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ABSTRACT This article proposes a fast reaching finite time synchronization approach for chaotic systems

along with its application to medical image encryption. First, an adaptive terminal sliding mode tracking

approach with fast reaching condition is designed to synchronize the chaotic systems at the transmitter and

receiver ends in finite time. Then, a chaotic cryptosystem, using synchronized chaotic systems as secret

keys generator, is proposed to enhance the security of medical image transmission and/or storage. The

applicability and efficiency of the proposed synchronization approach is assessed using a simulation as well

as an analytical study. The analysis encompassed security tools such as histogram analysis, correlation test,

and information entropy change the rate of the number of pixels and unified average changing intensity.

The obtained results confirmed the robustness and fast convergence rate of the proposed synchronization

approach. The security analysis also shows that the proposed cryptosystem displays acceptable levels of

resistance to various attacks.

INDEX TERMS Chaos synchronization, fast reaching condition, medical image encryption, MOREmethod

encryption.

I. INTRODUCTION

Chaos theory is a branch of mathematics that studies non-

linear complex systems exhibiting high sensitivities [1]–[4].

The issue of chaotic synchronization was described for the

first time by Afraimovich et al. [5] and later developed by

Ott, Grebogi and York [6]. Notwithstanding all the work

which has been done by the mathematicians on chaos the-

ory and synchronization, it is only the recent event done

by Carroll and Pecora [7] on chaos synchronization that

attracted a lot of attention to the application of chaos in

engineering sciences. Carroll and Pecora have demonstrated,

experimentally and theoretically, that if the chaotic system

is modeled using a master-slave structure, then the two

chaotic signals can be synchronized. In terms of chaos syn-

chronization techniques, various approaches have been pro-

posed in the literature. For instance, sliding mode control

[8], digital redesign control [9], optimal control [10], back-
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stepping method [11], impulsive control [12], intermittent

scheme [13], switching process [14], composite nonlinear

feedback [10], fuzzy-logic control [15] and neural-based con-

trol [16] have been considered. Sliding mode control (SMC)

is an effective robust control technique which has been used

for the synchronization or control of chaos in power elec-

tronic systems [17], [18], touchless fingerprint encryption

[19], satellite motion [20], cryptosystem [21], wind speed

forecasting [22], Van der Pol oscillator [23], wind power

interval prediction [24], nonlinear pendulum [25], image

encryption [26], secure communication [27], [28] and so

on. Among the attractive features of SMC are its robustness

to uncertainties, fast response, computational simplicity and

insensitivity to disturbances [18], [29]–[33].

The rapid development of electronic technology has led

to their widespread adoption in hospitals, notably in pic-

ture archiving and communication systems [34]. These latter

enable the storage of patients’ diagnostic results in the form

of digital images. These images often contain sensitive data

such as patients’ personal information [35]. Consequently,
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safeguarding the storage and transfer of this information is

crucial to protecting patients’ privacy. Though, conventional

encryption schemes are able to satisfy the security of multi-

media information during transmission, there are still some

limitations when it comes to protecting all multimedia con-

tent and preventing illegal access. Research has shown that

these methods, in some cases, have exhibited defects against

brute-force attacks due to lower key space. Additionally,

in most cases, traditional encryption methods require high

computing power and long computational time. In real-time

applications, such as wireless communication due to the low

speed of encryption and decryption, they may present con-

siderable latency. In this context, cryptography using chaotic

signals offers a set of promising techniques which can exhibit

some advantages over the traditional encryption techniques,

especially in terms of a good combination of security, speed

and capability. Encryption methods using chaotic systems is

an encryption technology which uses synchronized chaotic

signals generated by chaotic systems to create keys in encryp-

tion systems. These chaotic keys have good features such

as large key space and are extremely sensitive to the sys-

tem parameters and initial conditions [36], [37]. Because of

the high security and low cost of chaotic signals and the

attractive features of SMC, the implementation of a med-

ical image encryption using an SMC-based synchronized

chaotic system is an attractive solution that can perfectly

resolve the security issues in safe medical communication

systems.

This paper designs and implements a fast reaching tech-

nique finite time synchronization technique for chaotic sys-

tems with application in medical image encryption. Its main

contributions are threefold:

• An adaptive terminal sliding mode tracking approach

based on a novel slidingmanifold with fast reaching con-

dition to synchronize chaotic systems at the transmitter

and receiver ends in finite time.

• A synchronization approach that can practically be

implemented to the chaotic systems without the need for

any unrealistic assumptions about the knowledge of the

upper bounds of the external disturbances.

• A chaotic cryptosystem using a synchronized chaotic

system as secret key generator to enhance the

security of the medical image transmission and/or

storage.

This paper is organized as follows. Section 2 provides some

definitions and preliminaries. The Main results, including

the sliding surface design, finite time control, fast reach-

ing condition and adaptive control approach are detailed in

section 3. The proposed chaotic cryptosystem including the

chaotic key-stream generation, random number generation

algorithms and medical image encryption and decryption

schemes are explained in section 4. The simulation results are

presented in section 5. The performance analyses including

the statistical analysis are provided in section 6. Finally, some

concluding remarks are given in section 7.

II. SYSTEM DEFINITION AND PRELIMINARIES

Consider the following canonical description of a chaotic

system with external disturbances:

ẋ1 (t) = x2(t)

ẋ2 (t) = x3(t)

ẋ3 (t) = f (x (t) , t) + b (x (t) , t) u (t) + d (x (t) , t) (1)

wherex (t) = [x1 (t) , x2 (t) , x3 (t)]T are the system states,

u(t) is the control input, b (x (t) , t) and f (x (t) , t) are two

nonlinear functions with known bounds, and d(x(t),t) indi-

cates the external disturbance with |d(x(t),t)| ≤δ, where δ is a

positive scalar. The control objective is to force the nonlinear

disturbed system (1) to track the reference trajectories defined

by:

ẋ1d (t) = x2d

ẋ2d (t) = x3d

ẋ3d (t) = g(xd (t) , t) (2)

where g(xd (t) , t) is a differentiable function of time.

Define the tracking error signals as

e (t) = x1 (t) − x1d (t) (3)

ė (t) = x2 (t) − x2d (t) (4)

ë (t) = x3 (t) − x3d (t) (5)

In what follows, we propose a terminal sliding mode

approach to ensure the finite-time convergence of the tracking

errors to the origin.

III. MAIN RESULTS

A. SLIDING SURFACE DESIGN

Define the following terminal sliding mode control surface:

s (e (t)) = ë(t) + ς ė(t) + λe(t) + µe(t)η (6)

where λ, µ, ς > 0 and 1 > η > 0 is a ratio of two odd

positive integers. Using (1)-(6), the time-derivative of s(e(t))

is obtained as

ṡ(e(t)) = e(t) + ς ë(t) + λė(t) + µė(t)e(t)η−1

= ẋ3(t) − ẋ3d (t) + ς (x3(t) − x3d (t))

+λ(x2(t) − x2d (t)) + µ(x2(t)

−x2d (t))e(t)η−1

= f (x(t), t) + b(x(t), t)u(t) + d(x(t), t)

−ẋ3d (t) + ς (x3(t) − x3d (t))

+
(

λ + µe(t)η−1
)

(x2(t) − x2d (t)) (7)

B. FINITE TIME CONTROL

In the subsequent theorem, the finite time convergence of

the fast terminal sliding surface based on the fast reaching

condition is satisfied. In this section, it is shown that the fast

reaching condition drives the error trajectories to converge to

the sliding surface with a fast speed. After the convergence

of the tracking errors to the sliding surface, the tracking

objective of the reference trajectory is fulfilled.
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Theorem 1: Consider the nonlinear disturbed system (1)

and assume that the external disturbance d(x(t),t) is bounded

by a positive constant δ. The terminal sliding mode tracker

with the fast reaching condition is designed as:

u(t) = −b(x(t), t)−1(f (x(t), t) − ẋ3d (t)

+ς (x3(t) − x3d (t))

+
(

λ + µe(t)η−1
)

(x2(t) − x2d (t))

+m1

(

β |s(e(t))| − 1
)

sgn(s(e(t)))

+m2 |s(e(t))|α sgn(s(e(t)))
+δsgn(s(e(t)))) (8)

where m1,m2 > 0, 0 < α < 1 and β = 1 + m2/m1. Then,

the sliding surface converges to the origin in finite time and

the reachability condition of the terminal sliding surface (6)

is satisfied.

Proof: Construct the Lyapunov function as:

V (s) = 0.5s(e(t))2 (9)

where differentiating (9) with respect to time and using (7),

yields:

V̇ (s) = s(e(t))(f (x(t), t) + b(x(t), t)u(t)

+d(x(t), t) − ẋ3d (t) + ς (x3(t) − x3d (t))

+(λ + µe(t)η−1)(x2(t) − x2d (t))) (10)

Substituting (8) into (10), gives

V̇ (s) = s(e(t))(d(x(t), t) − m1

(

β |s(e(t))| − 1
)

sgn(s(e(t)))

−m2 |s(e(t))|α sgn(s(e(t))) − δsgn(s(e(t)))), (11)

where, since |d(x(t),t)| ≤ δ, Eq. (11) gives

V̇ (s) = d (x (t) , t) s (e (t)) − m2 |s (e (t))|α+1

−m1

(

β |s(e(t))| − 1
)

|s (e (t))| − δ |s (e (t))|
≤ (|d (x (t) , t)| − δ) |s (e (t))|

−m1

(

β |s(e(t))| − 1
)

|s(e(t))|m2 |s(e(t))|α+1

≤ −m1

(

β |s(e(t))| − 1
)

|s(e(t))|

−m2 |s(e(t))|α+1 (12)

According to the Lyapunov function (9), one obtains

|s(e(t))| =
√
2 V (s)

1
2 . Since m1,m2 > 0 and γ = β |s(e(t))| −

1 ≥ 0, Eq. (12) can be rewritten as

V̇ (s) ≤ −
√
2m1γV (s)

1
2 − 2

α+1
2 m2V (s)

α+1
2 < 0 (13)

The last condition means that the terminal sliding mode

surface (6) based on the fast reaching condition converges to

the origin in the finite time.

C. FAST REACHING CONDITION

In the terminal sliding mode control law (8), two important

terms have been used, i.e., −m1

(

β |s(e(t))| − 1
)

sgn(s(e(t)))

and −m2 |s(e(t))|α sgn(s(e(t))). By combining these two

terms, the fast reaching condition is formed as:

ṡ(e(t)) = −m1

(

β |s(e(t))| − 1
)

sgn(s(e(t)))

−m2 |s(e(t))|α sgn(s(e(t))) (14)

When the tracking errors are far away from the switching

surface (|s(e (t))| > 1), the first term of (14) has a dominant

task. In this condition, the change rate of the first term is

larger than that of the second term of ṡ(e(t)) and it speeds

up the reaching rate. In addition, when the tracking errors are

near to the surface (|s(e (t))| < 1), the second term of (14)

plays the dominant role. The combination of the effects of

two terms in ṡ(e(t)) can force the tracking system to have a

superior dynamic performance.

When the initial value of the sliding surface (s(e (0))) is

greater than one (s(e (0) ) > 1), the process of motion from

the initial value to the slidingmode is divided into two phases:

(a): s(e(0)) → s(e(t)) = 1. In this phase, one can

obtain s(e(t)) > 1; then m1(β
|s(e(t))| − 1) > m2 |s(e(t))α|,

and the second term of (14) is ignored. Hence, the reaching

condition (14) is simplified as

ṡ (e (t)) ≈ −m1(β
s(e(t)) − 1) (15)

where integrating both sides of (15) yields:

ta
∫

0

dt ≈ − 1

m1lnβ

1
∫

s(e(0))

d(ln(1 − β−s(e(t)))) (16)

Then, the tracking convergence time of phase a (s(e(0)) →
s(e(t)) = 1) is found as

ta ≈
ln

(

1 − β−s(e(0))) − ln(1 − β−1)

m1lnβ
(17)

(b): s (e (t)) = 1 → s(e(t)) = 0 In this phase, we have

m1(β
|s(e(t))| − 1) < m2 |s(e(t))α|; the second term of (14)

has a prominent duty and the first term is ignored. Therefore,

the reaching condition (14) can be simplified as

ṡ (e (t)) ≈ −m2s(e(t))
α (18)

where by integrating Eq. (18), we have:

tb
∫

0

dt ≈ − 1

m2

0
∫

1

ds

s(e(t))α
(19)

The tracking convergence time of phase

b (s (e (t)) = 1 → s (e (t)) = 0) is calculated as

tb ≈ 1

m2(1 − α)
(20)

Hence, the total convergence time is the combination of the

times (17) and (20) as

ttotal ≈ ta + tb =
ln

(

1 − β−s(e(0))) − ln
(

1 − β−1
)

m1lnβ
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+ 1

m2(1 − α)
(21)

When the initial value of the sliding surface is smaller than

-1, i.e., s (e (0)) < −1, the process of motion from the initial

value to the sliding mode is divided into the following two

phases:

(c): s (e (0)) → s (e (t)) = −1. In this phase, we have

s (e (t)) < −1; thenm1(β
|s(e(t))|−1) > m2 |s(e(t))α|, the first

term of (14) has a prevailing effect and the second term is

ignored. Thus, the reaching condition (14) is written as

ṡ (e (t)) ≈ m1(β
−s(e(t)) − 1 (22)

where by integrating (22), it follows

tc
∫

0

dt ≈ − 1

m1 lnβ

−1
∫

s(e(0))

d(ln(1 − β−s(e(t)))) (23)

Then, the convergence time of phase c(s (e (0)) →
s (e (t)) = −1) is calculated as

tc ≈
ln

(

1 − β−s(e(0))) − ln(1 − β−1)

m1 lnβ
(24)

(d)s (e (t)) = −1 → s(e(t)) = 0. In this phase, one can

obtain m1(β
|s(e(t))| − 1) < m2 |s(e(t))α|; the second term of

(14) plays a dominant role and the first term is ignored. The

reaching condition (14) is converted to

ṡ (e (t)) ≈ −m2(−s(e (t)))α (25)

where integrating (25) yields

td
∫

0

dt ≈ 1

m2

0
∫

−1

ds

(−s (e (t)))α
(26)

The convergence time of phase d(s (e (t)) = −1 →
s (e (t)) = 0) is obtained as

td ≈ 1

m2(1 − α)
(27)

The total convergence time can be found from (24) and (27)

as:

ttotal ≈ tc + td =
ln

(

1 − βs(e(0))
)

− ln
(

1 − β−1
)

m1 lnβ

+ 1

m2(1 − α)
(28)

As a result, the error trajectories, in both conditions

|s(e(t))| > 1 and |s(e(t))| < −1, converge to the terminal slid-

ing surface in finite time. On the sliding surface (s(e (t)) = 0),

in the light of Eq. (14), the time-derivative of the sliding

surface is zero, i.e. ṡ(e (t)) = 0. It means that the velocity

at which the error trajectories reach the sliding surface is

equal to zero. This case reduces the chattering phenomenon

efficiently.

D. ADAPTIVE CONTROL APPROACH

In real applications, it is impossible to determine the upper

bound of the external disturbances d(x(t), t). To solve this

problem, an estimation of the positive constant δ, i.e. δ̂(t),

is suggested in the following theorem.

Theorem 2: Consider the nonlinear disturbed system (1)

and the terminal sliding surface (6). Assume that the exter-

nal disturbance d(x(t),t) is bounded by a positive unknown

constant δ, which is estimated by δ̂(t). The adaptive terminal

sliding mode tracking controller with the fast reaching con-

dition is designed as

u(t) = −b(x(t), t)−1(f (x(t), t) − ẋ3d (t) + ς (x3(t)

−x3d (t)) +
(

λ + µe(t)η−1
)

(x2(t) − x2d (t))

+m1

(

β |s(e(t))| − 1
)

sgn(s(e(t)))

+m2 |s(e(t))|α sgn(s(e(t)))
+δ̂(t)sgn(s(e(t)))) (29)

and the estimation law is given by

˙̂
δ (t) = l−1 |s(e(t))| (30)

where l is a positive constant. Then, the reachability condition

of the terminal sliding surface (6) is guaranteed.

Proof: Assume the estimation error as

δ̃ (t) = δ̂(t) − δ (31)

Using (30) and (31), the time-derivative of δ̃ (t) is found as

˙̃
δ (t) = ˙̂

δ(t) = l−1 |s(e(t))| (32)

Consider the positive-definite Lyapunov function as

V (s, δ̃) = 0.5
{

s (e (t))2 + lδ̃(t)
2
}

(33)

where differentiating the Lyapunov function and using (7)

and (32), we have

V̇ (s, δ̃) = s(e(t))ṡ(e(t)) + lδ̃(t)
˙̂
δ(t)

= δ̃(t) |s(e(t))|
+s(e(t))(f (x(t), t) + b(x(t), t)u(t)

+d(x(t), t) − ẋ3d (t) + ς (x3(t) − x3d (t))

+(λ + µe(t)η−1)(x2(t) − x2d (t))). (34)

Now, substituting (29) into (34), one attains:

V̇ (s, δ̃) = δ̃(t) |s(e(t))| + s(e(t))(d(x(t), t)

−(δ̂(t) + m2 |s(e(t))|α

+m1(β
|s(e(t))| − 1))sgn(s(e(t)))). (35)

Since s(e(t))d(x (t) , t) ≤ |s(e(t))| |d(x (t) , t)| and |s| =
s.sgn(s), Eq. (35) can be written as

V̇ (s, δ̃) ≤ δ̃(t) |s(e(t))| + |s(e(t))| |d(x(t), t)|
−δ̂(t) |s(e(t))| − m2 |s(e(t))|α+1

−m1

(

β |s(e(t))| − 1
)

|s(e(t))| . (36)
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By addition and subtraction of the term δ(t) |s(e(t))| to the
right-hand-side of (36), we have

V̇ (s, δ̃) ≤
(

δ̂(t) − δ(t)
)

|s(e(t))|

+ |s(e(t))| |d(x(t), t)| − δ̂(t) |s(e(t))|
−m2 |s(e(t))|α+1

−m1

(

β |s(e(t))| − 1
)

|s(e(t))|
+δ(t) |s(e(t))| − δ(t) |s(e(t))| , (37)

where simplifying Eq. (37) gives

V̇ (s, δ̃) ≤ −m1

(

β |s(e(t))| − 1
)

|s(e(t))|

−m2 |s(e(t))|α+1

− (δ(t) − |d(x(t), t)|) |s(e(t))|
≤ −m1

(

β |s(e(t))| − 1
)

|s(e(t))|

−m2 |s(e(t))|α+1 . (38)

Hence, according to the estimation-based tracking control

law (29), it is resulted that the Lyapunov function (33)

decreases gradually, i.e., V̇ (s, δ̃) ≤ 0. This finalizes the proof.

Remark 1. There is tradeoff between the controller’s com-

plexity and its performance. However, in this paper, due to

the usage of synchronized chaotic system to implementation

of the information cryptosystem, the more complexity of

the controller causes more complexity of the cryptosystem.

In fact, if the eavesdropper wants to extract the original data

from the encrypted data, he/she will face more complexity to

achieve the encryption keys and the security performance will

improve. Therefore, it can be concluded that in the chaotic

cryptography applications, the consideration of the crypto-

graphic performance can take precedence over the control

performance.

IV. PROPOSED MEDICAL IMAGE ENCRYPTION

The block diagram of the proposed medical image encryption

system is illustrated in Fig.1. In this system, the reference tra-

jectories (2) considered as the transmitter chaotic system and

the equation (1) considered as the receiver chaotic system.

Note that the focus of our work is on the proposed chaotic

encryption and decryption approach. The details about the

wireless multimedia communication system can be found

in [38].

A. CHAOTIC KEY AND RANDOM BIT GENERATION

At first, the parameters and initial states of the transmitter

chaotic system are defined. Then, the sampling interval of

the system (1h) is determined and the chaotic system is

solved using the fourth-order Runge–Kutta (RK-4) integra-

tion algorithm. As a result of the system analysis, three

chaotic signals as 15 digit float values [x1d (i), x2d (i), x3d (i)]

are obtained. By using the chaotic sequences x1d (i), x2d (i)

and x3d (i), the chaotic keys (ck) are generated as follow:

ck1(i) = mod(x1d (i) ,floor(x1d (i− 1)))

ck2(i) = mod(x2d (i) ,floor(x2d (i− 1)))

ck3(i) = mod(x3d (i) ,floor(x3d (i− 1))) (39)

where the function mod (f , g) returns the remainder of f

divided by g, and floor(ω) rounds the elements of ω to the

nearest integers. Also, on the chaotic float values x1d (i), x2d (i)

and x3d (i) obtained from step 1, the values of the decimal

parts after the comma(fraction part) are considered. These

values are converted to 64 bit binary digits and 32 LSBs with

low-valued and high-precision (rbx , rby, rbz). This process

is done to generate 1 million bits per phase. Following the

generation of these random bits for each phase, the phases

are subjected to XOR processing in binary form. The new

random bit sequences are generated by

rbxy = bitxor(rbx , rby)

rbxz = bitxor(rbx , rbz)

rbyz = bitxor(rby, rbz)

rbxyz = bitxor(rbx , rby, rbz) (40)

At last, the final random bits (rb) are obtained as

rb = [rbxy, rbxz, rbyz, rbxyz] (41)

B. MEDICAL IMAGE ENCRYPTION

After obtaining the chaotic keys [ck1, ck2, ck3] and ran-

dom bits [rb], in this subsection, a medical image P mea-

suring m × n was used for encryption by combination of

Chaotic Matrix Operation for Randomization or Encryp-

tion (C-MORE) method and XOR operation. Conventional

MORE Method as a probabilistic symmetrical fully homo-

morphic cryptosystem was fully described in [39], [40]. The

details of the encryption are explained as follow:

Step1: Convert the medical image P into a vector P̃ of

length m× n.

Step 2: For each sample pixel of the image vector P̃(j), the

invertible matrix S(j) is formed using the chaotic keystream

(ck1) as

S(j) =
[

s11 s12
s21 s22

]

=
[

ck1(4j− 3) ck1(4j− 2)

ck1(4j− 1) ck1(4j)

]

(42)

By using the matrix S(j) and chaotic key streams (ck2) and

(ck3), the pixel value P̃(j) is encrypted by

C(j) =
[

c11 c12
c21 c22

]

= S(j)

[

ck2 (j) .P̃(j) 0

0 ck3(j)

]

S(j)−1 (43)

where c11, c12, c21, c22 are four encrypted pixel values related

to one pixel value of the original image vector P̃(j). This pro-

cess is done for all of the pixels (P̃(j) |j = 1, 2, . . . ,m× n )

and the encrypted values are gathered to build four encrypted

pixel vectors [C1,C2,C3,C4].

Step 3: For more security, the encrypted pixels vec-

tor [C1,C2,C3,C4] are encrypted again with random bit

sequences obtained from (41) by XOR operation as

Ẽk = Ck ⊕ rn, k = 1, . . . , 4 (44)
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FIGURE 1. Block diagram of the proposed chaotic encryption-decryption system.

Finally, four encrypted images related to the original medi-

cal image can be obtained by reshaping the encrypted vectors
[

Ẽ1, Ẽ2, Ẽ3, Ẽ4

]

to the four matrixes [E1,E2,E3,E4] of size

m × n. These four encrypted images are sent to the receiver

using a TX/RXmodule through a public noisy wireless chan-

nel which can be accessed by an eavesdropper.

C. MEDICAL IMAGE DECRYPTION

When the synchronization process described in Sec. III is

achieved and the chaotic signals at the receiver end are syn-

chronized with the chaotic signals at the transmitter, the orig-

inal medical image can be recovered by applying the reverse

operations in the encryption as follow:

Step 1: Using the initial states, system parameters and

control inputs of the receiver chaotic system, the chaotic

synchronization is achieved and the chaotic key streams

[ck1, ck2, ck3] and random bits [rb] are obtained at the

receiver with the same process of Sec. IV-A.

Step 2: Four encrypted images [E1,E2,E3,E4] related to

the original medical image that received at the receiver, con-

vert into four vectors
[

Ẽ1, Ẽ2, Ẽ3, Ẽ4

]

. By using the random

numbers [rb] and XOR operation, one can obtain

C ′
k = Ẽk ⊕ rb, k = 1, . . . , 4 (45)

Step 3:By using the chaotic key stream (ck1), the invertible

matrix S ′(j) can be reconstructed for each cipher-texts sample

pixel [C ′
1(j),C

′
2(j),C

′
3(j),C

′
4(j)] in the receiver as

S ′(j) =
[

s′11 s
′
12

s′21 s
′
22

]

=
[

ck1(4j− 3) ck1(4j− 2)

ck1(4j− 1) ck1(4j)

]

(46)

Now, the sample value P̃′(j) can be recovered by chaotic

key streams ck2 and ck3 as

D(j) =
[

d11 d12
d21 d22

]

= S ′(j)−1

[

C ′
1(j) C

′
2(j)

C ′
3(j) C

′
4(j)

]

S ′(j)

=
[

ck2(j).P̃′(j) 0

0 ck3(j)

]

(47)

Finally, by selecting the first array ck2 (j) .P̃′(j) of the

matrix D(j) and removing the weight ck2 (j), the plain-text

sample pixel P̃′(j) is obtained. This process is done for all

of the cipher-text sample pixels [C ′
k (j) , k = 1, . . . , 4, j =

1, 2, . . . ,m× n] and by reshaping the recovered vector P̃′ to
the matrix P′ of size m × n the original medical image P′ is
recovered.

Remark 2. In this study, we have focused on medical image

encryption because of the heightened security concerns about

patients’ privacy and the need for a robust and secure encryp-

tionmethod for such images.Moreover, we found that various

methods such as the approach of [41] are effective for the

general image. The medical images mainly contain the few

colors and low details. Hence, these methods are not suitable

for the medical image, and realizing the encryption take

much time. Figure 2 shows the encryption result for med-

ical image encryption by the method of [41]. Nonetheless,

the proposed approach can be broadly implemented to other

types of images.

V. SIMULATION RESULTS

A. SIMULATION RESULTS OF CHAOS SYNCHRONIZATION

The performance and robustness of the proposed fast reaching

finite time synchronization approach is illustrated in this

section using a numerical simulation study. In this simulation,

the reference trajectories (2) as the transmitter chaotic system

is considered with the condition [x1d (0) , x2d (0) , x3d (0)] =
[0, 0, 0] and differentiable function

g(xd (t), t) = − |x1d (t)| − x2d (t)

+0.6x3d (t) + 1 (48)
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FIGURE 2. (a) Original image (b) encryption result by the method in [41].

The receiver chaotic system(1) is specified with initial con-

dition [x1 (0) , x2 (0) , x3 (0)] = [1, 1, 1] and system parame-

ters:

f (x (t) , t) = − |x1 (t)| − x2 (t) +0.6x3 (t) + 1 (49)

b(x(t), t) = 0.5 sin(x1(t)) + cos(x2(t))

+1.2 sin(x3(t)) (50)

d(x(t), t) = 0.2 sin(x1(t) ∗ t) + cos(x2(t) ∗ t)
+0.15 sin(x3(t) ∗

√
t) (51)

The state trajectories of the chaotic systems are illustrated

in Figs. 3-5, when the suggested controller (29) is applied.

It is seen that the chaotic signals x1 (t) and x1d (t) are synchro-

nized in 5 seconds. Also, the state trajectories x2 (t) and x3 (t)

are synchronized with x2d (t) and x3d (t) in 4 and 2 seconds,

respectively. Fig.6 displays the dynamics of the error signals.

It is shown from Fig.6 that the error signals converge to zero

in less than 5 seconds. Thus, it can be concluded that the pro-

posed method is able to mitigate the parametric uncertainties

while displaying a suitable synchronization performance. The

time responses of the designed control inputs u (t) and FTSM

surface s (t) are shown in Fig.7. Note from the figure that

the acceptable amplitudes of the proposed control law and

FTSM surface. Note also the dynamics of the control signal

and FTSM surface are free of chattering.

B. SIMULATION RESULTS ILLUSTRATING THE MEDICAL

IMAGE ENCRYPTION SYSTEM

In this subsection, the usefulness and application of pro-

posed scheme for medical image encryption is validated

using numerical simulation. A medical skull image of size

444× 535× 3 uint8, in JPG format is used in this simulation

as the original data which must be encrypted (see Fig.8).

The encryption keys are generated by the transmitter chaotic

system. By applying these chaotic keys and the encryption

method described in subsection IV-B, the original image is

encrypted. Fig.9 shows the obtained encrypted images. At the

receiver side, the chaotic system is used to generate the

decryption keys. The decrypted medical skull image can be

obtained after the synchronization procedure and the decryp-

tion process illustrated in Fig.10. From these figures, it can be

seen that the encrypted images have uniform distribution, and

FIGURE 3. State trajectories x1, x1d .

FIGURE 4. State trajectories x2, x2d .

FIGURE 5. State trajectories x3, x3d .

the encrypted images are similar to the noise. It demonstrates

that from the viewpoint of visual impression, the proposed

method has a well encryption performance.
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FIGURE 6. Error signals e1, e2, e3.

FIGURE 7. FTSM surface s(t) and control signal u(t).

FIGURE 8. Original skull image.

Remark 3. In the finite time control, the convergence time

is dependent to the initial conditions. Although any finite-

time convergent sliding mode controller can be transformed

into a fixed-time convergent control approach [42]; how-

FIGURE 9. Encrypted skull images.

FIGURE 10. Recovered skull image.

ever, for the application of synchronized chaotic systems in

data encryption, because the output of the chaotic system is

extremely sensitive to the initial conditions, the transmitter

can obtain the new encryption keys by the change of the initial

conditions. On the other hand, when the synchronization

process is achieved in a new time and the chaotic signals at

the receiver are synchronized with the chaotic signals at the

transmitter, the new encryption keys and the original data can

be recovered respectively.

Remark 4. The finite time convergence in synchronization

of the chaotic systems has a very important role and sig-

nificance for the realization of synchronization and secure

communication. Since the finite time convergence can fulfill
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FIGURE 11. Synchronization errors using the controller in [45].

the identification of the system parameters in finite time,

it can be ensured that the encoding of the original signal is

completed in a given finite time that is shorter than the signal

duration [43]. Moreover, in the data communication networks

such as wireless sensor networks, there are many restrictions,

including restrictions on battery lifetime. Thus, reduction of

the synchronization time causes the sensors return to the

idle mode more fast and consequently, the battery lifetime

is increased [44]. Fig.11 shows the time trajectories of the

synchronization errors using the method of [45]. As can

be observed in this figure, the asymptotic convergence is

achieved in more than 10 seconds. It can be expected that

some errors might occur initially in the transient responses

during themessage decryption. In order to avoid this problem,

the authors have proposed that the dummy information are

sent in the beginning of the communication so as to prevent

the loss of information, while the total time for communica-

tion is less than the considered time.

VI. PERFORMANCE ANALYSIS OF THE PROPOSED

CRYPTOSYSTEM

To analyze the robustness and illustrate the adequate security

of the proposed chaotic cryptosystem, we perform in this

section a set of security analysis tests. That is, histogram

analysis, correlation test, analysis of occlusion and noise

attack, classical attack, information entropy, number of pixels

change rate and unified average changing intensity are carried

out. Additionally, to have a fair judgment and to further

compare our approach to other works, we consider a classical

standard test image (Lena) of size 512 × 512 uint 8. The

results of the encryption process for the Lena image are

illustrated in figures. 12-14.

A. HISTOGRAM ANALYSIS

To barricade the revelation of image information from an

eavesdropper, it is useful if the encrypted image has no or very

few statistical similarities to the original image. The his-

togram of image illustrated that pixel elements in an image

are distributed using graphical display of the pixel elements,

by measuring the color intensity level of each pixel element.

The histograms of the original and encrypted medical skull

FIGURE 12. Original Lena image.

FIGURE 13. Encrypted Lena images.

FIGURE 14. Recovered Lena image.

image are shown in Fig.15. The histograms of the encrypted

images are more uniform, considerably different from the

original image and have no statistical similarity to the original
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TABLE 1. Variance of histogram.

image. Therefore, the encrypted medical skull images suc-

cessfully hide the information of the original medical skull

image.

Moreover, the variance of a histogram can quantitatively

describe the distribution of pixel values, which is calculated

by [46]:

var(Z ) = 1

n2

n−1
∑

i=1

n−1
∑

j=1

1

2

(

zi − zj
)2

(52)

where Z is a vector and Z = {z1, z2, . . . ,z256} , zi and zj
are the numbers of pixels with gray values equal to i and j,

respectively. The lower value of variance indicates the higher

uniformity of ciphered images. In the experimental tests,

the variances of the histograms of the medical skull image,

Lena image and their encrypted images are calculated by

using Equation (52) and listed in TABLE 1. From TABLE

1, it can be discovered that the histogram variance values

of the encrypted images are much smaller than those of the

original images. Thus, our proposed algorithm has suitable

performance in resisting statistical attacks.

B. CORRELATION TEST

Pearson’s correlation, developed by mathematician Karl

Pearson and made public knowledge in 1884 can be used in

correlation coefficient tests that will measure or compute the

degree of similarity between two variables [47]. According to

the Pearson’s correlation, a good way to measure the encryp-

tion quality of an encryption system is by calculating the

correlation coefficient between two adjacent sample values

in the original message or the encrypted message. This metric

can be calculated by [48]:

Corr (u, v) = cov (u, v)√
G (u)

√
G (v)

(53)

Cov (u, v) = 1
/

N

∑N

i=1
(ui − E(u))(vi − E(v)) (54)

where u and v are the values of two adjacent samples in

the original message signal or decrypted message signal and

E (u) = N−1
N
∑

i=1

ui, G (u) = N−1
N
∑

i=1

(ui − E(u))2, N rep-

resents the number of samples involved in the correlation

calculation. The correlation distribution of two horizontally

adjacent samples in the original and encrypted medical skull

images are illustrated in Fig.16. Also, the mean absolute

value of the correlation coefficients for medical skull image

and Lena image have been given in Table 2 and compared

with reference [46]. It is clear that the correlation coeffi-

cients of the encrypted images are too small. It means that

TABLE 2. Correlation coefficients of two adjacent pixels.

no detectable correlation exists among the original and its

corresponding encrypted images. Thus, the suggested chaotic

encryption algorithm has great security against statistical

attacks.

C. ANALYSIS OF OCCLUSION AND NOISE ATTACK

Encrypted images are subject to occlusion or cropping attack

during transmission andmay be partially damaged. Neverthe-

less, digital images allow a certain extent of distortion on the

transmission channel. An ideal cryptosystem should against

data loss attacks by transmission and storage. Also, in prac-

tical applications, noise interference is inevitable which can

be due to thehigh bit error rate. An outstanding encryption

algorithm has the ability to resist noise attack. To test the

performance of proposed encryption scheme in resisting data

loss, the encrypted medical skull images were attacked by a

data cut with size of 64 × 64 as shown in Fig.17 (a-d). The

result of the decryption is given in Fig.18. As can be seen

from the decrypted figure, the original medical skull image

recovered with some noise distortion and blurring and it can

still be recognized with the details.

Moreover, to evaluate the robustness of the proposed

encryption algorithm against the noise attack, the encrypted

medical skull images were attacked with the 3% ‘‘salt &

pepper’’ noise attack (see Fig.19). Then, these encrypted

images were decrypted and the result of the decryption is

given in Fig.20. It can be said from this figure that our

algorithm has good robustness and can efficiently resist noise

attacks.

D. CLASSICAL TYPES OF ATTACK

According to the Kerckhoffs principle, which is an important

principle in cryptosystems, in evaluating the security of these

systems, it should be assumed that attackers know exactly

the design and working of the cryptosystem under study.

According to this principle, the system security should not

depend on the secrecy and confidentiality of its algorithms,

but only depend on the confidentiality of cryptographic keys.

Most modern cryptosystems are based on the Kirkhofs prin-

ciple. As mentioned in [49], the classical attacks such as cho-

sen plaintext attack, plaintext-only attack, chosen ciphertext

attack, and ciphertext-only attack are most common attacks

in cryptography. In these attacks, chosen plaintext is the

most powerful attack and it can be said that if an encryption

algorithm resists against the chosen plaintext attack, then it is

resistant to other attacks. The proposed algorithm is sensitive

to the system parameters and the initial states of the chaotic
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FIGURE 15. Histograms of (a) original image, (b, c, d, e) encrypted images.

FIGURE 16. Correlations of two adjacent samples in (a) original image, (b, c, d, e) encrypted images.

system. If one of them changes, the chaotic keyswould be

totally different. Furthermore, in the proposed chaoticMORE

encryption, different chaotic keys are used to encrypt each

pixel of the image. This means that different ciphered images

have different former plain values and former ciphered val-

ues. Hence, the proposed algorithm can resist the chosen

plaintext/ ciphertext attack.

E. IE, NPCR AND UACI METRICS

Additional image cryptosystem quality measurement metrics

such asInformation entropy (IE), Number of Pixels Change

Rate (NPCR) and unified average Changing intensity (UACI)

are considered in this section.

In information entropy theory, the complexity of the

encrypted data is determined by calculating the information
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TABLE 3. IE, NPCR and UACI metrics.

entropy for an image as follows [50]:

IE (m) =
255
∑

i=1

p(mi)log(
1

p(mi)
) (55)

where p(mi) represents the probability of variable mi and

the entropy is calculated in bits. The information entropy

value for a truly random source is equal to 8 [48]. The closer

the information entropy is to the quantity of 8, the better

the quality of the encryption. The IE value of the proposed

encryption method is 7.9224. Thus, the obtained IE value of

the proposed method is very close to 8.

The number of pixels change rate (NPCR) and unified

averagechanging intensity (UACI) are two metrics that are

used to measure the strength of theencryption process to

differential attacks. For our best knowledge, NPCR andUACI

are first shown in 2004 [51]. In fact; the rate of changes in

the result of encryption process when the difference between

the original images is very small can be measured by the

NPCR and UACI quantities. Suppose that C1 and C2 are two

encrypted images after and before changing in the one pixel

of the original image at the position i, j and d (i, j) is a bipolar

array which is defined as

d (i, j) =
{

1 if C1(i, j) 6= C2(i, j)

0 if C1(i, j) = C2(i, j)
(56)

Now, the NPCR and UACI quantities are calculated as [52]

NPCR (C1,C2) =
∑

i,j

d(i, j)

S
× 100% (57)

UACI (C1,C2) =
∑

i,j

|C1 (i, j) − C2 (i, j)|
S.F

× 100% (58)

where S denotes the total number pixels in the original

image and F is the value of the largest theoreticalallowed

value in encrypted image. The optimalvalues of the NPCR

and UACI are NPCRopt= 99.61%NPCRopt= 99.61% and

UACIopt= 33.46%UACIopt= 33.46%, respectively [52]. The

values of NPCR and UACI of our suggested encryption

method are 99.6281 and 33.6120, correspondingly. It is

observed that NPCR and UACI are very close to the optimal

values. Additionally, the IE, NPCR and UACI metrics were

given for both the medical skull image and the Lena image

in Table 3 and compared with reference [46]. In conclusion,

we can deduct from the practical results and performance

analysis, that the suggested cryptosystem can perfectly hide

the information of the medical image.

FIGURE 17. The encrypted images with data loss.

F. TIME ANALYSIS

A practical encryption algorithm should be efficient in terms

of security and encryption time. The simulation experiments

were run on a PCwith Intel(R) Core(TM) i7-6820HQCPU@

2.70GHz, 16 GB RAM and 750 GB hard disk. The operating

system is 64 bits Microsoft Windows 10 and the computa-

tional platform is MATLAB R2018b. A medical skull image

of size 444 × 535 × 3 uint8, in JPG format is used in this

simulation as the original data which must be encrypted. The

proposed scheme consists of two main parts: (a) chaotic key

generation, (b) medical image encryption. The chaotic key

generation phase takes 1.1057 seconds and encryption phase

takes 0.7212 seconds. Thus, to generate the final encrypted

images, the proposed scheme takes 1.8269 seconds which

considering its high level of security, the speed of image

encryption processing is acceptable. In addition, sometimes

we don’t need to encrypt all the data, especially where a

faster speed is major requirement. For example, in a bank

cheque/draft, only the seal of the bank, signature and amount

need to be secure. Similarly, in the case of medical images we

always only need to encrypt a specific portion of the image.

In these cases for Decreasethe encryption time we can use the

selective region based image encryption.

Remark 5. Motivations for considering chaotic encryp-

tion methods over traditional encryption schemes stem from

the fact that these latter often exhibit, heightened security
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FIGURE 18. decrypted original image with some noise distortion and
blurriness.

FIGURE 19. The encrypted images in the presence of 3% ‘‘salt & pepper’’
noise.

issues, high time consumption, key distribution problems

and low-efficiency levels. Chaos-based encryptions are fast

and advanced security algorithms exhibiting high sensitivity

to the initial conditions, pseudo randomness property, and

no periodicity and parameter dependency. These properties

allow for supporting the permutation-diffusion requirement

in cryptosystem establishment [53].

FIGURE 20. Decrypted original image with some noise distortion.

On the other hand, the symmetrical key cryptosystem

(MORE Method) is a probabilistic symmetrical fully homo-

morphic Encryption method. Homomorphic Encryptions

(HE) techniques such as the MORE method are new cryp-

tographic research topics that were introduced to help users

in preserving their data confidentiality and privacy by allow-

ing untrusted parties to process computations over encrypted

data. Althoughthere are many different image encryption

algorithms such as fast image encryption algorithms, HE are

highly sought after in real world modern applications such

as Cloud Computing, Data aggregation in wireless sensor

network scenario, Electronic Voting, Spamfilters, etc. In such

applications, HE will allow the creation of new techniques

capable to run over encrypted inputs to produce encrypted

outputs without knowing any information about the primitive

data, once they are used by untrusted parties. Thus user’s

privacy is guaranteed [54]. However, traditional HE tech-

niques exhibit some drawbacks including weakness against

chosen/known plaintext attacks [54]. In this regard, one of

the main advantages of the proposed method is the fact that

it takes into consideration the above listed advantage of the

MORE encryption method while at the same time eliminate

some of its main disadvantages such as weakness against

chosen/known plaintext attack using the chaotic encryption

and different chaotic keys for encrypting each image pixel.

VII. CONCLUSION

This paper proposed a new fast reaching finite time synchro-

nization approach for chaotic systems along with its applica-

tion to medical image encryption. In this regard, an adaptive

terminal sliding mode tracking controller with fast reaching

condition was designed to synchronize the chaotic systems

at the transmitter and receiver ends in finite time. The pro-

posed approach was implemented to enhance the security of

the medical image transmission and/or storage, by using the

chaotic keys and combination of chaotic encryption method

as chaotic MORE and XOR operation. The main objective

of the suggested method was to remove all of the appear-

ances of the original medical imageduring the transmission
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or storage, while at the same time protecting the quality

of the recovered medical image at an adequate level. The

proposed approach was assessed using a simulation and ana-

lytical study. The obtained results showed that the suggested

technique is robust, simple to implement and has a fast con-

vergence rate. Additionally, the proposed cryptosystem was

shown to yield an acceptable level of resistance to various

attacks.
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