

and σ in order to bound the estimation error. Unfortunately, all known results on
covering numbers for Gaussian RBF kernels emphasize the role of ε and hence we
will establish in Section 3 the following result which describes a suitable trade-off
between the influence of ε and σ .

THEOREM 2.1. Let σ ≥ 1, X ⊂ R
d be a compact subset with nonempty inte-

rior, and Hσ(X) be the RKHS of the Gaussian RBF kernel kσ on X. Then for all
0 < p ≤ 2 and all δ > 0, there exists a constant cp,δ,d > 0 independent of σ such
that for all ε > 0 we have

sup
T ∈(X×Y )n

logN
(
BHσ (X), ε,L2(TX)

) ≤ cp,δ,dσ (1−p/2)(1+δ) dε−p.

2.3. Tsybakov’s noise assumption. Now we recall Tsybakov’s noise condi-
tion, which describes the amount of noise in the labels. In order to motivate Tsy-
bakov’s assumption let us first observe that by equation (1) the function |2η − 1|
can be used to describe the noise in the labels of a distribution P . Indeed, in regions
where this function is close to 1 there is only a small amount of noise, whereas
function values close to 0 only occur in regions with a high level of noise. The fol-
lowing definition in which we use the convention t∞ := 0 for t ∈ (0,1) describes
the size of the latter regions:

DEFINITION 2.2. Let 0 ≤ q ≤ ∞ and P be a probability measure on X × Y .
We say that P has Tsybakov noise exponent q if there exists a constant C > 0 such
that for all sufficiently small t > 0 we have

PX

({x ∈ X : |2η(x) − 1| ≤ t}) ≤ C · tq .(5)
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Obviously, P has Tsybakov noise exponent q > 0 if and only if |2η − 1|−1 ∈
Lq,∞(PX), where Lq,∞ denotes a Lorentz space (see [5]). It is also easy to see
that P has Tsybakov noise exponent q ′ for all q ′ < q if P has Tsybakov noise
exponent q . Furthermore, all distributions obviously have noise exponent 0. In the
other extreme case q = ∞ the conditional probability η is bounded away from
1/2. In particular, noise-free distributions have exponent q = ∞. Furthermore, for
q < ∞ it is easy to check that Definition 2.2 is satisfied if and only if (5) holds for
all t > 0 and a possibly different constant C. Finally, note that (5) does not make
any assumptions on the location of the noisy set, and hence we prefer the notion
“noise condition” rather than the often used term “margin condition.”

2.4. A new geometric assumption for distributions. In this section we intro-
duce a condition for distributions that will allow us to estimate the approximation
error for Gaussian RBF kernels. To this end let l be the hinge loss function and P

be a distribution on X. Let

Rl,P := inf{Rl,P (f )|f :X → R measurable}
denote the smallest possible l-risk of P . Since functions achieving the minimal
l-risk occur in many situations we indicate them by fl,P if no confusion regarding
the nonuniqueness of this symbol can be expected. Furthermore, recall that fl,P

has a shape similar to the Bayes decision function signfP (see, e.g., [30]). Now,
given a RKHS H over X we define the approximation error function with respect
to H and P by

a(λ) := inf
f ∈H

(
λ‖f ‖2

H + Rl,P (f ) − Rl,P

)
, λ ≥ 0.(6)

Note that the obvious analogue of the approximation error function with offset is
not greater than the above approximation error function without offset and hence
we restrict our attention to the latter for simplicity.

For λ > 0, the approximation error function describes how well λ‖fP,λ‖2
H +

Rl,P (fP,λ) approximates Rl,P . For example, it was shown in [31] that we have
limλ→0 a(λ) = 0 for all P if X is a compact metric space and H is dense in the
space of continuous functions C(X). However, in nontrivial situations there can-
not exist a convergence rate which holds uniformly for all distributions P . Since
Hσ(X) is dense in C(X) for compact X ⊂ R

d and all σ > 0 these statements are
in particular true for the approximation error functions aσ (·) of the Gaussian RBF
kernels with fixed width 1/σ . Moreover, we are not aware of any weak condition on
η or P that ensures aσ (λ) � λβ for λ → 0 and some β > 0, and the results of [27]
indicate that such behavior of aσ (·) may actually require very restrictive condi-
tions. In the following we will therefore present a condition on P that allows us to
estimate aσ (λ) by λ and σ . In particular it will turn out that aσ (λ) → 0 with a poly-
nomial rate in λ if we relate σ to λ in a certain manner. In order to introduce this
assumption on P we first define the classes of P by X−1 := {x ∈ X :η(x) < 1

2},
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X1 := {x ∈ X :η(x) > 1
2} and X0 := {x ∈ X :η(x) = 1

2} for some choice of η. Now
we define a distance function x �→ τx by

τx :=



d(x,X0 ∪ X1), if x ∈ X−1,
d(x,X0 ∪ X−1), if x ∈ X1,
0, otherwise,

(7)

where d(x,A) denotes the distance of x to a set A with respect to the Euclidean
norm. Roughly speaking, τx measures the distance of x to the “decision boundary.”
Now we can present the already announced geometric condition for distributions.

DEFINITION 2.3. Let X ⊂ R
d be compact and P be a probability measure on

X×Y . We say that P has geometric noise exponent α > 0 if there exists a constant
C > 0 such that∫

X
|2η(x) − 1| exp

(
−τ 2

x

t

)
PX(dx) ≤ Ctαd/2, t > 0.(8)

We say that P has geometric noise exponent ∞ if it has geometric noise exponent
α for all α > 0.

Note that in the above definition we neither make any kind of smoothness as-
sumption nor do we assume a condition on PX in terms of absolute continuity with
respect to the Lebesgue measure. Instead, the integral condition (8) describes the
concentration of the measure |2η − 1|dPX near the decision boundary in the sense
that the less the measure is concentrated in this region the larger the geometric
noise exponent can be chosen. The following example illustrates this.

EXAMPLE 2.4. Since exp(−t) ≤ Cαt−α holds for all t > 0 and a constant
Cα > 0 only depending on α > 0, we easily see that (8) is satisfied whenever

(x �→ τ−1
x ) ∈ Lαd(|2η − 1|dPX),(9)

where Lαd(|2η − 1|dPX) denotes the usual Lebesgue space of functions that are
αd-integrable with respect to the measure |2η − 1|dPX . Now, let us suppose
X0 = ∅ for a moment. In this case τx measures the distance to the class x does
not belong to. In particular, (9) holds for α = ∞ if and only if the two classes X−1
and X1 have strictly positive distance. Moreover, if (9) holds for some 0 < α < ∞
the two classes may “touch,” that is, the decision boundary ∂X−1 ∩ ∂X1 is non-
empty. Consequently, we can easily construct distributions P that have geometric
noise exponent ∞ and touching classes, but also satisfy fP /∈ Hσ(X) for all σ > 0.
However, note that for such P the measure |2η − 1|dPX must obviously have a
very low concentration near the decision boundary.

We now describe a simple regularity condition on η near the decision boundary
that can be used to guarantee a geometric noise exponent.
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DEFINITION 2.5. Let X ⊂ R
d , P be a distribution on X × Y and γ > 0. We

say that P has an envelope of order γ if there is a constant cγ > 0 such that for
PX-almost all x ∈ X we have

|2η(x) − 1| ≤ cγ τγ
x .(10)

Obviously, if P has an envelope of order γ then the graph of x �→ 2η(x)−1 lies
in a multiple of the envelope defined by τ

γ
x at the top and by −τ

γ
x at the bottom.

Consequently, η can be very irregular away from the decision boundary but cannot
be discontinuous when crossing it. The rate of convergence of η(x) → 1/2 for
τx → 0 is described by γ .

Interestingly, for distributions having both an envelope of order γ and a Tsy-
bakov noise exponent q we can bound the geometric noise exponent, as the fol-
lowing theorem, which is proved in Section 4, shows.

THEOREM 2.6. Let X ⊂ R
d be compact and P be a distribution on X × Y

that has an envelope of order γ > 0 and a Tsybakov noise exponent q ∈ [0,∞).
Then P has geometric noise exponent (q + 1)γ d−1 if q ≥ 1, and geometric noise
exponent α for all α < (q + 1)γ d−1 otherwise.

Now the main result of this subsection which is proved in Section 4 shows that
for distributions having a nontrivial geometric noise exponent we can bound the
approximation error function for Gaussian RBF kernels.

THEOREM 2.7. Let σ > 0, X be the closed unit ball of the Euclidean space R
d

and aσ (·) be the approximation error function with respect to Hσ(X). Fur-
thermore, let P be a distribution on X × Y that has geometric noise exponent
0 < α < ∞ with constant C in (8). Then there is a constant cd > 0 depending only
on the dimension d such that for all λ > 0 we have

aσ (λ) ≤ cd

(
σdλ + C(2d)αd/2σ−αd)

.(11)

In order to let the right-hand side of (11) converge to zero it is necessary to as-
sume both λ → 0 and σ → ∞. An easy consideration shows that the fastest con-
vergence rate is achieved if σ(λ) := λ−1/((α+1) d). In this case we have aσ(λ)(λ) �
λα/(α+1). In particular, we can obtain rates up to linear order in λ for sufficiently
benign distributions. The price for this good approximation property is, however,
an increasing complexity of the hypothesis class BHσ(λ)

, as we have seen in Theo-
rem 2.1.

2.5. Learning rates for SVMs using Gaussian RBF kernels. With the help of
the geometric noise assumption we can now present our learning rates for SVMs
using Gaussian RBF kernels. Note again that these polynomial rates do not re-
quire a smoothness assumption on P . Furthermore note that we use the conven-
tion a∞+b

c∞+d
:= a

c
for a, c ∈ (0,∞), b, d ∈ [0,∞) in order to make the presentation

compact.
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THEOREM 2.8. Let X be the closed unit ball of R
d , and P be a distribution

on X × Y with Tsybakov noise exponent q ∈ [0,∞] and geometric noise exponent
α ∈ (0,∞). We define

β :=




α

2α + 1
, if α ≤ q + 2

2q
,

2α(q + 1)

2α(q + 2) + 3q + 4
, otherwise,

and λn := n−(α+1)/αβ and σn := nβ/(αd) in both cases. Then for all ε > 0 there
exists a C > 0 such that for all x ≥ 1 and n ≥ 1 the SVM without offset using the
Gaussian RBF kernel kσn satisfies

Pr∗
(
T ∈ (X × Y)n :RP (fT,λn) ≤ RP + Cx2n−β+ε

)
≥ 1 − e−x,

where Pr∗ denotes the outer probability of P n in order to avoid measurability
considerations. If α = ∞ the latter inequality holds if σn = σ is a constant with
σ > 2

√
d . Finally, all results also hold for the SVM with offset.

REMARK 2.9. The above learning rates are faster than the “parametric” rate
n−1/2 if and only if α > (3q + 4)/(2q). For q = ∞ the latter condition becomes
α > 3/2 and in an “intermediate” case q = 1 it becomes α > 7/2.

REMARK 2.10. It is important to note that our techniques can also be used to
establish rates for other definitions of the sequences (λn) and (σn). In fact, Theo-
rem 2.7 guarantees aσn(λn) → 0 (which is necessary for our techniques to produce
any rate) if σn → ∞ and σd

n λn → 0. In particular, if λn := n−ι and σn := nκ for
some ι, κ > 0 with κd < ι, these conditions are satisfied and a conceptually easy
but technically involved modification of our proof can produce rates for certain
ranges of ι (and thus κ). In order to keep the presentation as short as possible we
have omitted the details and focused on the best possible rates.

REMARK 2.11. Unfortunately, the choice of λn and σn that yields the optimal
rates within our techniques, requires to know the values of α and q , which are
typically not available. Adaptive methods which do not require such knowledge
are still unknown.

REMARK 2.12. Theorem 2.7 and Theorem 2.8 establish results for all dis-
tributions having some geometric noise exponent. However, for certain distribu-
tions of this type the resulting rates are not satisfactory. For example consider the
distribution P on X := [−1,1] whose marginal distribution PX equals the uni-
form distribution and whose conditional distribution η(x) := P(y = 1|x) satisfies
|2η(x) − 1| = |x|γ , x ∈ X, for some constant γ ∈ (0,∞). Then P obviously has
Tsybakov noise exponent q := 1/γ , and Theorem 2.6 or a simple modification of
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the proof of Theorem 2.7 shows that P has geometric noise exponent α := 1 + γ .

Theorem 2.8 thus gives a rate of the form n−β+ε for β = 2q2+4q+2
5q2+10q+4

, which is never

faster than n−1/2. Though this is disappointing at first glance, it is not really sur-
prising since the proof of Theorem 2.7 is not tailored to distributions having such
simple decision functions. We believe that sharper bounds on the approximation
error function (and thus faster learning rates) for this and other distributions are
possible, but a detailed analysis is beyond the scope of this paper.

REMARK 2.13. Another interesting but open question is whether the obtained
rates are optimal for the class of considered distributions. In order to approach this
question let us consider the case α = ∞, which roughly speaking describes the
case of almost no approximation error. In this case our rates are essentially of the
form n(q+1)/(q+2), which coincides with the rates Tsybakov (see [35]) achieved for
certain ERM classifiers based on hypothesis classes of small complexity. The latter
rates in turn cannot be improved in a minimax sense for certain classes of distri-
butions as was also shown in [35]. This discussion indicates that the techniques
used for the stochastic part of our analysis may be strong enough to produce opti-
mal results. However, if we consider the case α < ∞ then the approximation error
function described in Theorem 2.7 and its influence on the estimation error (see
our proofs, in particular Section 5 and Section 7) have a significant impact on the
obtained rates. Since the sharpness of Theorem 2.7 is unclear to us we make no
conjecture regarding the optimality of our rates in the general case.

3. Proof of Theorem 2.1. The main goal of this section is to prove Theo-
rem 2.1, which is done in Section 3.2. To this end we provide in Section 3.1 some
RKHS theory which is used throughout this work.

3.1. Some basic RKHS theory. For the proofs of this section we have to recall
some basic facts from the theory of RKHSs. To this end let X ⊂ R

d be a compact
subset and k :X × X → R be a continuous and positive semi-definite kernel with
RKHS H . Then H consists of continuous functions on X and for f ∈ H we have
‖f ‖∞ ≤ K‖f ‖H , where

K := sup
x∈X

√
k(x, x).(12)

Consequently, if the embedding of the RKHS H into the space of continuous func-
tions C(X) is denoted by

JH :H → C(X)(13)

we have ‖JH‖ ≤ K . Furthermore, let us recall the representation of H based on
Mercer’s theorem (see [13]). To this end let KX :L2(X) → L2(X) be the integral
operator defined by

KXf (x) :=
∫
X

k(x, x′)f (x′) dx′, f ∈ L2(X), x ∈ X,(14)
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where L2(X) denotes the L2-space on X with respect to the Lebesgue measure.
Then it was shown in [13] that the unique square root K

1/2
X of KX is an isometric

isomorphism between L2(X) and H .

3.2. Proof of Theorem 2.1. In order to prove Theorem 2.1 we need the follow-
ing result which bounds the covering numbers of Hσ(X) with respect to C(X).

THEOREM 3.1. Let σ ≥ 1, 0 < p < 2 and X ⊂ R
d be a compact subset with

nonempty interior. Then there is a constant cp,d > 0 independent of σ such that
for all ε > 0 we have

logN
(
BHσ (X), ε,C(X)

) ≤ cp,dσ (1−p/4) dε−p.

PROOF. Let Bd be the closed unit ball of the Euclidean space R
d and

◦
Bd be its

interior. Then there exists an r ≥ 1 such that X ⊂ rBd . Now, it was recently shown

in [32] that the restrictions Hσ(rBd) → Hσ(X) and Hσ(rBd) → Hσ(
◦

Bd) are both
isometric isomorphisms. Consequently, in the following we assume without loss of
generality that X = Bd or X = ◦

Bd and do not concern ourselves with the distinction
of both cases.

Now let us write Hσ := Hσ(X) and Jσ := JHσ :Hσ → C(X) in order to sim-
plify notation. Furthermore, let Kσ :L2(X) → L2(X) be the integral operator of kσ

defined as in (14), and ‖ · ‖ denote the norm in L2(X). According to [13], Theo-
rem 3, page 27, for any f ∈ Hσ , we obtain

inf
‖K−1

σ h‖≤R

‖f − h‖ ≤ 1

R
‖K−1/2

σ f ‖2 = 1

R
‖f ‖2

Hσ
,

where we use the convention ‖K−1
σ h‖ = ∞ if h /∈ KσL2(X). Suppose now

that H ⊂ L2(X) is a dense Hilbert space with ‖h‖ ≤ ‖h‖H , and that we have
Kσ :L2(X) → H ⊂ L2(X) with ‖Kσ :L2(X) → H‖ ≤ cσ,H < ∞ for some con-
stant cσ,H > 0. It follows that

inf‖h‖H≤cσ,HR
‖f − h‖ ≤ inf

‖K−1
σ h‖≤R

‖f − h‖ ≤ 1

R
‖f ‖2

Hσ

and hence

inf‖h‖H≤R
‖f − h‖ ≤ cσ,H

R
‖f ‖2

Hσ
.

By [27], Theorem 3.1 it follows that f is contained in the real interpolation space
(L2(X),H)1/2,∞ (see [7] for the definition of an interpolation space) and its norm
in this space satisfies ‖f ‖1/2,∞ ≤ 2

√
cσ,H‖f ‖Hσ . Therefore we obtain a continu-

ous embedding

ϒ1 :Hσ → (L2(X),H)1/2,∞,
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with ‖ϒ1‖ ≤ 2
√

cσ,H . If in addition a subset inclusion (L2(X),H)1/2,∞ ⊂ C(X)

exists which defines a continuous embedding

ϒ2 : (L2(X),H)1/2,∞ → C(X),

we have a factorization Jσ = ϒ2ϒ1 and can conclude

logN
(
BHσ (X), ε,C(X)

) = logN (Jσ , ε) ≤ logN

(
ϒ2,

ε

2
√

cσ,H

)
.(15)

Consequently, to bound logN (Jσ , ε) we need to select an H , compute cσ,H and
bound logN (ϒ2, ε). To that end let H := Wm(

◦
X) be the Sobolev space with norm

‖f ‖2
m = ∑

|α|≤m

‖Dαf ‖2,

where |α| := ∑d
i=1 αi , Dα := ∏d

i=1 ∂
αi

i , and ∂
αi

i denotes the αi th partial derivative
in the ith coordinate of R

d . By the Cauchy–Schwarz inequality we obtain

‖DαKσf ‖2 ≤ ‖f ‖2
∫
X

∫
X

|Dα
x kσ (x, x́)|2 dx́ dx,(16)

where the notation Dα
x indicates that the differentiation takes place in the x vari-

able. To address the term Dα
x kσ (x, x́) we note that

Dα
x

(
e−|x|2) = (−1)|α|e−|x|2/2hα(x),

where the multivariate Hermite functions hα(x) = ∏d
i=1 hαi

(xi) are products of
the univariate functions. Since

∫
R

h2
k(x) dx = 2kk!√π (see, e.g., [11]) we obtain∫

Rd

∣∣Dα
x

(
e−|x|2)∣∣2 dx =

∫
Rd

e−|x|2h2
α(x) dx

(17)
≤

∫
Rd

h2
α(x) dx = 2|α|α!πd/2,

where we have used the definition α! := ∏d
i=1 αi !. Applying the translation invari-

ance of kσ , we obtain∫
Rd

|Dα
x kσ (x, x́)|2 dx́ =

∫
Rd

|Dα
x́ kσ (0, x́)|2 dx́ =

∫
Rd

∣∣Dα
x́

(
e−σ 2|x́|2)∣∣2 dx́,

and by a change of variables we can apply inequality (17) to the integral on the
right-hand side,∫

Rd

∣∣Dα
x́

(
e−σ 2|x́|2)∣∣2 dx́ = σ 2|α|−d

∫
Rd

∣∣Dα
x́

(
e−|x́|2)∣∣2 dx́ ≤ σ 2|α|−d2|α|α!πd/2.

Hence we obtain∫
X

∫
X

|Dα
x kσ (x, x́)|2 dx́ dx ≤ θ(d)σ 2|α|−d2|α|α!πd/2,
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where θ(d) is the volume of X. Since
∑

|α|≤m α! ≤ dmm!d and ‖Kσf ‖2
m =∑

|α|≤m ‖DαKσf ‖2 we can therefore infer from (16) that for σ ≥ 1 we have

‖Kσ‖ ≤ √
θ(d)(2d)m/2m!d/2σm−d/2 =: cσ,H .(18)

Now let us consider ϒ2 : (L2(X),Wm(
◦
X))1/2,∞ → C(X). According to Triebel

[34], page 267, we have

(L2(X),Wm(
◦
X))1/2,∞ = (L2(

◦
X),Wm(

◦
X))1/2,∞ = B

m/2
2,∞(

◦
X)

isomorphically. Furthermore

logN
(
B

m/2
2,∞(

◦
X) → C(X), ε

) ≤ cm,dε−2d/m(19)

for m > d follows from a similar result of Birman and Solomjak ([8], cf. also [34])
for Slobodeckij (i.e., fractional Sobolev) spaces, where the constant cm,d depends
only on m and d . Consequently we obtain from (15), (18) and (19) that

logN (Jσ , ε) ≤ cm,d

(
ε

2
√

cσ,H

)−2d/m

= cm,d(4cσ,H )d/mε−2d/m

= c̃m,dσ d−d2/(2m)ε−2d/m

for all m > d and new constants c̃m,d depending only on m and d . Setting m :=
2d/p completes the proof of Theorem 3.1. �

PROOF OF THEOREM 2.1. As before we write Hσ := Hσ(X) and Jσ :=
JHσ :Hσ → C(X) in order to simplify notation. Furthermore recall for a train-
ing set T ∈ (X × Y)n the space L2(TX) introduced in Section 2.2. Now let
RTX

:C(X) → L2(TX) be the restriction map defined by f �→ f|TX
. Obviously, we

have ‖RTX
‖ ≤ 1. Furthermore we define Iσ := RTX

◦Jσ so that Iσ :Hσ → L2(TX)

is the evaluation map. Then Theorem 3.1 and the product rule for covering num-
bers imply that

sup
T ∈Zn

logN (Iσ , ε) ≤ cq,dσ (1−q/4) dε−q(20)

for all 0 < q < 2. To complete the proof of Theorem 2.1 we derive another
bound on the covering numbers and interpolate the two. To that end observe that
Iσ :Hσ → L2(TX) factors through C(X) with both factors Js and RTX

having
norm not greater than 1. Hence Proposition 17.3.7 in [23] implies that Iσ is ab-
solutely 2-summing with 2-summing norm not greater than 1. By König’s theorem
([24], Lemma 2.7.2) we obtain for the approximation numbers (ak(Iσ )) of Iσ that∑

k≥1 a2
k (Iσ ) ≤ 1 for all σ > 0. Since the approximation numbers are decreasing

it follows that supk

√
kak(Iσ ) ≤ 1. Using Carl’s inequality between approximation
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and entropy numbers (see Theorem 3.1.1 in [10]) we thus find a constant c̃ > 0
such that

sup
T ∈Zn

logN (Iσ , ε) ≤ c̃ε−2(21)

for all ε > 0 and all σ > 0. Let us now interpolate the bound (21) with the
bound (20). Since ‖Iσ :Hσ → L2(TX)‖ ≤ 1 we only need to consider 0 < ε ≤ 1.
Let 0 < q < p < 2 and 0 < a ≤ 1. Then for 0 < ε < a we have

logN (Iσ , ε) ≤ cq,dσ (1−q/4) dε−q ≤ cq,dσ (1−q/4) dap−qε−p,

and for a ≤ ε ≤ 1 we find

logN (Iσ , ε) ≤ c̃ε−2 ≤ c̃ap−2ε−p.

Since σ ≥ 1 we can set a := σ−((4−q)/(8−4q))d and obtain

logN (Iσ , ε) ≤ c̃q,dσ (1−p/2)((8−2q)/(8−4q))dε−p,

where c̃q,d is a constant depending only on q, d . The proof is completed by choos-
ing q := 4δ

1+2δ
when δ <

2p
8−4p

and q just smaller than p otherwise. �

4. Proofs of Theorems 2.7 and 2.6. In this section we prove Theorems 2.7
and 2.6, which both deal with the geometric noise exponent.

4.1. Proof of Theorem 2.7. Let us begin by recalling some facts about
Gaussian RBF kernels. To this end let Hσ(Rd) be the RKHS of the Gaussian
RBF kernel with parameter σ . Then it was shown in [32] that the linear operator
Vσ : L2(R

d) → Hσ(Rd) defined by

Vσg(x) = (2σ)d/2

πd/4

∫
Rd

e−2σ 2‖x−y‖2
2g(y) dy, g ∈ L2(R

d), x ∈ R
d,

is an isometric isomorphism. Consequently, we obtain

aσ (λ) = inf
g∈L2(R

d )
λ‖g‖2

L2(R
d )

+ Rl,P (Vσg) − Rl,P , λ > 0.(22)

In the following we will estimate the right-hand side of (22) by a judicious choice
of g. To this end we need the following lemma, which in some sense enlarges
the support of P to ensure that all balls of the form B(x, τx) are contained in
the (enlarged) support. This guarantee will then make it possible to control the
behavior of Vσg by tails of spherical Gaussian distributions [see (28) for details].

LEMMA 4.1. Let X be a closed unit ball of R
d and P be a probability mea-

sure on X ×Y with regular conditional probability η(x) = P(y = 1|x), x ∈ X. On
X́ := 3X we define

ή(x) =



η(x), if |x| ≤ 1,

η

(
x

|x|
)
, otherwise.

(23)
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We also write X́−1 := {x ∈ X́ : ή(x) < 1
2} and X́1 := {x ∈ X́ : ή(x) > 1

2}. Finally let
B(x, r) denote the open ball of radius r about x in R

d . Then for x ∈ X1 we have
B(x, τx) ⊂ X́1 and for x ∈ X−1 we have B(x, τx) ⊂ X́−1.

PROOF. Let x ∈ X1 and x′ ∈ B(x, τx). If x′ ∈ X we have |x − x′| < τx which
implies η(x) > 1

2 by the definition of τx . This shows x′ ∈ X́1. Now let us assume
|x′| > 1. By |〈x, x′〉| ≤ |x′| and Pythagoras’ theorem we then obtain∣∣∣∣ x′

|x′| − x

∣∣∣∣
2

≤
∣∣∣∣x′ − 〈x, x′〉x′

|x′|2
∣∣∣∣
2

+
∣∣∣∣〈x, x′〉x′

|x′|2 − x

∣∣∣∣
2

= |x′ − x|2.

Therefore, we have | x′
|x′| − x| < τx , which implies ή(x′) = η( x′

|x′|) > 1
2 . �

Let us finally recall that Zhang showed in [39] that the hinge risk satisfies

Rl,P (f ) − Rl,P = EPX
(|2η − 1| · |f − fP |)(24)

for all measurable f :X → [−1,1]. Now we are ready to prove Theorem 2.7.

PROOF OF THEOREM 2.7. With the notation of Lemma 4.1 we fix a measur-
able f́P : X́ → [−1,1] that satisfies f́P = 1 on X́1, f́P = −1 on X́−1 and f́P = 0
otherwise. For g := (σ 2/π)d/4f́P we then immediately obtain

‖g‖L2(R
d ) ≤

(
81σ 2

π

)d/4

θ(d),(25)

where θ(d) denotes the volume of X. Moreover, it is easy to see that −1 ≤ f́P ≤ 1
implies −1 ≤ Vσg ≤ 1. Since PX has support in X, (24) then yields

Rl,P (Vσg) − Rl,P = EPX
(|2η − 1| · |Vσg − fP |).(26)

In order to bound |Vσg(x) − fP (x)| for x ∈ X1 we observe

Vσg(x) =
(

2σ 2

π

)d/2 ∫
Rd

e−2σ 2‖x−y‖2
2 f́P (y) dy

=
(

2σ 2

π

)d/2 ∫
Rd

e−2σ 2‖x−y‖2
2
(
f́P (y) + 1

)
dy − 1(27)

≥
(

2σ 2

π

)d/2 ∫
B(x,τx)

e−2σ 2‖x−y‖2
2
(
f́P (y) + 1

)
dy − 1.

Now remember that Lemma 4.1 showed B(x, τx) ⊂ X́1 for all x ∈ X1, so that (27)
implies

Vσg(x) ≥ 2
(

2σ 2

π

)d/2 ∫
B(x,τx)

e−2σ 2‖x−y‖2
2 dy − 1

(28)
= 1 − 2Pγσ (|u| ≥ τx),
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where γσ = (2σ 2/π)d/2e−2σ 2|u|2 du is a spherical Gaussian in R
d . According to

the tail bound [17], inequality (3.5) on page 59, we have Pγσ (|u| ≥ r) ≤ 4e−σ 2r2/2d

and consequently we obtain

1 ≥ Vσg(x) ≥ 1 − 8e−σ 2τ 2
x /2d, x ∈ X1.

Since for x ∈ X−1 we can obtain an analogous estimate, we conclude

|Vσg(x) − fP (x)| ≤ 8e−σ 2τ 2
x /2d

for all x ∈ X1 ∪ X−1. Consequently (26) and the geometric noise assumption for
t := 2d

σ 2 yield

Rl,P (Vσg) − Rl,P ≤ 8Ex∼PX

(|2η(x) − 1|e−σ 2τ 2
x /2d)

(29)
≤ 8C(2d)αd/2σ−αd,

where C is the constant in (8). Combining (29), (25) and (22) now yields the
assertion. �

4.2. Proof of Theorem 2.6. In this subsection, all Lebesgue and Lorentz spaces
(see, e.g., [5]) and their norms are with respect to the measure PX .

PROOF OF THEOREM 2.6. Let us first consider the case q ≥ 1 where we can
apply the Hölder inequality for Lorentz spaces [22], which states

‖fg‖1 ≤ ‖f ‖q,∞‖g‖q ′,1

for all f ∈ Lq,∞, g ∈ Lq ′,1 and q ′ defined by 1
q

+ 1
q ′ = 1. Applying this inequality

gives

Ex∼PX

(|2η(x) − 1|e−τ 2
x /t )

≤ ‖(2η − 1)−1‖q,∞
∥∥x �→ (

2η(x) − 1
)2

e−τ 2
x /t

∥∥
q ′,1(30)

≤ C
∥∥(2η − 1)2e−(|2η−1|/cγ )2/γ t−1∥∥

q ′,1,

where in the last estimate we used the Tsybakov assumption (5) and the fact that
P has an envelope of order γ . Let us write h(x) := |2η(x) − 1|−1, x ∈ X, and
b := t(cγ )2/γ so that

|2η(x) − 1|2e−(|2η−1|/cγ )2/γ t−1 = g(h(x)),

where g(s) := s−2e−(s−2/γ )/b for all s ≥ 1. Now it is easy to see that g : [1,∞) →
[0,∞) is strictly increasing if 0 < b ≤ 2

3γ
, and hence we can extend g to a strictly

increasing, continuous and invertible function on [0,∞) in this case. Let such an
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extension also be denoted by g. Then for this extension we have

PX(g ◦ h > τ) = PX

(
h > g−1(τ )

)
.(31)

Now for a function f :X → [0,∞) recall the nonincreasing rearrangement

f ∗(u) := inf {σ ≥ 0 :PX(f > σ) ≤ u}, u > 0,

of f which can be used to define Lorentz norms (see, e.g., [5]). For u > 0 equa-
tion (31) then yields

(g ◦ h)∗(u) = g
(
inf

{
g−1(σ ) :PX

(
h > g−1(σ )

) ≤ u
}) = g ◦ h∗(u).

Now, inequality (5) implies PX(h ≥ (C
u
)1/q) ≤ u for all u > 0. Therefore, we find

h∗(u) ≤ inf{σ ≥ 0 :PX(h ≥ σ) ≤ u} ≤
(

C

u

)1/q

for all 0 < u < 1. Since (g ◦ h)∗ = g ◦ h∗ and g is increasing we hence have

(g ◦ h)∗(u) ≤ g

((
C

u

)1/q)

for all 0 < u < 1. Now, for fixed α̂ > 0 the bound e−x � x−α̂

ln2 (x)+1
on (0,∞) implies

g(s) � bα̂ s2(α̂/γ−1)

ln2 (s−2/γ b−1) + 1

for s ∈ [1,∞). Using the fact that (g ◦ h)∗(u) = 0 holds for all u ≥ 1, we hence
obtain

(g ◦ h)∗(u) � bα̂ u2/q(1−α̂/γ )

ln2 ((u/C)2/(qγ )b−1) + 1

for u > 0 if we assume without loss of generality that C ≥ 1. Let us define α̂ :=
γ

q+1
2 . Then we find 1

q ′ + 2
q
(1 − α̂

γ
) = 0 and consequently for b ≤ 2

3γ
, that is,

t ≤ 2
3γ (cγ )2/γ , we obtain

‖g ◦ h‖q ′,1 =
∫ ∞

0
u1/q ′−1(g ◦ h)∗(u) du

(32)

� bα̂
∫ ∞

0

u−1

ln2 ((u/C)2/(qγ )b−1) + 1
du � tγ (q+1)/2

by the definition of b. Since we also have EPX
(|2η(x)−1|e−τ 2

x /t ) ≤ 1 for all t > 0,
estimate (30) together the definition of g and (32) yields the assertion in the case
q ≥ 1.
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Let us now consider the case 0 ≤ q < 1 where the Hölder inequality in Lorentz
space cannot be used. Then for all t, τ ≥ 0 we have

Ex∼PX

(|2η(x) − 1|e−τ 2
x /t )

=
∫
|2η−1|≤τ

|2η(x) − 1|e−τ 2
x /tPX(dx)

(33)
+

∫
|2η−1|>τ

|2η(x) − 1|e−τ 2
x /tPX(dx)

≤ Cτq+1 + exp
(
−

(
τ

cγ

)2/γ

t−1
)
,

where we have used the Tsybakov assumption (5) and the fact that P has an
envelope of order γ . Let us define τ by τq+1 := exp(−( τ

cγ
)2/γ t−1). For â :=

(cγ )2/γ (q + 1) and small t this definition implies

τ ≤
(

âγ

2

)γ /2(
t ln

1

ât

)γ /2

,

and hence the assertion follows from (33) for the case 0 < q < 1. �

5. The estimation error of ERM-type classifiers. To bound the estimation
error in the proof of Theorem 2.8 we now establish a concentration inequality
for ERM-type algorithms using a variant of Talagrand’s concentration inequality
together with local Rademacher averages (see, e.g., [2, 4, 21]). Our approach is
inspired by [3]. However, due to the regularization term λ‖f ‖2

H in the definition
of SVMs we need a more general result than that of [3].

This section is organized as follows: In Section 5.1 we present the required
modification of the result of [3]. Then in Section 5.2 we bound the resulting local
Rademacher averages.

5.1. Bounding the estimation error for ERM-type algorithms. We first have
to introduce some notation. To this end let F be a class of bounded measurable
functions from Z to R such that F is separable with respect to ‖ · ‖∞. Given a
probability measure P on Z we define the modulus of continuity of F by

ωn(F , ε) := ωP,n(F , ε) := ET ∼P n

(
sup

f ∈F ,

EP f 2≤ε

|EP f − ET f |
)
, ε > 0,

where we note that the supremum is, as a function from Z to R, measurable by
the separability assumption on F . Now, a function L :F × Z → [0,∞) is called
a loss function if L ◦ f := L(f, ·) is measurable for all f ∈ F . Given a probability
measure P on Z we indicate by fP,F ∈ F a minimizer of

f �→ RL,P (f ) := Ez∼P L(f, z).
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Throughout this paper RL,P (f ) is called the L-risk of f . If P is an empirical
measure with respect to T ∈ Zn we write fT,F and RL,T (·) as usual. For simplic-
ity, we assume throughout this section that fP,F and fT,F do exist. Furthermore,
although there may be multiple solutions we use a single symbol for them when-
ever no confusion regarding the nonuniqueness of this symbol can be expected.
An algorithm that produces solutions fT,F is called an empirical L-risk minimizer.
Moreover, if F is convex, we say that L is convex if L(·, z) is convex for all z ∈ Z.
Finally, L is called line-continuous if for all z ∈ Z and all f, f̂ ∈ F the function
t �→ L(tf + (1 − t)f̂ , z) is continuous on [0,1]. If F is a vector space then every
convex L is line-continuous. Now the main result of this section reads as follows:

THEOREM 5.1. Let F be a convex set of bounded measurable functions from
Z to R, and let L :F ×Z → [0,∞) be a convex and line-continuous loss function.
For a probability measure P on Z we define

G := {L ◦ f − L ◦ fP,F :f ∈ F }.
Suppose that there are constants c ≥ 0, 0 < α ≤ 1, δ ≥ 0 and B > 0 with
EP g2 ≤ c(EP g)α + δ and ‖g‖∞ ≤ B for all g ∈ G. Furthermore, assume that
G is separable with respect to ‖ · ‖∞. Let n ≥ 1, x ≥ 1 and ε > 0 with

ε ≥ 10 max
{
ωn(G, cεα + δ),

√
δx

n
,

(
4cx

n

)1/(2−α)

,
Bx

n

}
.(34)

Then we have

Pr∗
(
T ∈ Zn :RL,P (fT,F ) < RL,P (fP,F ) + ε

) ≥ 1 − e−x.

REMARK 5.2. Theorem 5.1 has been proved in [3] for δ = 0, where it was
used to find learning rates faster than n−1/2 for certain ERM-type algorithms. At
first glance such fast rates are impossible if δ > 0. However, we will see later that
for SVMs we have δ = aκ

σ (λ) for a suitable κ > 0 depending on both Tsybakov’s
and the geometric noise exponent, and hence we have δ → 0 for n → ∞.

As already mentioned, the proof of Theorem 5.1 is based on Talagrand’s con-
centration inequality in [33] and its refinements in [16, 20, 25]. The version below
of this inequality is derived from Bousquet’s result in [9] using a little trick pre-
sented in [2], Lemma 2.5.

THEOREM 5.3. Let P be a probability measure on Z and H be a set of
bounded measurable functions from Z to R which is separable with respect to
‖ · ‖∞ and satisfies EP h = 0 for all h ∈ H . Furthermore, let b > 0 and τ ≥ 0 be
constants with ‖h‖∞ ≤ b and EP h2 ≤ τ for all h ∈ H . Then for all x ≥ 1 and all
n ≥ 1 we have

P n

(
T ∈ Zn : sup

h∈H
ET h > 3ET ′∼P n sup

h∈H
ET ′h +

√
2xτ

n
+ bx

n

)
≤ e−x.
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This concentration inequality is used to prove the following lemma which is a
generalized version of Lemma 13 in [3].

LEMMA 5.4. Let P be a probability measure on Z and G be a set of bounded
measurable functions from Z to R which is separable with respect to ‖ · ‖∞. Let
c ≥ 0, 0 < α ≤ 1, δ ≥ 0 and B > 0 be constants with EP g2 ≤ c(EP g)α + δ and
‖g‖∞ ≤ B for all g ∈ G. Furthermore, assume that for all T ∈ Zn and all ε > 0
for which for some g ∈ G we have

ET g ≤ ε/20 and EP g ≥ ε

there exists a g∗ ∈ G which satisfies

ET g∗ ≤ ε/20 and EP g∗ = ε.

Then for all n ≥ 1, x ≥ 1, and all ε > 0 satisfying (34), we have

Pr∗(T ∈ Zn : for all g ∈ G with ET g ≤ ε/20 we have EP g < ε) ≥ 1 − e−x.

PROOF. We define H := {EP g − g :g ∈ G,EP g = ε}. Obviously, we have
EP h = 0, ‖h‖∞ ≤ 2B , and EP h2 = EP g2 − (EP g)2 ≤ cεα + δ for all h ∈ H .
Moreover, since it is also easy to verify that H is separable with respect to ‖ · ‖∞,
our assumption on G yields

Pr∗(T ∈ Zn :∃g ∈ G with ET g ≤ ε/20 and EP g ≥ ε)

≤ Pr∗(T ∈ Zn :∃g ∈ G with EP g − ET g ≥ 19ε/20 and EP g = ε)

≤ P n

(
T ∈ Zn : sup

h∈H
ET h ≥ 19ε/20

)
.

Note that since H is separable with respect to ‖ ·‖∞, the set on the last line is actu-
ally measurable. In order to bound the last probability we will apply Theorem 5.3.
To this end we have to show

19ε

20
> 3ET ′∼P n sup

h∈H
ET ′h +

√
2xτ

n
+ bx

n
.

Our assumptions on ε imply

ε ≥ 10ET ′∼P n

(
sup
g∈G,

EP g2≤cεα+δ

|EP g − ET ′g|
)

≥ 10ET ′∼P n sup
h∈H

ET ′h.(35)

Furthermore, since 10 ≥ (60
19)2 and 0 < α ≤ 1 we have

ε ≥ 10
(

4cx

n

)1/(2−α)

≥
(

60

19

)2/(2−α)(4cx

n

)1/(2−α)

.(36)
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If δ ≤ cεα a simple calculation hence shows 19
60ε ≥

√
2(cεα+δ)x

n
. Furthermore, if

δ > cεα the assumptions of the theorem show

ε ≥ 10

√
δx

n
≥ 60

19

√
4δx

n
≥ 60

19

√
2(cεα + δ)x

n
.

Hence we have 19
60ε ≥

√
2(cεα+δ)x

n
for all ε satisfying the assumptions of the theo-

rem. Now let τ := cεα + δ and b := 2B . By (35) and ε ≥ 10Bx
n

we then find

19ε

20
> 3ET ′∼P n sup

h∈H
ET ′h +

√
2xτ

n
+ bx

n
.

Applying Theorem 5.3 then yields

Pr∗(T ∈ Zn :∃g ∈ G with ET g ≤ ε/20 and EP g ≥ ε)

≤ P n

(
T ∈ Zn : sup

h∈H
ET h ≥ 19ε/20

)

≤ P n

(
T ∈ Zn : sup

h∈H
ET h > 3ET ′∼P n sup

h∈H
ET ′h +

√
2xτ

n
+ bx

n

)

≤ e−x. �

With the help of the above lemma we can now prove the main result of this
section, that is, Theorem 5.1.

PROOF OF THEOREM 5.1. In order to apply Lemma 5.4 to the class G it
obviously suffices to show the richness condition on G of Lemma 5.4. To this end
let f ∈ F with

ET (L ◦ f − L ◦ fP,F ) ≤ ε/20 and EP (L ◦ f − L ◦ fP,F ) ≥ ε.

For t ∈ [0,1] we define ft := tf + (1 − t)fP,F . Since F is convex we have ft ∈
F for all t ∈ [0,1]. By the line-continuity of L and Lebesgue’s theorem we find
that the map h : t �→ EP (L ◦ ft − L ◦ fP,F ) which maps from [0,1] to [0,B] is
continuous. Since h(0) = 0 and h(1) ≥ ε there is a t ∈ (0,1] with

EP (L ◦ ft − L ◦ fP,F ) = h(t) = ε

by the intermediate value theorem. Moreover, for this t we have

ET (L ◦ ft − L ◦ fP,F ) ≤ ET

(
tL ◦ f + (1 − t)L ◦ fP,F − L ◦ fP,F

) ≤ ε/20.

Now, let ε > 0 with ε ≥ 10 max{ωn(G, cεα + δ), ( δx
n

)1/2, (4cx
n

)1/(2−α), Bx
n

}. Then
by Lemma 5.4 we find that with probability at least 1 − e−x , every f ∈ F with
ET (L◦f −L◦fP,F ) ≤ ε/20 satisfies EP (L◦f −L◦fP,F ) < ε. Since we always
have

ET (L ◦ fT,F − L ◦ fP,F ) ≤ 0 < ε/20,

we obtain the assertion. �
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5.2. Bounding the modulus of continuity. The aim of this subsection is to
bound the modulus of continuity of the class G in Theorem 5.1 with the help of
covering numbers. We then present the resulting modification of Theorem 5.1.

Let us begin by recalling the definition of (local) Rademacher averages. To this
end let F be a class of bounded measurable functions from Z to R which is sepa-
rable with respect to ‖ · ‖∞. Furthermore, let P be a probability measure on Z and
(εi) be a sequence of i.i.d. Rademacher variables (i.e., symmetric {−1,1}-valued
random variables) with respect to some probability measure µ on a set �. Then
the Rademacher average of F is

RadP (F , n) := Rad(F , n) := EP nEµ sup
f ∈F

∣∣∣∣∣1

n

n∑
i=1

εif (zi)

∣∣∣∣∣,
and for ε > 0 the local Rademacher average of F is defined by

Rad(F , n, ε) := RadP (F , n, ε) := EP nEµ sup
f ∈F ,

EP f 2≤ε

∣∣∣∣∣1

n

n∑
i=1

εif (zi)

∣∣∣∣∣.

For a given a > 0 we immediately obtain Rad(aF , n) = a Rad(F , n) and

Rad(aF , n, ε) = a Rad(F , n, a−2ε).(37)

Moreover, by symmetrization the modulus of continuity can be estimated by the
local Rademacher average. More precisely, we always have (see [36])

ωP,n(F , ε) ≤ 2 RadP (F , n, ε), ε > 0.

Local Rademacher averages can be estimated by covering numbers. Without
proof we state a slight modification of a corresponding result in [21]:

PROPOSITION 5.5. Let F be a class of measurable functions from Z to
[−1,1] which is separable with respect to ‖ · ‖∞ and let P be a probability mea-
sure on Z. Assume there are constants a > 0 and 0 < p < 2 with

sup
T ∈Zn

logN (F , ε,L2(T )) ≤ aε−p

for all ε > 0. Then there exists a constant cp > 0 depending only on p such that
for all n ≥ 1 and all ε > 0 we have

Rad(F , n, ε) ≤ cp max
{
ε1/2−p/4

(
a

n

)1/2
,

(
a

n

)2/(2+p)}
.

Using this proposition we can replace the modulus of continuity in Theorem 5.1
by an assumption on the covering numbers of G. Assuming that all resulting mini-
mizers exist, the corresponding result then reads as follows:
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THEOREM 5.6. Let F be a convex set of bounded measurable functions from
Z to R and let L :F ×Z → [0,∞) be a convex and line-continuous loss function.
For a probability measure P on Z we define

G := {L ◦ f − L ◦ fP,F :f ∈ F }.
Suppose that there are constants c ≥ 0, 0 < α ≤ 1, δ ≥ 0 and B > 0 with
EP g2 ≤ c(EP g)α + δ and ‖g‖∞ ≤ B for all g ∈ G. Furthermore, assume that G is
separable with respect to ‖ · ‖∞ and that there are constants a ≥ 1 and 0 < p < 2
with

sup
T ∈Zn

logN (B−1G, ε,L2(T )) ≤ aε−p(38)

for all ε > 0. Then there exists a constant cp > 0 depending only on p such that
for all n ≥ 1 and all x ≥ 1 we have

Pr∗
(
T ∈ Zn :RL,P (fT,F ) > RL,P (fP,F ) + cpε(n, a,B, c, δ, x)

) ≤ e−x,

where

ε(n, a,B, c, δ, x)

:= B2p/(4−2α+αp)c(2−p)/(4−2α+αp)

(
a

n

)2/(4−2α+αp)

+ Bp/2δ(2−p)/4
(

a

n

)1/2

+ B

(
a

n

)2/(2+p)

+
√

δx

n
+

(
cx

n

)1/(2−α)

+ Bx

n
.

PROOF. By (37) and Proposition 5.5 we find

Rad(G, n, ε) ≤ cp max
{
Bp/2ε1/2−p/4

(
a

n

)1/2

,B

(
a

n

)2/(2+p)}
.

We assume without loss of generality that cp ≥ 5. Let ε∗ > 0 be the largest real
number that satisfies

ε∗ = 2cpBp/2(
c(ε∗)α + δ

)1/2−p/4
(

a

n

)1/2

.(39)

Furthermore, let ε > 0 be such that

ε = 2cp max
{
Bp/2(cεα + δ)(2−p)/4

(
a

n

)1/2

,

B

(
a

n

)2/(2+p)

,

√
δx

n
,

(
4cx

n

)1/(2−α)

,
Bx

n

}
.

It is easy to see that both ε and ε∗ exist. Moreover, our above considerations show
ε ≥ 10 max{ωn(G, cεα + δ), ( δx

n
)1/2, (4cx

n
)1/(2−α), Bx

n
}, that is, ε satisfies the as-

sumptions of Theorem 5.1. In order to show the assertion it therefore suffices to
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bound ε from above. To this end let us first assume that

Bp/2(cεα + δ)(2−p)/4
(

a

n

)1/2

≥ max
{
B

(
a

n

)2/(2+p)

,

√
δx

n
,

(
4cx

n

)1/(2−α)

,
Bx

n

}
.

Then we have ε = 2cpBp/2(cεα + δ)(2−p)/4(a
n
)1/2. Since ε∗ is the largest solution

of this equation we hence find ε ≤ ε∗. This shows that we always have

ε ≤ ε∗ + 2cp

(
B

(
a

n

)2/(2+p)

+
√

δx

n
+

(
4cx

n

)1/(2−α)

+ Bx

n

)
.

Hence it suffices to bound ε∗ from above. To this end let us first assume c(ε∗)α ≥ δ.
This implies ε∗ ≤ 4cpBp/2(c · (ε∗)α)1/2−p/4(a

n
)1/2, and hence we find

ε∗ ≤ 16c2
pB2p/(4−2α+αp)c(2−p)/(4−2α+αp)

(
a

n

)2/(4−2α+αp)

.

Conversely, if c(ε∗)α < δ holds, then we immediately obtain

ε∗ < 4cpBp/2δ(2−p)/4
(

a

n

)1/2

. �

6. Variance bounds for SVMs. In this section we prove some “variance
bounds” in the sense of Theorem 5.6 for SVMs. Let us first ensure that these clas-
sifiers are ERM-type algorithms that fit into the framework of Theorem 5.6. To this
end let H be a RKHS of a continuous kernel over X, λ > 0, and l :Y ×R → [0,∞)

be the hinge loss function. We define

L(f, x, y) := λ‖f ‖2
H + l(y, f (x))(40)

and

L(f, b, x, y) := λ‖f ‖2
H + l

(
y,f (x) + b

)
(41)

for all f ∈ H , b ∈ R, x ∈ X and y ∈ Y . Then RL,T (·) and RL,T (·, ·) obviously co-
incide with the objective functions of the SVM formulations and therefore SVMs
are empirical L-risk minimizers. Furthermore note that all above minimizers ex-
ist (see [31]) and thus the SVM formulations in terms of L actually fit into the
framework of Theorem 5.6.

In the following, fl,P denotes a minimizer of Rl,P if no confusion can arise.
For the shape of these minimizers which depend on η := P(y = 1|·) we refer to
[39] and [30]. Now our first result is a variance bound which can be used when
considering the empirical l-risk minimizer.

LEMMA 6.1. Let P be a distribution on X × Y with Tsybakov noise exponent
0 ≤ q ≤ ∞. Then there exists a minimizer fl,P mapping into [−1,1] such that for
all bounded measurable functions f :X → R we have

EP (l ◦ f − l ◦ fl,P )2

≤ Cη,q(‖f ‖∞ + 1)(q+2)/(q+1)(
EP (l ◦ f − l ◦ fl,P )

)q/(q+1)
,
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where Cη,q := ‖(2η − 1)−1‖q,∞ + 2 if q > 0 and Cη,q = 1 if q = 0.

PROOF. For q = 0 the assertion is trivial and hence we only consider the case
q > 0. Given a fixed x ∈ X we write p := P(1|x) and t := f (x). In addition, we
introduce

v(p, t) := p
(
l(1, t) − l(1, fl,P (x))

)2 + (1 − p)
(
l(−1, t) − l(−1, fl,P (x))

)2
,

m(p, t) := p
(
l(1, t) − l(1, fl,P (x))

) + (1 − p)
(
l(−1, t) − l(−1, fl,P (x))

)
.

Since Tsybakov’s noise assumption implies PX(X0) = 0, we can restrict our con-
sideration to p �= 1/2. Now we will begin by showing

v(p, t) ≤
(
|t | + 2

|2p − 1|
)
m(p, t).(42)

Without loss of generality we may assume p > 1/2. Then we may set fl,P (x) := 1
and thus we have l(1, fl,P (x)) = 0 and l(−1, fl,P (x)) = 2.

Let us first consider the case t ∈ [−1,1]. Then we have l(1, t) = 1 − t and
l(−1, t) = 1 + t , and therefore (42) reduces to

(1 − t)2 ≤
(
|t | + 2

2p − 1

)
(2p − 1)(1 − t).

Obviously, the latter inequality is equivalent to 1 − t ≤ (2p − 1)|t | + 2, which is
always satisfied for t ∈ [−1,1] and p ≥ 1/2.

Now let us consider the case t ≤ −1. We then have l(1, t) = 1 − t and
l(−1, t) = 0, and after some elementary calculation we hence see that (42) is sat-
isfied if and only if

p2(6 − 2t) − p(5 − 3t) − 2t ≥ 0.

The left-hand side is minimal if p = (5 − 3t)/(12 − 4t), and thus we obtain

p2(6 − 2t) − p(5 − 3t) − 2t ≥ 7t2 − 18t − 25

24 − 8t
.

Consequently, it suffices to show 7t2 − 18t − 25 ≥ 0. However, the latter is true
for all t ≤ −1 since t �→ 7t2 − 18t − 25 is decreasing on (−∞,−1].

Now let us consider the third case, t > 1. Since we then have l(1, t) = 0 and
l(−1, t) = 1 + t it suffices to show

t − 1 ≤ t + 2

2p − 1
.

However, this is obviously true, and hence we have proved (42). Now, let us write

g(y, x) := l(y, f (x)) − l(y, fl,P (x)),

h1(x) := η(x)g(1, x) + (
1 − η(x)

)
g(−1, x),

h2(x) := η(x)g2(1, x) + (
1 − η(x)

)
g2(−1, x).
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Then (42) yields h2(x) ≤ (‖f ‖∞ + 2
|2η(x)−1|)h1(x) for all x with η(x) �= 1/2. For

t ≥ 1 we hence find

EP g2 =
∫
|2η−1|−1<t

h2 dPX +
∫
t≤|2η−1|−1<∞

h2 dPX

≤ (‖f ‖∞ + 2t)

∫
|2η−1|−1<t

h1 dPX +
∫
t≤|2η−1|−1<∞

(‖f ‖∞ + 1)2 dPX

≤ 2(‖f ‖∞ + t)EP g + (‖f ‖∞ + 1)2PX(|2η − 1|−1 ≥ t)

≤ 2t (‖f ‖∞ + 1)EP g + (‖f ‖∞ + 1)2‖(2η − 1)−1‖q,∞t−q .

Let us define t by tq+1 := (‖f ‖∞ + 1)(EP g)−1. Since EP g ≤ ‖f ‖∞ + 1 we have
t ≥ 1 and hence the above estimate yields the assertion. �

In the case of SVMs with offset we also need the following lemma which
bounds the size of the offset b̃P ,λ. This lemma has been proved in [15] for em-
pirical distributions. Although its generalization to general probability measures is
straightforward we include the proof for completeness.

LEMMA 6.2. Let P be a distribution on X × Y and λ > 0. Then for all possi-
ble pairs (f̃P,λ, b̃P,λ) ∈ H × R we have

|b̃P ,λ| ≤ ‖f̃P,λ‖∞ + 1.

PROOF. If P(y = y∗|x) = 1 PX-a.s. for some y∗ ∈ Y , there is nothing to be
proved since b̃P ,λ = y∗ by our assumption on SVMs mentioned in Section 2. Now
let us assume that b̃P ,λ > ‖f̃P,λ‖∞ + 1 and that P is not degenerate in the above
way. Then there exists a constant δ > 0 such that b̃P ,λ > ‖f̃P,λ‖∞ +1+δ. This im-
plies f̃P,λ(x)+ b̃P ,λ > 1 + δ for all x ∈ X. We define b∗

P,λ := b̃P ,λ − δ. Obviously,

we then find l(−1, f̃P,λ(x) + b̃P ,λ) = 0 = l(1, f̃P,λ(x) + b∗
P,λ) and

l
(
1, f̃P,λ(x) + b̃P ,λ

) = 1 + f̃P,λ(x) + b∗
P,λ + δ = l

(−1, f̃P,λ(x) + b∗
P,λ

) + δ

for all x ∈ X. Therefore we obtain Rl,P (f̃P,λ + b̃P ,λ) > Rl,P (f̃P,λ + b∗
P,λ) by

using the assumption on P . �

The proof of the above lemma can be easily generalized to a larger class of
loss functions including, for example, the squared hinge loss. With the help of
Lemma 6.1 we can now show a variance bound for SVMs. For brevity’s sake
we only state and prove the result for SVMs without offset. Therefore, the loss
function L is defined as in (40). Considering the proof, it is immediately clear that
the variance bound also holds for the SVM with offset.
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PROPOSITION 6.3. Let P be a distribution on X × Y with Tsybakov noise
exponent 0 ≤ q ≤ ∞. We define C := 16 + 8‖(2η − 1)−1‖q,∞ if q > 0 and C := 8
otherwise. Furthermore, let λ > 0 and 0 < γ ≤ λ−1/2 such that fP,λ ∈ γBH . Then
for all f ∈ γBH we have

E(L ◦ f − L ◦ fP,λ)
2 ≤ C(Kγ + 1)(q+2)/(q+1)(

E(L ◦ f − L ◦ fP,λ)
)q/(q+1)

+ 2C(Kγ + 1)(q+2)/(q+1)aq/(q+1)(λ).

PROOF. We define Ĉ := (Kγ + 1)(q+2)/(q+1) and fix an f ∈ γBH . Further-
more, we choose a minimizer fl,P according to Lemma 6.1. Using (a + b)2 ≤
2a2 + 2b2 for all a, b ∈ R we first observe

E(L ◦ f − L ◦ fP,λ)
2

≤ 2λ2‖f ‖4 + 2λ2‖fP,λ‖4 + 2E(l ◦ f − l ◦ fP,λ)
2

≤ 4E(l ◦ f − l ◦ fl,P )2 + 4E(l ◦ fl,P − l ◦ fP,λ)
2 + 2λ2‖f ‖4 + 2λ2‖fP,λ‖4

≤ 4Cη,qĈ
(
E(l ◦ f − l ◦ fl,P ) + E(l ◦ fP,λ − l ◦ fl,P )

)q/(q+1)

+ 2λ2‖f ‖4 + 2λ2‖fP,λ‖4,

where in the last step we have used Lemma 6.1 and ap + bp ≤ 2(a + b)p for all
a, b ≥ 0, 0 < p ≤ 1. Since λ‖f ‖2 ≤ 1 and λ‖fP,λ‖2 ≤ 1, we can continue,

E(L ◦ f − L ◦ fP,λ)
2

≤ CĈ
(
E(l ◦ f − l ◦ fl,P )

+ E(l ◦ fP,λ − l ◦ fl,P ) + λ2‖f ‖4 + λ2‖fP,λ‖4
)q/(q+1)

≤ CĈ
(
E(L ◦ f − L ◦ fP,λ) + 2E(l ◦ fP,λ − l ◦ fl,P ) + 2λ‖fP,λ‖2)q/(q+1)

≤ CĈ
(
E(L ◦ f − L ◦ fP,λ)

)q/(q+1) + 2CĈaq/(q+1)(λ). �

7. Proof of Theorem 2.8. In this last section we prove our main result, Theo-
rem 2.8. Since the proof is rather complex we split it into three parts. In Section 7.1
we estimate some covering numbers related to SVMs and Theorem 5.6. In Sec-
tion 7.2 we then show that the trivial bound ‖fT,λ‖ ≤ λ−1/2 can be significantly
improved under the assumptions of Theorem 2.8. Finally, in Section 7.3 we prove
Theorem 2.8.

7.1. Covering numbers related to SVMs. In this subsection we establish a sim-
ple lemma that estimates the covering numbers of the class G in Theorem 5.6 in
terms of the covering numbers of BH . For brevity’s sake it only treats the case of
SVMs with offset. The other case can be shown completely analogously.
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LEMMA 7.1. Let H be a RKHS over X such that K defined by (12) satisfies
K ≥ 1/2, P be a probability measure on X × Y , λ > 0, and L be defined by (41).
Furthermore, let 1 ≤ γ ≤ λ−1/2 and

F := {(f, b) ∈ H × R :‖f ‖H ≤ γ and |b| ≤ γK + 1}.
Defining B := 2γK +3 and G := {L◦ (f, b)−L◦ (fP,F , bP,F ) : (f, b) ∈ F } then
gives ‖g‖∞ ≤ B for all g ∈ G, where (fP,F , bP,F ) denotes a L-risk minimizer
in F . Assume that there are constants a ≥ 1 and 0 < p < 2 such that for all ε > 0
we have

sup
T ∈Zn

logN (BH , ε,L2(TX)) ≤ aε−p.

Then there exists a constant cp > 0 depending only on p such that for all ε > 0 we
have

sup
T ∈Zn

logN (B−1G, ε,L2(T )) ≤ cpaε−p.

PROOF. Let us write Ĝ := {L ◦ (f, b) : (f, b) ∈ F } and H := {l ◦ (f +
b) : (f, b) ∈ F }. Furthermore, for brevity’s sake we denote the set of all constant
functions from X to [a, b] by [a, b]. We then have

N (B−1G, ε,L2(T )) = N (B−1Ĝ, ε,L2(T )) ≤ N
([0, λγ 2] + B−1H , ε,L2(T )

)
.

Using the Lipschitz-continuity of the hinge loss and the subadditivity of the log-
covering numbers we hence find

logN (B−1G,3ε,L2(T ))

≤ logN ([0, λγ 2], ε,R) + logN (B−1H ,2ε,L2(T ))

≤ log
(

1

ε
+ 1

)
+ logN

(
B−1(γ · BH + [−B,B]),2ε,L2(TX)

)

≤ 2 log
(

2

ε
+ 1

)
+ logN (BH , ε,L2(TX)).

From this we easily deduce the assertion. �

7.2. Shrinking the size of the SVM minimizers. In this subsection we show
that the trivial bound ‖fT,λ‖ ≤ λ−1/2 can be significantly improved under the as-
sumptions of Theorem 2.8. In view of Theorem 5.6 this improvement will have a
substantial impact on the rates of Theorem 2.8. In order to obtain a rather flexible
result let us suppose that for all 0 < p < 2 we can determine constants c, γ > 0
such that

sup
T ∈Zn

logN (BHσ , ε,L2(TX)) ≤ cσγdε−p(43)

holds for all ε > 0, σ ≥ 1. Recall that by Theorem 2.1 we can actually choose
γ := (1 − p

2 )(1 + δ) for all δ > 0.
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LEMMA 7.2. Let X be the closed unit ball of the Euclidean space R
d , and P

be a distribution on X × Y with Tsybakov noise exponent 0 ≤ q ≤ ∞ and geomet-
ric noise exponent 0 < α < ∞. Furthermore, let us assume that (43) is satisfied
for some 0 < γ ≤ 2 and 0 < p < 2. Given an 0 ≤ ς < 1

5 we define

λn := n−(4(α+1)(q+1))/((2α+1)(2q+pq+4)+4γ (q+1))·1/(1−ς)

and σn := λ
−1/((α+1) d)
n . Assume that for the SVM without offset using the Gaussian

RBF kernel with width σn there are constants 1
2(α+1)

+4ς < ρ ≤ 1
2 and C ≥ 1 such

that

Pr∗
(
T ∈ (X × Y)n :‖fT,λn‖ ≤ Cxλ−ρ

n

) ≥ 1 − e−x

for all n ≥ 1 and all x ≥ 1. Then there is another constant Ĉ ≥ 1 such that for
ρ̂ := 1

2( 1
2(α+1)

+ 4ς + ρ) and for all n ≥ 1, x ≥ 1 we have

Pr∗
(
T ∈ (X × Y)n :‖fT,λn‖ ≤ Ĉxλ−ρ̂

n

)
≥ 1 − e−x.

Moreover, the same result is true for SVMs with offset.

PROOF. We only prove the lemma for SVMs without offset since the proof
for SVMs with offset is analogous. Now let f̂T ,λn be a minimizer of RL,T on

Cxλ
(ρ−1)/2
n BHσn

, where L is defined by (40). By our assumption we have f̂T ,λn =
fT,λn with probability not less than 1−e−x since fT,λn is unique for every training
set T by the strict convexity of L. We show that for some constant C̃ > 0 and all
n ≥ 1, x ≥ 1 the improved bound

‖f̂T ,λn‖ ≤ C̃xλ(ρ̂−1)/2
n(44)

holds with probability not less than 1 − e−x . This then yields ‖fT,λn‖ ≤
C̃xλ

(ρ̂−1)/2
n with probability not less than 1 − 2e−x , and from the latter we easily

obtain the assertion. In order to establish (44) we will apply Theorem 5.6 to the
modified SVM classifier which produces f̂T ,λn . To this end we first remark that the

infinite sample version f̂P,λn which minimizes RL,P on Cxλ
(ρ−1)/2
n BHσn

exists
by a small modification of [31], Lemma 3.1. Furthermore, by Proposition 6.3 and
assumption (43) we observe that we may choose B , a and c such that

B ∼ xλ−ρ
n , a ∼ λ−γ /(α+1)

n , c ∼ x(q+2)/(q+1)λ−ρ·(q+2)/(q+1)
n .

In addition, Theorem 2.7 shows aσn(λn) � λ
α/(α+1)
n and thus by Proposition 6.3

we may choose

δ ∼ x(q+2)/(q+1)λ(αq−ρ(q+2)(α+1))/((α+1)(q+1))
n .

A rather time consuming but simple calculation then shows that the ε-term in The-
orem 5.6 satisfies

ε(n, a,B, c, δ, x) � x2λ
α

α+1 − 2ρ(α+1)−1
2(α+1)

−ς
(2α+1)(2q+pq+4)+4γ (q+1)

2(α+1)(2q+pq+4)
n .
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Moreover, by Theorem 5.6 there is a constant C̃1 > 0 independent of n and x such
that for all n ≥ 1 and all x ≥ 1 the estimate

λn‖f̂T ,λn‖2 ≤ λn‖f̂T ,λn‖2 + Rl,P (f̂T ,λn) − Rl,P

≤ λn‖f̂P,λn‖2 + Rl,P (f̂P,λn) − Rl,P + C̃1x
2ε(n, a,B, c, δ, x)

holds with probability not less than 1 − e−x . Now λ‖fP,λ‖2 ≤ aσn(λn) � λ
α/(α+1)
n

yields ‖fP,λn‖ � λ
−1/(2(α+1))
n and hence ρ > 1

2(α+1)
implies ‖fP,λn‖ ≤ λ

−ρ
n ≤

Cxλ
−ρ
n for large n. In other words, for large n we have fP,λn = f̂P,λn . Conse-

quently, with probability not less than 1 − e−x we have

λn‖f̂T ,λn‖2 ≤ λn‖fP,λn‖2 + Rl,P (fP,λn) − Rl,P + C̃1x
2ε(n, a,B, c, δ, x)

≤ C̃2λ
α/(α+1)
n + C̃1x

2λα/(α+1)−(2ρ(α+1)−1)/(2(α+1))−4ς
n ,

which shows the assertion. �

7.3. Proof of Theorem 2.8. The next theorem almost establishes the result of
Theorem 2.8. We present this intermediate result because it clarifies the impact of
covering number bounds of the form (43) on our rates.

THEOREM 7.3. Let X be the closed unit ball of the Euclidean space R
d , and

P be a distribution on X × Y with Tsybakov noise exponent 0 ≤ q ≤ ∞ and geo-
metric noise exponent 0 < α < ∞. Finally, let us assume that we can bound the
covering numbers by (43) for some 0 < γ ≤ 2 and 0 < p < 2. Given an 0 ≤ ς < 1

5
we define λn and σn as in Lemma 7.2. Then for all ε > 0 there is a constant C > 0
such that for all x ≥ 1 and all n ≥ 1 the SVM without offset and with regularization
parameter λn and Gaussian RBF kernel with width σn satisfies

Pr∗
(
T :RP (fT,λn)

≤ RP + Cx2n−(4α(q+1))/((2α+1)(2q+pq+4)+4γ (q+1))·1/(1−ς)+20ς+ε)
≥ 1 − e−x.

Moreover, the same result is true for SVMs with offset.

PROOF. Iteratively using Lemma 7.2 we find a constant C ≥ 1 such that for
ρ := 1

2(α+1)
+ 4ς + ε and all n ≥ 1, x ≥ 1 we have

Pr∗
(
T ∈ (X × Y)n :‖fT,λn‖ ≤ Cxλ−ρ

n

) ≥ 1 − e−x.

Repeating the calculations of Lemma 7.2 we hence find a constant C̃ > 0 such that
for all n ≥ 1 and all x ≥ 1 we have

λn‖fT,λn‖2 + Rl,P (fT,λn) − Rl,P

≤ λn‖fP,λn‖2 + Rl,P (fP,λn) − Rl,P

+ C̃1x
2λα/(α+1)−(2ρ(α+1)−1)/(2(α+1))−4ς

n
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with probability not less than 1 − e−x . By the definition of ρ we obtain

λα/(α+1)−(2ρ(α+1)−1)/(2(α+1))−4ς
n

≤ λα/(α+1)−4ς−ε−4ς
n

≤ n−(4α(q+1))/((2α+1)(2q+pq+4)+4γ (q+1))·1/(1−ς)+20ς+3ε.

From this we easily deduce the assertion. �

In order to prove Theorem 2.8 recall that by Theorem 2.1 we can choose γ :=
(1 − p

2 )(1 + δ) for all δ > 0. The idea of the proof of Theorem 2.8 is to let δ → 0
while simultaneously adjusting ς . The resulting rate is then optimized with respect
to p. Unfortunately, a rigorous proof requires p to be chosen a priori. Therefore,
the optimization step is somewhat hidden in the following proof.

PROOF OF THEOREM 2.8. Let us first consider the case α ≤ q+2
2q

. Our aim is

to apply Theorem 7.3. To this end we write pδ := 2−δ and γδ := (1− pδ

2 )(1+δ) =
δ
2(1 + δ) for δ > 0. Furthermore, we define ςδ by

4(α + 1)(q + 1)

(2α + 1)(4q − δq + 4) + 4γδ(q + 1)
· 1

1 − ςδ

= α + 1

2α + 1
.

Since 2αq − q − 2 ≤ 0 < 2δ(q + 1) we have q(2α + 1) < 2(1 + δ)(q + 1) and
hence

4(2α + 1)(q + 1) < 4(2α + 1)(q + 1) − δq(2α + 1) + 2δ(1 + δ)(q + 1).

This shows ςδ > 0 for all δ > 0. Furthermore, these definitions also imply ςδ → 0
and γδ → 0 whenever δ → 0. Now Theorem 7.3 tells us that for all ε > 0 and all
small enough δ > 0 there exists a constant Cδ,ε ≥ 1 such that for all n ≥ 1, x ≥ 1
we have

Pr∗
(
RP (fT,λn)

≤ RP + Cδ,εx
2n−(4α(q+1))/((2α+1)(4q−δq+4)+4γδ(q+1))·1/(1−ςδ)+20ςδ+ε)

≥ 1 − e−x.

In particular, if we choose δ sufficiently small we obtain the assertion.
Let us now consider the case q+2

2q
< α < ∞. In this case we write pδ := δ and

γδ := (1 − pδ

2 )(1 + δ) = 1 + δ
2 − δ2

2 for δ > 0. Furthermore, we define ςδ by

4(α + 1)(q + 1)

(2α + 1)(2q + δq + 4) + 4γδ(q + 1)
· 1

1 − ςδ

= 2(α + 1)(q + 1)

2α(q + 2) + 3q + 4
.

Since for 0 < δ ≤ 1 we have 0 < δq(2α + 1) + 2δ(q + 1) − 2δ2(q + 1) we eas-
ily check that ςδ > 0. Furthermore, the definitions ensure ςδ → 0 and γδ → 1
whenever δ → 0. The rest of the proof follows that of the first case. Finally, let
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us treat the case α = ∞. We define αλ by logλ = αλd log 2
√

d
σ

. Since σ > 2
√

d

we have αλ > 0 for all 0 < λ < 1. Furthermore, applying Theorem 2.7 for αλ we
find a(λ) ≤ 2Cdλ for all 0 < λ < 1 and a constant Cd > 0 depending only on
the dimension d . Adapted versions of Lemma 7.2 and Theorem 7.3 then yield the
assertion. �
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