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Fast Recession of a West
Antarctic Glacier

E. J. Rignot

Satellite radar interferometry observations of Pine Island Glacier, West Ant-
arctica, reveal that the glacier hinge-line position retreated 1.2� 0.3 kilometers
per year between 1992 and 1996, which in turn implies that the ice thinned by
3.5 � 0.9 meters per year. The fast recession of Pine Island Glacier, predicted
to be a possible trigger for the disintegration of the West Antarctic Ice Sheet,
is attributed to enhanced basal melting of the glacier floating tongue by warm
ocean waters.

Pine Island Glacier is a major ice stream of
West Antarctica (1–7) that has been high-
lighted as being vulnerable to climate change
and a possible trigger for the disintegration of
the West Antarctic Ice Sheet (6, 7). The ice
stream flows rapidly into Pine Island Bay, in
the Amundsen Sea, unrestrained by a large
ice shelf at its junction with the ocean, over a
subglacial bed well below sea level, which
deepens inland. This flow configuration is
theoretically unstable (8, 9) because a retreat
of its grounding line (where the glacier reach-
es the ocean and becomes afloat) would be
self-perpetuating and irreversible, regardless
of climate forcing.

Early estimates of the ice-stream mass
budget suggested that it was thickening (3,
4). The result was called into question (5),
but not enough reliable data existed
on the ice flow and grounding line to al-
low a precise mass balance calculation.
More recently, a hydrographic survey of
Pine Island Bay revealed that the glacier
experiences basal melt rates one order of
magnitude larger than those recorded on
large Antarctic ice shelves (10, 11). High

basal melting is apparently fueled by an
influx of relatively warm ocean waters
from the southern Pacific Ocean (10). Such
basal melting brings new considerations for
the mass budget of the glacier floating sec-
tion (1).

Here, I applied a quadruple difference
interferometry technique (12, 13) on radar
data gathered by the Earth Remote Sensing
instruments (ERS-1 and -2) to detect the
hinge-line position (or limit of tidal flexing)
across Pine Island Glacier and its migration
with time (14) (Fig. 1). Feature tracking
based on the phase correlation method was
used with the same data to yield detailed
vector measurements of the glacier velocity
on both grounded and floating ice (15). The
glacier surface elevation was obtained from a
new digital elevation model (DEM) of Ant-
arctica (16 ).

Combining the glacier hinge-line position,
velocity, and surface elevation, I calculated
that the ice discharge is 76 � 2 km3 of ice
year�1 at the hinge line (17). The estimated
mass input from interior regions is 71 � 7
km3 of ice year�1 (18). These numbers sug-
gest a mass deficit of 5 � 7 km3 of ice year�1

upstream of the hinge line (19).
The hinge-line positions retrieved in

1992, 1994, and 1996 (20) indicate a hinge-

line retreat at a mean rate of 1.2 � 0.3 km
year�1 (Fig. 1, B to F, and Fig. 2, A and B).
Hinge-line retreat may result from an in-
crease in sea-level height or a decrease in ice
thickness (a decrease in the height of the
seabed causes retreat too, but the effect is
insubstantial over the time scale considered
here) (7–9). Changes in sea level due to ocean
tide yield an uncertainty in hinge-line posi-
tion of less than 1.3 km per interferogram and
0.3 km year�1 in mean retreat rate (21). I
therefore attribute the 1992 to 1996 retreat to
a decrease in ice thickness. The calculated
rate of thinning is 3.5 � 0.9 m of ice year�1

at the hinge line.
Mass accumulation [�0.4 m year�1 in

(1)] and sublimation [�0.7 m year�1 in (22)]
at the glacier surface are too small to cause a
major change in the glacier surface budget. A
more likely explanation for the thinning is
that the bottom melt rates experienced by the
glacier have been too large to maintain the
floating tongue in a state of mass balance
(23).

Calculations of ice discharge seaward of
the hinge line indicate that basal melting has
exceeded 50 � 10 m year�1 in the first 20 km
of the subice cavity, decreasing to an average
of 24 � 4 m year�1 between the hinge line
and the calving front (Fig. 2C). The large
melt rates recorded near the hinge line imply
that Pine Island Glacier is even more sensi-
tive to ice-ocean interactions than was in-
ferred from the 1994 survey of ice-front con-
ditions (10).

Application of a two-dimensional ther-
mohaline circulation model to the subice
cavity reveals how sensitive basal melting
is to changes in ocean conditions. An in-
crease in seawater temperature from �1.5°
to �2.0°C increases basal melting by 30%
(11). A 3.5–m year�1 thinning could there-
fore result from a one-tenth of a degree
Celsius increase in seawater temperature,
which is not unlikely for the deep water in
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the southeast Pacific (24).
Sediment cores collected in Pine Island

Bay show that a substantially more extensive
ice-shelf cover was present perhaps as recent-
ly as 100 years ago in Pine Island Bay (25).
Terminus locations recorded in 1966, 1973,
and 1985 indicated an ice-front retreat of 0.8
km year�1. More recent satellite imagery,
however, suggested that the ice front has been
stable (1, 5).

The ice-front evolution is probably con-
trolled by physical processes that operate on a
different time scale than those driving hinge-
line retreat. Basal melting is low at the ice
front (Fig. 2C) and less prone to induce thin-
ning. The ice-front position is pinned down
by numerous emerging islands or ice rises
(Fig. 1A) that may temporarily slow or halt
its retreat. The periodic calving of massive
icebergs (Fig. 1A) complicates the analysis of
ice-front migration over short time scales. In
contrast, rapid melting near the hinge line has
an immediate effect on the hinge-line posi-
tion because that position is governed by
hydrostatic equilibrium of the ice.

Whether the retreat of Pine Island Glacier
is a unique, short-lived phenomenon
or the signal of a wider scale, longer term
ice-sheet disintegration cannot be answered
at present. If basal melting does drive the
retreat, however, other ice-sheet sectors of
the Amundsen and Bellingshausen seas
where the continental shelf is invaded by
warm circumpolar deep water (1, 11) could
be retreating.
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resulting “quadruple” difference interferogram mea-
sures the glacier surface displacement along the radar
line of sight (23° off vertical) in response to changes
in ocean tide, which is a vertical motion. To process
the 1992 and 1994 quadruple difference interfero-
grams successfully, I first registered the radar scenes

with subpixel precision (15) to follow the glacier
motion (which exceeds 20 m in 3 days) and then
generated radar interferograms at the finest spatial
resolution before differencing.
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displacement profiles extracted from difference inter-
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ment of the glacier. The mapping precision is highest
(80 m) in areas of high signal-to-noise ratio, large tidal
motion, and large radius of curvature of the hinge line;
it degrades along the glacier side margins where the
signal is limited by the resolution of the ERS radar
imaging system. On average, the mapping precision is
better than �200 m.

Fig. 1. Normalized tidal
displacements of Pine Is-
land Glacier (PIG), West
Antarctica, recorded with
ERS differential interfero-
metry and color coded
[color bar in (D)] from ma-
genta (grounded ice) to
yellow (glacier flexure
zone) and blue (ice-shelf
ice in hydrostatic equilibri-
umwith the ocean waters).
Color tone is modulated by
the radar brightness of the
scene acquired by ERS-1 on
21 January 1996 (orbit
23,627, frames 5589 and
5607). The glacier fast
moving portion is revealed
by flow-line features con-
spicuous in the radar
brightness image. No in-
terferometric data are
available in areas colored
dark green. The white
square in (A) delineates
the area shown in (B) to
(F). ERS is flying north in
(A), (B), and (F) (ascend-
ing track, heading �49°
from N) and south in (C),
(D), and (E) (descending
track, heading �128°
from N), illuminating the
scene from its right. The
tide normalization factors
from (B) to (F) are 2.2,
4.0, 3.2, 2.7, and 0.9 m,
respectively. The hinge-
line position, retrieved
from model fitting (14), is
shown as a black, thin,
continuous line separat-
ing grounded (magenta,
minus sign) from floating
ice (blue, positive sign). Its finger-shaped appearance in (B) to (F) indicates the presence of thicker
ice at the glacier center than along its sides. In (A), locally grounded areas or ice rises appear in
magenta between the hinge line and the ice front, in areas where the ice shelf is virtually stagnant.
Profile A-B [thick, white line in (B)] is discussed in Fig. 2A. Hinge-line position and tidal displace-
ments were recorded in (B) January 1992 (ERS-1 orbits 2970, 3056, and 3142; frame 5589), (C)
February 1992 (ERS-1 orbits 3260, 3346, and 3432; frame 5211), (D) March 1994 (ERS-1 orbits
13,826, 13,869, and 13,912; frame 5211), (E) November 1995 and January 1996 (ERS-1/2 orbit
pairs 22,614/2941 and 23,616/3943; frame 5211), and (F) January and February 1996 (ERS-1/2
orbit pairs 23,627/3954 and 24,128/4455; frame 5589). Between (B) and (F), the hinge line
retreated 5.0 � 1.0 km in 3.78 years over a 275-m-wide region at the glacier center. The retreat
is less along the side margins presumably because of steeper slopes (�1.2% instead of �0.5% at
the glacier center) and possibly less thinning (21).
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Fig. 2. (A) Tidal displacements measured along
profile A-B (Fig. 1B) for the 1992.1 and 1996.1
data (Fig. 1F). The data noise is 1 to 2 mm. The
hinge-line position inferred from model fitting
is indicated by a solid arrow. The 1996 differ-
ential displacements are smaller than the 1992
displacements because ocean tide changes less
over 1-day periods than over 6-day periods. (B)
Hinge-line retreat measured in a 275-m-wide
region centered on profile A-B. Error bars rep-
resent a 1.3-km uncertainty in hinge-line po-
sition due to unknown ocean tide. The mean
rate of retreat between 1992 and 1996 is
1.2 � 0.3 km year�1. The smaller rate of
retreat between 1994 and 1996 could be due
to differences in tide or year-to-year variations
in ice thinning (21). (C) Ice volume flux of Pine
Island Glacier calculated at discrete locations
between the hinge line (distance � 0 km) and
the ice front (distance � 50 km). The area of
calculation extends along flow lines that orig-
inate at the end points of the profile selected for calculation of the hinge-line flux (in this manner,
the effect of ice-shelf spreading is taken into account). Conservation of mass within that area
dictates that the steady-state rate of basal melting (calculated as the decrease in ice flux divided
by the area) exceeds 50 m year�1 in the first 20 km and subsequently decreases toward the ice
front. If the glacier is not in steady state and thins at 3.5 m year�1, basal melting is effectively
53.5 m year�1.
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