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Abstract—We present a robot pose registration algorithm
which is entirely based on large planar surface patches extracted
from point-clouds sampled from a 3D sensor. This approach
offers an alternative to the traditional point-to-point iterative
closest point (ICP) algorithm, its point-to-plane variant, as
well as newer grid-based algorithms such as the 3D normal
distribution transform (NDT). The simpler case of known plane
correspondences is tackled first by deriving expressions for least-
squares pose estimation considering plane-parameter uncertainty
computed during plane extraction. Closed form expressions for
covariances are also derived. To round-off the solution, we present
a new algorithm called Minimally Uncertain Maximal Consensus
(MUMC) for determining the unknown plane correspondences by
maximizing geometric consistency by minimizing the uncertainty
volume in configuration space. Experimental results from three
3D sensors, viz. Swiss-ranger, Univ. of South Florida Odetics
LADAR, and an actuated SICK S300 are given. The first two
have low fields of view (FOV) and moderate ranges, while the
third has a much bigger FOV and range. Experimental results
show that this approach is not only more robust than point or grid
based approaches in plane-rich environments, but it is also faster,
requires significantly less memory, and offers a less cluttered
planar-patches based visualization.

I. INTRODUCTION

Encouraged by the success of 2D simultaneous localization

and mapping (SLAM) [1], there have been many recent

attempts (ref. [2], [3], [4], [5], [6]) to extend the methodology

to 3D. Since onboard 3D odometry is usually lacking or

inadequate, an essential part of the mapping procedure is

finding the relative pose offset of the robot between two

successive range sensor samples using scan-matching. Typical

3D sensors are laser range finders mounted on a rotating

platform [3] and time of flight sensors like the Swiss-ranger

[7]. These sensors provide a 3D range scan as a “point-cloud”

of noisy spatial coordinates, numbering typically between 104

and 106.

The most commonly used scan-matching algorithm is the

point-to-point (P-P) iterative closest point (ICP) [8], which

works with the points directly and hence does not assume

any specific structure in the environment. A recent dissertation

[9, pp. 4] notes that “up to now, all approaches successfully

applied to 3D SLAM are based on the ICP algorithm.”

There also exists a point-to-plane (P-L) version of ICP [10],

[11]. Its cost function differs from that of P-P ICP in that

it minimizes error along local normals. This increases its

robustness to outliers, although no closed-form solution exists
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for the minimization of its cost function. One alternative to

ICP is the 3D normal distribution transform (3D-NDT) [5],

which uses a combination of normal distributions defined

on an occupancy-grid like structure. This gives a piecewise

smooth representation of the point-cloud on which standard

iterative numerical optimization methods are applied to obtain

the registration.

If the environment to be mapped has some structure, e.g, if

it is made up of many planar surface patches, then a map

based on plane segments offers many advantages in terms

of storage requirements, computational efficiency, semantic

classification of surface features, and ease of visualization.

Furthermore, these features can be easily embedded in an

extended Kalman filter EKF-SLAM framework [12]. As in

[4], we utilize planar surface-patches. However, our approach

obviates the ICP step necessary for the pose change prediction

in their work. The basic steps of the algorithms are compared

in Fig. 1. Combining plane-correspondence determination and

pose registration in one step and removal of ICP leads to

savings in computation time and an increase in robustness.

In fact, most of the previous 3D mapping approaches have

been off-line due to the excessive time required by ICP. With

the new approach presented in this article, the pose registration

is fast enough relative to the per sample data-acquisition time

of the sensor, to be practicable for mapping in a stop-and-go

fashion, with relatively large movements of the robot between

samples. This contrasts with approaches [13], [14] wherein the

sampling is so fast that instantaneous kinematic information

may be utilized to aid registration. This also holds for early

work on motion determination using camera images utilizing

properties of planes in projective geometry [15].

In this article, we focus on the steps marked with a box

in Fig. 1 as they are the core elements for 3D mapping.

The SLAM step can be, for example, the same as in [4],

i.e., the well known EKF algorithm, and is outside the scope

of this article. Nevertheless, we have already embedded the

approach presented here in a SLAM framework using pose

graphs [16]: the resulting 3D maps are presented at http:

//robotics.jacobs-university.de/projects/3Dmap. For the planes-

extraction step and uncertainty analysis, the reader is referred

to the authors’ previous work [17], [18].

Our approach falls into the category of large 3D surface-

patches based pose estimation without prior knowledge of

correspondences. The work by Kohlhepp et al [2], [19], [20]

is most related to ours. In [19], surfaces are extracted from

range images obtained by a rotating laser range finder (LRF)

and registered together. A local module determines the cor-

respondences and computes transforms, and a global module
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Fig. 1. Comparison of algorithm structures. The ICP step in Weingarten et al’s approach has been removed in our approach.

detects loop-closure and distributes uncertainty using an elastic

graph. For this article, only the local module is relevant which

is discussed again in [20]. Similar to Sec. II-C of this article,

their approach uses surface-patch directions to compute the

rotation between successive views. However, no mention is

made in their work of using the uncertainties in the extracted

surface-parameters. For estimating translation, they resort back

to point features, which is essentially the same as ICP. By

contrast, this article uses only planar patches and does not

return to the domain of points — even translation is obtained

using planes. This allows for detection of dominant directions

of uncertainties, as detailed in Sec. II-D. Please note that the

uncertainties are absolutely necessary to make the registration

usable for proper 3D SLAM. Furthermore, many heuristic

measures for estimating correspondences between features, in

particular the ground, across views are discussed in [20]. By

contrast, the plane correspondence algorithm presented by us

does not give any special status to the ground. In our view,

their work – although substantial – describes the mathematical

machinery insufficiently: it neither computes the uncertainties

in feature-parameters in the extracted features, nor discusses

how these uncertainties affect the final pose estimation.

A very comprehensive discussion on finding correspon-

dences between two sets of planar or quadratic patches using

attribute-graphs is found in [2]. In it, similarity metrics were

formulated based on several attributes like shape-factor, area

ratio, curvature-histogram, inter-surface relations etc., and a

bounded tree search was performed to give a set of corre-

spondences which maximized the metric. The result is refined

using an evolutionary algorithm, which is computation-time

intensive. In contrast, we use only planar patches and an algo-

rithm is described which maximizes the overall geometric con-

sistency within a search-space to determine correspondences

between planes. The search-space is pruned using criteria

such as overlap, size-similarity, and agreement with odometry,

if available. For all these tests, only the plane parameter

covariance matrix is employed, without the need to refer back

to the original point-cloud. There is, of course, the option

of also using additional attributes like intensity and color for

making the correspondence-finding step more reliable. The use

of geometric constraints for planar surface matching has been

discussed in [21] in which most constraints are formulated

as algebraic inequalities without employing covariances of

plane parameters computed during extraction. Only theoretical

and simulation results in a geometric reasoning network were

provided without any experimental validation. The general

concept of interpretation trees for correspondence finding was

introduced in [22], which was later used in [23] for registering

planar patches using filters based on area, normal direction,

and centroids. The latter work, however, suffers from several

shortcomings: 1) their approach is only applicable to complete

planar patches, i.e. if a patch is only partially visible due to

occlusion, it cannot be matched. 2) The actual computation of

the registration has not been worked out and it is claimed

that only two correspondences are enough for registration.

As we show in Sec. II, at least three non-parallel plane

correspondences are needed if completeness of patches is

not assumed. 3) As experimental evidence, their paper shows

the matching of a single scan-pair. 4) Again, the covariances

of plane parameters were not computed or used. Similarly,

the covariance of the registration was not computed. In our

work, the covariance of the plane parameters as well as the

covariance of the registration solution play a central role in

the matching. Another heuristic iterative ICP-like matching

algorithm for small planar-patches was developed in [24].

They extract only small local patches and apply an ICP like

algorithm on these patches– no consensus is built, but several

empirical measures are used. Translation is computed using

the overlap method similar to [23] which is only valid when

there is no occlusion. Correlation in the Fourier domain of

local surface normals is used in [25] for registration.

Another line of correspondence determination approaches

uses Random Sample Consensus (RANSAC) [26], which was

employed in [27] in combination with a Huber kernel for

matching 2D LIDAR samples. Their algorithm works in 2D

and finds the biggest corresponding points set which verifies

the inter-point distance rigidity constraint. Since we also use

the idea of “consensus” in our approach, it is similar in spirit

to RANSAC, albeit with two important differences: there is no

random sampling involved, and more importantly, the solution

is not solely based on consensus maximization but also uses

the uncertainty volume of potential registration solutions.

A. Problem Formulation

In this sub-section, we formulate the problem of plane

matching based registration. Two sets of planes are given

which are extracted from two successive views of a 3D sensor

rigidly mounted on a mobile robot. From these planes, we

would like to estimate the change in position and orientation
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of the sensor between the samples. The problem can be

formulated in the following two scenarios with increasing

levels of difficulty

1) Both views have the same planes and the correspon-

dences between planes across the views is also given.

2) The two views have only some planes which overlap,

i.e., some planes go out of view, and new planes, which

were not previously visible, come into view. Which

planes are overlapping and what their correspondences

are, is not known.

In this article, we address both the cases mentioned above. We

start out by deriving a closed form solution for the simplest

case of known correspondences in Sec. II. We also derive the

covariances for the computed registration. This allows us to

compute an uncertainty metric which can be used to measure

the geometrical consistency of any assigned correspondences.

The most general case of unknown correspondences is

handled in Sec. III, where we propose a new algorithm called

the minimally uncertain maximum consensus (MUMC). Some

results of applying MUMC to real sensor data are presented in

Sec. IV, which also provides a comparison with P-P and P-L

ICP, and 3D NDT. Finally, the article is concluded in Sec. V.

II. PLANES WITH KNOWN CORRESPONDENCES

In this article, the following notation is used:
v, v, v̂ a scalar, a vector, a unit vector.

M, M+ a matrix, its Moore-Penrose pseudo-inverse.

|M|, |M|+ the determinant, the pseudo-determinant.

q̌, q̌⋆ a quaternion, its conjugate.

u · v, p̌ ⋄ q̌ vector dot product, quaternion product.
The pseudo-determinant of a matrix is simply the product of

its non-zero eigenvalues. Additionally, for quantities resolved

in different frames, we use the left superscript/subscript

notation of [28].

A plane P(m̂, ρ) is given by the equation m̂ ·p = ρ, where

ρ is the signed distance from the origin in the direction of the

unit plane normal m̂. We see that P(m̂, ρ) ≡ P(−m̂,−ρ).
To achieve a consistent sign convention, we define planes as

P(n̂, d), where, d , |ρ| ≥ 0, and n̂ , σ(ρ) m̂, where, σ(ρ) =
−1 if ρ < 0 and +1 otherwise. If ρ = 0, then we choose

the maximum component of n̂ to be positive. The latter case

is unlikely to occur in practice in the sensor-frame, because

such a plane, which is parallel to the line of sight of the range

sensor, is unlikely to be detected by it.

An indexed set kP of planar-patches is extracted [29] from

a point-cloud associated with the k-th robot-frame Fk. Apart

from the planar patch’s n̂ and d parameters, the extraction

procedure also gives [17] their 4 × 4 covariance matrix C.

Thus kP is an ordered set of triplets given by

kP , { kPi〈 kn̂i, kdi, kCi〉, i = 1 . . .Nk}. (1)

Additional information, like bounding-boxes or the outlines

of the patches may be available, but is not needed in our

formulation.

For registration, we consider two robot-frames: a left one

denoted as Fℓ with origin Oℓ from which the indexed plane-

set ℓP is observed, and a right one Fr with origin Or from

which the indexed plane-set rP is observed. The equations of

the planes are

ℓ
n̂i · ℓp = ℓdi,

r
n̂i · rp = rdi. (2)

At this juncture, it is assumed that the correspondence problem

has already been solved, i.e., the planes at the corresponding

index i in the two sets have been found to represent the same

physical plane.

If the robot moves from Fℓ to Fr, and observes the coordi-

nates of the same physical point as ℓp and rp respectively,

these coordinates are related by [28]

ℓp = ℓ
rR

rp+ ℓ
rt, (3)

where, the translation ℓ
rt ,

−−−→OℓOr, resolved in Fℓ.
The registration problem now consists of estimating ℓ

rR and
ℓ
rt. Substituting (3) in (2) and comparing coefficients,

ℓ
n̂i =

ℓ
rR

r
n̂i, (4a)

ℓ
n̂i · ℓrt = ℓdi − rdi. (4b)

We would not have been able to write these equations, had

we not enforced the aforementioned sign convention for both

sets of planes.

1) Plane Parameter Covariance Matrix: For details on the

computation of the plane parameter covariance matrix, the

reader is referred to authors’ previous work on the extraction

of planes from noisy point cloud data; [30] describes the

extraction of planes and their polygonal boundaries, [17] deals

with the proper calculation of the related uncertainties. The

main results are summarized in Appendix A. The 4× 4 plane

covariance matrix can be partitioned as

C =

[

Cn̂n̂ Cn̂d

CT

n̂d Cdd

]

. (5)

Since ‖n̂‖ = 1, there is uncertainty only in three independent

directions. Therefore, this matrix is rank-deficient [31] with

rank 3. This, however, does not pose a problem if we interpret

results properly. As suggested in [32], we use the Moore-

Penrose inverse to obtain the inverse of the covariance matrix

(the information matrix). Let the eigenvalue decomposition of

the positive semi-definite C be

C =

3
∑

i=1

σ2
i ûiû

T

i , σ
2
1 ≥ σ2

2 ≥ σ2
3 , σ

2
4 = 0. (6)

We define the following quantities based on the Moore-

Penrose inverse:

C+ ,
3
∑

i=1

1

σ2
i

ûiû
T

i , H , −C+ (7)

|C|+ , σ2
1σ

2
2σ

2
3 , |C+|+ , |C|−1

+ (8)

The matrix H is the Hessian of the log-likelihood function

with which the covariance can be estimated, as shown in [33].

In our formulation, the Hessian plays a central role because it,
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rather than the covariance, is estimated directly in our plane

extraction step [30], [17]. Defining,

ν ,
[

n̂T d
]T
, (9a)

r
ℓT ,

[

ℓ
rR

T 03×1

− ℓ
rt

T 1

]

, we get, rν = r
ℓT

ℓν. (9b)

The maximum-likelihood registration is then found by doing

the following extremization

min
r

ℓ
T
ζT ,

1

2

N
∑

i=1

( rνi − r
ℓT

ℓνi)
TC+

i (
rνi − r

ℓT
ℓνi)

+
1

2

N
∑

i=1

log |Ci|+ , where, (10a)

Ci ,
rCi +

r
ℓT

ℓCi
r
ℓT

T (10b)

Due to the coupling of rotation and translation estimation,

this is hard to tackle analytically. Iterative numerical opti-

mization could be employed – however, in this article we

are looking for closed-form solutions which can be employed

for online planes-based mapping. Therefore, we look for fast-

to-compute alternatives using decoupling of covariances and

application of least-squares.

A. Plane Parametrization Choice

In [9, pp. 29] several plane parametrizations are listed.

Only the n̂, d parameterization used in this article is free of

singularities and can represent all possible planes. The 4 × 4
covariance matrix of this representation is, however, singular.

This does not actually represent any difficulty and singular

covariance matrices are used routinely in classic works in

Computer Vision like [32]. In our approach [17], we go one

step further and exploit this singularity to place the plane’s

parameters exactly in the null space of its covariance.

In [9] an inefficient work-around is used. They first use the

n̂, d plane parameterization for plane-fitting using principal

component analysis, then rotate all the points such that the

plane’s normal becomes the ẑ axis, and then refit the plane

using a different model z = ax + by + d using least-squares

to compute a 3× 3 covariance matrix for a, b, d. This is par-

ticularly wasteful because of the plane-fitting problem being

effectively solved twice. Although the 3×3 covariance matrix

is non-singular, the parameterization on which it is based is

local to the plane and cannot represent all planes. Hence we

are of the opinion that the singularity of the covariance matrix

should not be avoided because it makes explicit the underlying

topology of the rotation group SO(2) (or SO(3) later for the

unit-quaternions).

B. Decoupling the Covariances

To be able to use the nicely decoupled equations (4) for

determining rotation and translation separately, we need to

estimate the total uncertainty in n̂ by marginalizing, i.e.

integrating out the effect of d and vice-versa. The details of

this decoupling are shown in Appendix B. This gives us two

decoupled covariances: A scalar variance Ddd for d, and a

3× 3 covariance Dn̂n̂ for n̂.

Armed with the above expressions for decoupled covari-

ances, we can go back to the decoupled Eqs. (4) to find

the registration. Henceforth in this article, we will mostly

use these decoupled covariances denoted by D as given in

(58) and (61) for the plane parameter covariances. When the

original coupled covariances are needed, e.g. in Sec. III-A1,

and III-A4, we will use the symbol C.

C. Least Squares Rotation After Decoupling and Assuming

Isotropic Uncertainties

In this section, we derive a solution for computing ℓ
rR.

Considering first the uncertainty for any given normal to be

directionally uniform/isotropic, but varying only in its magni-

tude leads to a log-likelihood function which is straightforward

to analyze. We define the rotational residual for the i-th
correspondence as

si ,
ℓ
n̂i − ℓ

rR
r
n̂i. (11)

Due to the isotropy approximation, it is assumed to be

normally distributed with mean 0 and covariance w−1
i I3,

where wi are weights inversely proportional to a measure of

rotational uncertainty. Using the property that trace is unitary

invariant, the weights are selected as

w−1
i = trace( ℓDi,n̂n̂ + ℓ

rR
rDi,n̂n̂

ℓ
rR

T) (12)

= trace( ℓDi,n̂n̂ + rDi,n̂n̂). (13)

We therefore need to maximize the log-likelihood function

max
ℓ
r
R
ζr = −

1

2

N
∑

i=1

wi‖si‖2 (14)

≡ const. +

N
∑

i=1

wi
ℓ
n̂i · ( ℓrR r

n̂i). (15)

There are essentially two ways to solve this – by using

quaternions [34, Sec. 4], and by using SVD [32]. In the context

of satellite attitude estimation using a star-tracker, this problem

is called the Wahba’s problem [35] and the quaternion based

solution is called the Davenport’s q-method.

We employ the quaternion based approach here as it leads

to an easier formulation of the anisotropic uncertainty ver-

sion in the next section. The solution involves representing

the rotation operator ℓ
rR using a unit-quaternion ℓ

rq̌. The

unit normal vector n̂ now becomes the purely imaginary

quaternion ň =
[

0 n̂T
]T

. Then (4a) can be rewritten as
ℓňi =

ℓ
rq̌ ⋄ rňi ⋄ ℓrq̌⋆.

After dropping the constant, Eq. (15) can be written as

max
ℓ
r
q̌
ζr =

N
∑

i=1

wi(
ℓ
rq̌ ⋄ rňi ⋄ ℓrq̌⋆) · ℓňi

= ℓ
rq̌

T

(

N
∑

i=1

wiΨ
T

( rňi)Ψ( ℓňi)

)

ℓ
rq̌,

, ℓ
rq̌

TK ℓ
rq̌, (16)



5

where, the following definitions have been used. Let the

quaternion p̌ ,
[

p0 px py pz
]T

,
[

p0 pT
]T

, then,

p̌ ⋄ q̌ , Ψ(p̌)q̌ ,

[

p0 −pT

p p0I3 + p× I3

]

q̌, (17a)

q̌ ⋄ p̌ , Ψ(p̌)q̌ ,

[

p0 −pT

p p0I3 − p× I3

]

q̌. (17b)

p× I3 is the cross-product skew-symmetric matrix [32]. The

maximum of ζr is then achieved at the 4× 1 unit Eigenvector
ℓ
rq̌LS of K corresponding to the maximum positive Eigenvalue

of the 4× 4 symmetric matrix K.

From this computed ℓ
rq̌LS, one can get the rotation matrix

ℓ
rRLS = R( ℓrq̌LS), where, the operator R(q̌ = [q0,q

T]T) is

defined as

R(q̌) , (q20 − ‖q‖2)I3 + 2qqT + 2q0q× I3 (18)

1) Rotational Covariance Estimation: Judging from the

recent literature in space and aircraft-dynamics community

[36], [37], many ways of representing uncertainty in unit

quaternions exist. Since the rotation covariance was not es-

timated as part of points registration [34], [8], we present

a new solution which is based on the Hessian of the cost

function [33]. As was the case with the covariance matrix of

plane-parameters, the covariance ℓ
rCq̌q̌ of the unit quaternion

ℓ
rq̌LS has the feature that the matrix is singular [36], [37] due

to the unit-norm constraint. In this article, we will use this

singular 4 × 4 matrix, which represents the uncertainty of a

unit quaternion on the tangent plane of a unit 3-sphere in 4D.

As there is no uncertainty along the direction of the unit

quaternion, ℓ
rCq̌q̌

ℓ
rq̌ = 0. Such a covariance matrix can be

found by computing the Hessian of the constrained Lagrangian

L , ζr − λ(q̌Tq̌− 1) at q̌ = ℓ
rq̌LS and λLS = µmax(K), the

latter being the maximum Eigenvalue of K. This Hessian is

given by

Hq̌q̌(
ℓ
rq̌LS) , 2 (K− µmax(K)I4) . (19)

The unit quaternion ℓ
rq̌LS spans the null-space of this Hessian.

Finally, the sought covariance is

ℓ
rCq̌q̌ = −H+

q̌q̌(
ℓ
rq̌LS). (20)

An alternative method for obtaining the covariance is that

described in [19] which uses results on perturbation of Eigen-

vectors.

D. Least Squares Translation After Decoupling

Stacking (4b) for i = 1 . . .N, the translation ℓ
rt should

ideally satisfy

M ℓ
rt = d, (21)

MN×3 ,







ℓ
n̂T

1

...
ℓ
n̂T

N






, dN×1 ,







ℓd1 − rd1
...

ℓd
N
− rd

N







Since there is uncertainty in M as well as d, ideally this

should be solved using the method of total least squares (TLS)

[38]. However, the standard TLS formulation cannot be used

directly because 1) the uncertainty in M is row-wise correlated

and anisotropic and 2) the matrix M consists of unit vectors

and therefore the uncertainty is structured. To our knowledge,

the latter problem has not been addressed in the literature in

the context of TLS.

Due to its intuitive nature and fast closed-form solution,

we will solve Eq. (21) with ordinary least squares (LS). This

assumes that all of the uncertainty is on the right hand side,

that is in d. A justification for this is provided by Eq. (58),

which shows that the uncertainties on the two sides of (21)

are related.

The diagonal weighting matrix W is defined as

Cd ,







ℓD1,dd +
rD1,dd 0

. . .

0 ℓD
N,dd +

rD
N,dd






, (22)

W ,
(

C−1
d

)1/2
. (23)

Then the LS solution minimizes ‖W(Mtr/ℓ − d)‖. If M

is full rank, the least-squares optimum translation is ℓ
rtLS =

(

MTW2M
)−1

MTW2d.

Unlike rotation, in general we need N ≥ 3 mutually non-

parallel planes to find ℓ
rtLS. The least-squares formula is not

a good way to compute the solution because M may be ill-

conditioned, may be rank-deficient, or N < 3. A more general

way to solve the equation is presented next. We define

M̂ , WM, d̂ , Wd. (24)

Let the singular-value decomposition of M̂ be given by

UN×NΛN×3V
T

3×3. Λ has non-negative singular values σ2
i

arranged in descending order. The column unit vectors of U

are denoted ui, i = 1 . . .N and the column unit vectors of V

are denoted vi, i = 1 . . . 3.

Let Nr ≤ 3 be the effective rank of M̂. If the largest singular

value σ2
1 < ǫ1, then the effective rank is 0. The parameter ǫ1 is

dependent on machine accuracy. If σ2
1 ≥ ǫ1, then the effective

rank is found by finding the count of all singular values

σ2
i > σ2

1/c̄ in the diagonal matrix Λ, where c̄ is the maximum

allowable condition number of the matrix. In practice ǫ1 and c̄
are quite important parameters for obtaining good translation

estimates and also for identifying the directions in which the

translation estimate is the most uncertain.

Then the best rank Nr approximation of M̂ is

M̃ =

Nr
∑

i=1

σ2
i ûiv̂

T

i , Nr ≤ 3. (25)

The span of the orthogonal unit vectors ûi, i = 1 . . .Nr gives

the best approximation for the range-space of M̂. Therefore,

the closest we can get to d̂ is d̃ =
∑

Nr

i=1(ûi · d̂)ûi, which

gives the corresponding translation estimate

ℓ
rtLS =

Nr
∑

i=1

(ûi · d̂)v̂i
σ2
i

, M̂+d̂, M̂+ ,
Nr
∑

i=1

v̂iû
T

i

σ2
i

. (26)

This is also the minimum 2-norm solution of the LS problem

regardless of the rank of M mentioned in [38].

Note that for directions v̂i, i = Nr + 1 . . . 3, we have

no information about the translation. One option is to keep
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these components 0 and inject large uncertainty along those

directions in the covariance matrix. However, if an estimate

by overlap (ref. Sec. II-E) or by odometry ℓ
rte, along with

its covariance matrix Ct,e is available, we can use it only for

these missing components. In this case, we have

ℓ
rtLS = M̂+d̂+

3
∑

i=Nr+1

( ℓrte · v̂i) v̂i,

, M̂+d̂+Me
ℓ
rte, Me ,

3
∑

i=Nr+1

v̂iv̂
T

i . (27)

Finally, we can write the estimate of the covariance matrix for

translation as follows

ℓ
rCtt = τ M̂+WCdW

T(M̂+)T +MeCt,eM
T

e

= τM+Cd(M
+)T +MeCt,eM

T

e , (28)

where, the last equation comes from simplification using (23)

and (24), and

τ ,
1

N − Nr
‖M̂ ℓ

rtLS − d̂‖2 (29)

In this work, we have used the overlap estimate described

next in Sec. II-E to supply the translation along missing 3−Nr
directions instead of the odometry since in general, overlap

estimates tend to be much more accurate than odometry.

E. Roughly Estimating Translation by Overlap

The previous Sec. II-D provided an accurate method of

determining translation when planar patches with normals

in all directions are present. When, however, corresponding

planes normal to certain directions are missing, we need to

estimate the translation along these directions using other

methods which are less accurate. In this section, we consider

one such method based on the assumption of complete overlap

of planes. In general, this will only be accurate if there

are no occlusions present and sensor sampling is uniform.

Additionally, this method requires that a rotation estimate of
ℓ
rR be known.

Fortunately, as shown in Appendix A, all the required

information for using overlap is already present in the 4 × 4
plane parameter covariance matrix C = −H+. Letting Hdd

denote the last diagonal element of H, the weighted center of

mass pc of the patch can be computed by (50b), and the scatter

of the points on the patch-plane (not normal to it) is given by

(−1/Hdd)(Dn̂n̂)
+. This can be seen by using Eqs. (50) and

(49) in the definition Eq. (61), which gives

(−1/Hdd)(Dn̂n̂)
+ =

1
∑

j wj

∑

j

wj(pj − pc)(pj − pc)
T

− 1
∑

j wj

∑

j

wjn̂
T(pj − pc)(pj − pc)

Tn̂ I, (30)

where, the summation is on all points belonging to the planar

patch with normal n̂. To this we can add the uncertainty

along the direction of the normal and define the total overlap

uncertainty as

Cpp , (−1/Hdd)(Dn̂n̂)
+ +Ddd(n̂n̂

T). (31)

Note that we take the scatter as a conservative measure of

uncertainty because the whole patch may not be visible in the

sample owing to occlusion. This is usually the case in practice.

Suppose we are given a set of pairs of corresponding

planes, with point-cloud centers back-computed by (50b) as
ℓpc,i,

rpc,i, i = 1 . . .N, and suppose further that the rotation
ℓ
rR is known beforehand. The translation and its covariance

for the i-th pair can then be estimated as

ℓ
rti ≈ ℓpc,i − ℓ

rR
rpc,i, (32)

ℓ
rCt,i ≈ ℓCpp,i +

ℓ
rR

rCpp,i
ℓ
rR

T. (33)

The bigger the plane-patch, the higher is the variance in the

translation estimate found using it. We have N such estimates.

We can then estimate the translation from overlap as

ℓ
rte = argmin

t
χ2
e(t),

χ2
e(t) ,

1

2

N
∑

i

( ℓrti − t)T( ℓrCt,i)
−1( ℓrti − t). (34)

The standard closed form solution for this is

A ,
N
∑

i=1

( ℓrCt,i)
−1, b ,

N
∑

i=1

( ℓrCt,i)
−1 ℓ

rti. (35)

ℓ
rte = A−1b. (36)

The optimistic covariance of this estimate is

Ct,e =
κχ2

e(
ℓ
rte)

3N − 3

(

N
∑

i=1

( ℓrCt,i)
−1

)−1

, (37)

where, κ > 1 accounts for the presence of occlusions in the

scene.

III. ASSIGNING UNKNOWN CORRESPONDENCES

Up until now we have assumed that the correspondences

between the planes in the two successive views are known.

Now we drop this assumption and explore ways of answering

“which plane is which?” If the ith plane in the left frame

corresponds to the jth one in the right, it will be denoted

as ℓPi ↔ rPj , abbreviated i ↔ j. We first consider some

simple tests which help us decide whether i ↔ j is poten-

tially true. This will help prune the search-space of possible

correspondences. Out of this reduced search-space, we shall

later extract the correspondences which give the minimum

uncertainty volume of registration.

A. Some Tests for Pruning the Correspondence Search Space

1) Size Similarity Test: As shown in Appendix A, the

inverse of the 4×4 covariance matrix of the plane-parameters

is proportional to the number of points in the plane. Therefore,

the determinant of this matrix is proportional to the fourth-

power of the size of the point-cloud and it is also a function

of the associated certainty of the points. One way to restrict

the correspondence search-space is to discard pairs for which

the log of the ratio of this value exceeds some threshold, i.e.,

we discard the possibility that i↔ j if
∣

∣

∣
log | ℓC+

i |+ − log | rC+
i |+

∣

∣

∣
> L̄det (38)



7

2) Given Translation Agreement Test: If an estimate of the

translation ℓ
rte is given along with its covariance Ctt and a

potential correspondence ℓPi↔ rPj , (4b) can be used again

to form an error metric

χ2
t,e ,

( ℓn̂i · ℓrte − ℓdi +
rdj)

2

ℓDi,dd +
rDj,dd +

ℓ
rt

T
e
ℓDi,n̂n̂

ℓ
rte +

ℓ
n̂T

i Ctt
ℓ
n̂i

(39)

If χ2
t,e > χ̄2

t , the hypothesis that the potential correspondence

agrees with the given translation is rejected.

3) Odometry Rotation Agreement Test: Similarly, if the roll

(ψo), pitch (θo), yaw (φo) angles for ℓ
rR according to odometry

are given along with their covariance matrix Cφ,θ,ψ , we

can use them to eliminate potential correspondence pairings

which cause a gross disagreement with the odometry values.

Suppose we have selected two pairs of corresponding normals
ℓ
n̂i,

r
n̂i, i = 1, 2. If these pairs are non-parallel, the rotation

is fully determined and can be computed as ℓ
rR from the

results of Sec. II-C. From ℓ
rR, the corresponding roll (ψ),

pitch (θ), yaw (φ) can be extracted. Then the Mahalanobis

distance is computed as

er ,





φo − φ
θo − θ
ψo − ψ



 , χ2
R,o , eTrC

−1
φ,θ,ψer. (40)

If χ2
R,o > χ̄2

R,o , we can reject the hypothesis that the

selected correspondences agree with the odometry.

In this article, we use odometry only as a switch to

restrict the search space for correspondences. Within this

space, however, there is no attraction towards the odometry

estimation. Thus, even if actual odometry is unavailable but

some reasonable bounds for pose change are known, they can

still be used.

4) Plane-patch Overlap Test: In certain rare cases, there

might be more than one patch with very close (n̂, d) values –

imagine two picture frames on the same wall. Disambiguating

among them is usually not necessary for relative pose esti-

mation, if there are planes perpendicular to these patches. If,

however, no such plane is found, then there is uncertainty

about the translation parallel to the infinite plane containing the

two patches. In such a case, the only way to disambiguate the

patch-correspondences across two views is to consider whether

one planar patch overlaps with another after application of

rotation and translation. If we calculate such estimates for

two pairs of supposedly corresponding planes i, j, then we

can compute an overlap translation estimate for each of the

pairs using the method of Sec. II-E. Two such estimates will

be considered consistent if

eij ,
ℓ
rti − ℓ

rtj , χ̄2
ovlp ≥ eTij(

ℓ
rCi,t +

ℓ
rCj,t)

−1eij . (41)

5) Cross-Angle Test: In a rigid motion, the angles between

normals in one sample should be the same as the corre-

sponding angles in the next. Suppose we are given planes

normals and covariances { ℓn̂i1 ,
ℓDi1,n̂n̂

}, { ℓn̂j1 ,
ℓDj1,n̂n̂

} in

the left scene and { rn̂i2 ,
rDi2,n̂n̂

}, { rn̂j2 ,
rDj2,n̂n̂

} in the

right, such that potentially
ℓ
n̂i1 ↔

r
n̂i2 and

ℓ
n̂j1 ↔

r
n̂j2 .

Ideally,

ℓvi1,j1 , ℓ
n̂T

j1
ℓ
n̂i1 ,

rvi2,j2 , r
n̂T

j2
r
n̂i2 ,

ℓvi1,j1 ≈ rvi2,j2
(42)

The variance of ℓvi1,j1 is ℓσ2
i1,j1

≈ ℓ
n̂T

j1
ℓDi1,n̂n̂

ℓ
n̂j1 +

ℓ
n̂T

i1
ℓDj1,n̂n̂

ℓ
n̂i1 and rσ2

i2,j2
is similarly defined. A distance

metric can be defined as

χ2
× ,

( ℓvi1,j1 − rvi2,j2)
2

ℓσ2
i1,j1

+ rσ2
i2,j2

. (43)

If χ2
× > χ̄2

×, we can reject the assumed correspondences. This

is our main test for geometric consistency.

6) Parallel Consistency Test: Given two potentially corre-

sponding pairs ℓPi1 ↔
rPi2 and ℓPj1 ↔

rPj2 , such that

either both
ℓ
n̂i1 ·

ℓ
n̂j1 ≈ 1 and

r
n̂i2 ·

r
n̂j2 ≈ 1, or both

ℓ
n̂i1 ·

ℓ
n̂j1 ≈ −1 and

r
n̂i2 ·

r
n̂j2 ≈ −1, i. e. the planes

are parallel or anti-parallel. Then on using (4b), we should

also have δ , ( ℓdi1 −
rdi2)∓ ( ℓdj1 −

rdj2) ≈ 0, where the

+ is taken for the antiparallel case. This can be checked by

computing

χ2
δ ,

δ2

ℓDi1,dd
+ ℓDj1,dd

+ rDi2,dd
+ rDj2,dd

. (44)

The consistency hypothesis can be rejected if the χ2
δ > χ̄2

δ .

B. The Minimally Uncertain Maximal Consensus (MUMC)

Algorithm

Given an average of N planes per view, there are (N + 1)!
possible correspondences, if we include the case when a plane

in one view is not present in the other. We can naı̈vely try

all of these correspondences, possibly using the extra tests

of Sec. III-A to cut-down the search space, and choose the

one with the maximum overall consistency. Typically, the

number of planes is much less than the number of points

used to compute them. Therefore such an exhaustive search

may work for a small value of N. We present next a novel

algorithm which aims to find the most consistent set with

respect to rotation and translation. It uses the fact that to

uniquely determine rotation one needs to know at least two

non-parallel plane correspondence pairs, and for translation at

least three. Non-parallel planes’ correspondences have rotation

information and parallel planes’ correspondences have only

translation information.

The algorithm initially finds all consistent 2 pairs of corre-

spondences (i.e. quadruplets) in its preprocessing step using

the tests devised in the last sections. In the main search step,

each of these pairs are considered in turn and their largest

rotation and translation consensus sets are built. For each of

these consensus sets, the least-squares rotation and translation

are determined, along with the volume of uncertainty given

by the pseudo-determinant of the covariance matrix of the

pose-registration. The consensus set of a certain minimum

size NC (explained later) which has the minimum value

of the uncertainty volume is selected as the chosen set of

correspondences.
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Although a formulation of RANSAC for plane-matching

itself would have been novel enough since its robustly proven

application in this field is currently lacking in the literature,

we have added further improvements to the procedure. Un-

like RANSAC, there is no random search, and instead of a

greedy maximum consensus, a minimum uncertainty volume

approach is taken. We have found this approach to be much

more stable in practice than one based solely on the size of the

consensus set. The uncertainty volume automatically decreases

if more consistent correspondence pairs are added to the set. If,

however, a pair is added which merely passes the consistency

thresholds but is not overall consistent, the uncertainty volume

increases. This also removes the necessity of over-tuning the

thresholds in the consistency tests.

Before we go on to the algorithm, the basic notation used

in this section is summarized below:
#Ω Size of the set or list Ω.

ω.a Member a of a tuple ω.
ℓPi ↿↾ ℓPj Planes i and j in the ℓ set are parallel.
rPi ↿⇂ rPj Planes i and j in the r set are antiparallel.
ℓPi ∦ ℓPj Planes are neither parallel nor antiparallel.
ℓPi↔ rPj ℓPi and rPj correspond to each other.

A test for parallelism can be devised by testing for nearness

of the dot product to unity within some threshold or a

statistical measure can be derived along the lines of (43).

We consider the following consistency requirements, in

increasing order of complexity:

1) A potential correspondence ℓPi ↔ rPj is called 1-

consistent if it passes the size similarity test (38) and

the translation agreement test (III-A2) for odometry, if

available.

2) Two potential correspondences ℓPi1 ↔
rPi2 and

ℓPj1↔
rPj2 are called

a) Rotation 2-consistent: if ℓPi1 ∦ ℓPj1 and rPi2 ∦
rPj2 , then a unique 3D rotation estimate ℓ

rR can

be computed from the assumption that ℓPi1 ↔
rPi2 and ℓPj1↔

rPj2 . If they pass the cross-angle

test (III-A5), the overlap test of Sec. III-A4, and

also the test of (40), if odometry is available, then

the pair is rotation 2-consistent.

b) Translation 2-consistent: if either ℓPi1 ↿↾ ℓPj1 and
rPi2 ↿↾ rPj2 , or ℓPi1 ↿⇂ ℓPj1 and rPi2 ↿⇂ rPj2 ,

and in addition the two pairs pass the parallel

consistency test of Sec. III-A6.

The first step of the algorithm, shown in Algo. 1, consists of

collecting all non-parallel rotationally 2-consistent correspon-

dence pairs in set Ω∦, and all parallel and translationally 2-

consistent pairs in set Ω‖. Both sets consist of elements which

are tuples of format
〈

{ ℓPi1 ↔
rPi2 ,

ℓPj1 ↔
rPj2}, χ2

〉

.

For notational convenience and due to symmetry, the order

of the two pairs in the tuple is not important. Hence, the

aforementioned tuple is the same as the tuple
〈

{ ℓPj1 ↔
rPj2 ,

ℓPi1↔
rPi2}, χ2

〉

. We can define the following:

1) A set of interesting pairs K, such that the correspondence
ℓPi1↔

rPi2 ∈ K if it exists in any of the tuples in Ω‖

or Ω∦.

2) A set of correspondences which are translation 2-

consistent to a given correspondence.

[

ℓPi1↔
rPi2

]

‖
,
{

〈 ℓPj1↔
rPj2 , χ

2〉 |
〈

{ ℓPj1↔
rPj2 ,

ℓPi1↔
rPi2}, χ

2
〉

∈ Ω‖

}

(45)

The reader is reminded of the order irrelevance within

a tuple due to symmetry.

3) A set of correspondences which are not parallel or anti-

parallel to a given correspondence, but are rotation 2-

consistent with it.

[

ℓPi1↔
rPi2

]

∦
,
{

〈 ℓPj1↔
rPj2 , χ

2〉 |
〈

{ ℓPj1↔
rPj2 ,

ℓPi1↔
rPi2}, χ

2
〉

∈ Ω∦

}

(46)

Algorithm 1: MUMC Preprocessing Step: Find all con-

sistent correspondence pairs

input : Left planes indexed list
ℓP = {〈 ℓn̂i, ℓdi, ℓCi〉 | i = 1 . . .Nℓ}, and right

planes indexed list
rP = {〈 rn̂i, rdi, rCi〉 | i = 1 . . .Nr}.

output: Sets Ω‖, Ω∦.

1 Sort planes in descending order of evidence, i.e.,

| sC+
i |+, s = r/ℓ and take a certain top Ft%.

2 Compute decoupled covariances using the procedure in

Sec. II-B. Make a list L of all unique and 1-consistent

potentially corresponding pairs

( ℓPi↔ rPj), i = 1 . . .Nℓ, j = 1 . . .Nr. Obviously,

#L ≤ Nℓ × Nr.

3 for k = 1 . . .#L − 1 do

4 ( ℓPk1↔
rPk2)← L[k]

5 for i = k + 1 . . .#L do

6 ( ℓPi1↔
rPi2)← L[i]

7 if L[k],L[i] translation 2-consistent then

8 Compute χ2
δ from parallel consistency test

(44)

9 If the above test passed, add

〈 ℓPk1↔
rPk2 ,

ℓPi1↔
rPi2 , χ2

δ〉 to Ω‖

10 else if L[k],L[i] rotation 2-consistent then

11 Compute χ2
× from cross-angle consistency

test (43)

12 If the above test passed, add

〈 ℓPk1↔
rPk2 ,

ℓPi1↔
rPi2 , χ2

×〉 to Ω∦

13 end

14 end

15 end

The second step, shown in Algo. 2 considers each member

of K and finds the member with the minimum uncertainty in

the determination of ℓ
rt and ℓ

rR. We first give an overview

skeleton of the algorithm in Algo. 2. Lines 1, 5, 6, 7, and 9

are explained afterwards.

Explanation of Line 1: NC is set to 4, because the

minimum number of corresponding pairs required to uniquely
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Algorithm 2: MUMC Main Search: Finding minimally

uncertain maximal consensus

input : Ω‖ and Ω∦ from the output of Algo. 1.

output: The resolved correspondences and the computed

transform.

1 Set Minimum required consensus size NC ← 4.
2 Initialize the potential solution list W ← ∅.
3 Initialize selected solution tuple ω̄ ← ∅.

4 for ∀ ℓPi1↔
rPi2 ∈ K do

5 Find the maximal rotation consensus set Γ∦ in
[

ℓPi1↔
rPi2

]

∦
.

6 Find the maximal parallel consensus set Γ‖ in
[

ℓPi1↔
rPi2

]

‖
.

7 Find the maximal set Γt in Γ∦ which is

translationally consistent.

8 Append Γ← Γt ∪ Γ‖.

9 Using Γ, and results of Sec. II, compute the rotation
ℓ
rq̌ and its covariance ℓ

rCq̌q̌, and translation ℓ
rt and

its covariance ℓ
rCtt.

10 Compute uncertainty-volume metric

α = | ℓrCtt| × | ℓrCq̌q̌|+
11 Assign tuple ωi ←

〈

α,Γ, ℓrq̌,
ℓ
rCq̌q̌,

ℓ
rt,

ℓ
rCtt

〉

and

append to W .

12 if #(ωi.Γ) ≥ NC or #(ω̄.Γ) ≤ NC then

13 if ωi.α < ω̄.α then

14 ω̄ ← ωi
15 end

16 end

17 end

18 The tuple ω̄ is the chosen solution. Other potential

solutions are in the list W .

compute translation is 3. Therefore, we can speak of “consen-

sus” only if we have ≥ 4 pairs in agreement.

Explanation of Line 5: We first note that a rotation
ℓ
rR can be uniquely found by freezing the correspondences
ℓPi1↔

rPi2 and another one 〈 ℓPj1↔
rPj2 , χ2

×〉 ∈
[

ℓPi1↔
rPi2

]

∦
. A third correspondence 〈 ℓPk1 ↔

rPk2 , χ2
×〉 ∈

[

ℓPi1↔
rPi2

]

∦
is called rotationally consistent with the two

frozen correspondences, if
ℓ
n̂k1 · (

ℓ
rR

r
n̂k2) ≈ 1. A test anal-

ogous to (43) or even a threshold based test can be used here.

We have used a lower threshold of 0.9980 for all sensors. The

set of all rotationally consistent correspondences to the frozen

pair is denoted ΩR
(

ℓPi1↔
rPi2 ,

ℓPj1↔
rPj2

)

and its overall
∑

χ2
× can be evaluated by summing up the χ2

× values of all

tuples belonging to the set. We then find the largest such set

denoted Ω⋆R
(

ℓPi1↔
rPi2

)

by considering all ℓPj1↔
rPj2 ,

where, if two sets are of equal size, then the one having lower

overall
∑

χ2
× is taken. The set Ω⋆R

(

ℓPi1 ↔
rPi2

)

may still

contain non-unique correspondences, i.e. some plane in the ℓ
set may be mapped to more than one other planes in the r set

and vice versa. The uniqueness problem is solved by sorting all

〈 ℓPk1↔
rPk2 , χ2

×〉 ∈ Ω⋆R
(

ℓPi1↔
rPi2

)

in increasing order

of χ2
× and then fixing correspondences by traversing the sorted

TABLE I
SENSOR CHARACTERISTICS

Swiss-ranger USF Odetics ALRF

FOV h× v 47◦ × 39◦ 60◦ × 60◦ 270◦ × 180◦

Resolution h× v 176× 144 128× 128 541× 361
Total points 25, 344 16, 384 195, 301
Range (mm) 7, 500 unknown > 16, 000

list. If ℓPk1 can be matched with more than one plane in the r
set, then the pairing with the lower χ2

× is automatically chosen.

Similar reasoning applies if rPk2 can be matched with more

than one plane in the ℓ set. The reduced and consistent unique

set of correspondences is the maximal rotation consensus set

Γ∦.

Explanation of Line 6: The set
[

ℓPi1↔
rPi2

]

‖
may also

contain non-unique correspondences, i.e. some plane in the ℓ
set may be mapped to more than one other planes in the r set

and vice versa. The uniqueness problem is solved by sorting

all 〈 ℓPk1↔
rPk2 , χ2

δ〉 ∈
[

ℓPi1↔
rPi2

]

‖
in increasing order

of χ2
δ and then fixing correspondences by traversing the sorted

list. If ℓPk1 can be matched with more than one plane in the r
set, then the pairing with the lower χ2

δ is automatically chosen.

Similar reasoning applies if rPk2 can be matched with more

than one plane in the ℓ set. The reduced and consistent unique

set of correspondences is the maximal parallel consensus set

Γ‖.

Explanation of Line 7: Here we find the largest subset of

Γ∦ which is translationally consistent. Unlike rotation, here we

need to freeze three correspondences to compute translation.

The first ℓPi1 ↔
rPi2 is given; we take two others ℓPj1 ↔

rPj2 ,
ℓPk1↔

rPk2 ∈ Γ∦. Using these we can compute ℓ
rt. We

then find all correspondences ℓPp1↔
rPp2 ∈ Γ∦ which pass

the given translation agreement test of Sec. III-A2 for ℓ
rt. For

each such test evaluation, we also get a χ2
t,e value. We denote

the set of all such translationally consistent correspondences

as Ωt
(

ℓPi1↔
rPi2 ,

ℓPj1↔
rPj2 ,

ℓPk1↔
rPk2

)

. This set is

also associated with an overall
∑

χ2
t,e value, which is the sum

of χ2
t,e for all the correspondences in it. The maximal such set

for all ℓPj1↔
rPj2 and ℓPk1↔

rPk2 is termed Γt— where,

if two sets are of equal size, then the one with the overall

lesser value of
∑

χ2
t,e is preferred.

Explanation of Line 9: This line shows that we reuse

the results of least-squares registration estimation for known-

correspondences from Sec. II, including the associated rotation

and translation covariances, to evaluate the goodness of the

assumed correspondence-set Γ.

IV. RESULTS

We present results for three sensors 1) Swiss-Ranger (SR) 2)

USF Odetics, and 3) A SICK S300 laser range finder, actuated

(pitched) using a servo (ALRF). The characteristics of these

sensors are listed in Table I, which shows that the first two

are small field of view (FOV) sensors and ALRF has a large

FOV. The computation times mentioned in this paper are for

an AMD Turion 2× 64, 1.6 GHz laptop with 960 MB RAM

running OpenSUSE 10.3 O/S.
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TABLE II
MUMC PARAMETERS (UNITS MM AND RADIANS). S.D. STANDS FOR

SCENE-DEPENDENT

Parameter Swiss-ranger USF Odetics ALRF

Ft% ≥ 50 ≥ 80 15 – S.D.

ǫ1, c̄ 10−7, 25− 50 10−7, 5− 10 10−7, 50− 70
L̄det 4− 20 10− 20 10− 20
χ̄2

ovlp 2.5− 4 2.5− 4 2− 4

χ̄2
×

(1− 100)× 105 (1− 100)× 105 (3− 10)× 105

χ̄2
δ

10− 300 200− 300 10− 200
χ̄2
t,e χ2

1,1.5%
= 3.84 χ2

1,1.5%
χ2
1,1.5%

κ 6 6 6

TABLE III
COMPUTATION TIMES (SECONDS) FOR PRE-PROCESSING STEP FOR

SWISS-RANGER.

Scan Nr. Region Growing Nr. Patches Polygonization

1 0.52 39 0.38
2 0.38 25 0.35
3 0.38 25 0.34
4 0.4 13 0.41
5 0.39 15 0.42
6 0.51 23 0.52

A. Selection of Parameters

Refer to Table II for parameter and threshold values used by

us for various sensors. For most parameters, we have provided

an approximate range of values which work. In most cases,

the ranges for different sensors for a given parameter overlap.

When a simple chi-square test from standard tables suffices,

only a single value is given. For example, in the last row,

χ2
1,1.5% means the χ2 value for 1 d.o.f. at a significance level

of 1.5% [32].

Obviously, these parameters depend on the the error model

considered for the sensor while extracting the planes. For each

sensor, a parameter-tuning is required once. The observed

values of some manually registered planes can be used to

arrive at these thresholds. Lower values of thresholds are better

because they provide more initial filtering and thus speed-up

the algorithm.

The size-similarity threshold L̄det and overlap threshold

χ̄2
ovlp also depend on the amount of occlusion present in the

scene and the rotational and translational distance at which

the samples are taken. They need to be reduced when the

occlusion is severe or the odometry is not available, otherwise

false matches may result. The filtering Ft is selected so that

for low FOV sensors most of the planes are retained, while for

high FOV sensors, many low evidence planes can be filtered

out to pick up speed.

B. Swiss-Ranger Rotation Data-set

A test sequence of overlapping views, taken from an on-

board Swiss-ranger (SR), is shown in Fig. 2. This data-set is

particularly interesting because of the relatively large rotation

of the robot between every pair of successive views. The

computation times for planar-patches extraction using region-

growing and for polygonization is shown in Table III.

(a) Intensity image (b) (c) Note that the robot
hardly moves relative to
the last scan.

(d) (e) (f)

Fig. 2. The intensity images obtained from the Swiss-Ranger. The planes
were extracted from the corresponding range images. The MUMC result is
shown in Fig. 3.
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Fig. 5. Computed robot pose and uncertainties for the data-set of Fig. 3.
Only rotation is shown because the translation is insignificantly small for this
dataset. The rotational uncertainties are too small to be visible in the figure.

The results of scan-matching using the MUMC algorithm

are shown in Figs. 3(c) and 3(d). We emphasize that no

odometry was used for the results shown in this figure to

test for robustness. Fig. 4 shows the result of plane-fusion

as described in [17] for the matched planes, followed by

projection of the points on the fused plane. The evolution

of the robot pose and its uncertainties is shown in Fig. 5.

The uncertainties are small but cumulatively increase. This

can be avoided by embedding the approach in a SLAM

framework, where the overall uncertainty can decrease when

certain features (planes) are viewed again in several successive

samples.

1) Implementation of point-to-point (P-P) ICP: The P-P

ICP algorithm [8] for aligning point clouds has found wide

usage in the 3D mapping community [9], [6] for estimating

robot movement between two successive time-instants. For

comparison, we have coded our own implementation in C++.

The code uses an optimized kd-tree [39] for fast nearest-

neighbor search. The mean-square error ek at iteration k
reduces monotonically with iteration k. The convergence crite-

rion used was (ek− ek+1)/ek < 0.0001 which is independent

of the size of the point-cloud.



11

(a) Odometry based pose estimation with all planes drawn transpar-
ently: front view. The plane color is a function of its normal direction
and is not related to any matching.

(b) Odometry based pose estimation with all planes drawn transpar-
ently: top view

(c) Planes matched and aligned using MUMC: front view. Corre-
sponding matched planes are drawn with the same color. Unmatched
and filtered out planes are shown grayed out.

(d) Planes matched and aligned using MUMC: top view. Unmatched
and filtered out planes are shown grayed out.

Fig. 3. Results of MUMC for matching planes from the overlapping views from a Swiss-Ranger corresponding to Fig. 2(a) to 2(f). Planes are drawn
transparently to show overlap. The map based on pure odometry is shown in Figs. 3(a) and 3(b). Result of MUMC algorithm is shown in Figs. 3(c) and 3(d).
For the result shown in Figs. 3(c) and 3(d), as a check, no odometry was supplied to the MUMC algorithm. The algorithm aligned most planes properly.
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(a) Fused planes: front view.
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(b) Fused planes: top view.

Fig. 4. The result of applying plane fusion based on the methodology described in [17] on the matching results shown in Fig. 3(c) and 3(d). Rotations were
computed using the faster method of Sec. II-C which uses isotropic uncertainties.
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2) Implementation of point-to-plane (P-L) ICP: Our im-

plementation of (P-L) ICP [10], [11] uses a kd-tree [39] to

find intersection of a line and a surface. A sliding window

of size 15 × 15 is used to estimate local normals needed for

the algorithm. The cost-function [10, Eq. (11)] has no closed-

form solution. Therefore, it is minimized using the method of

linearization recommended in [10]. The convergence threshold

was taken as ǫe = 10. Unlike P-P ICP, the convergence

of P-L ICP is not monotonic because the number of found

correspondences varies across iterations.

3) Implementation of 3D NDT: 3D NDT [5], [40] is a

voxel based approach akin to occupancy grids, except that a

probability distribution rather than a single occupancy value is

defined for each cell. The authors of [5] have kindly provided

us access to their code, and they have also tuned the parameters

of NDT for our datasets. These parameters for the Swiss-

Ranger data-set were: bin spacing 2.0, with iterative-split 0.1.

4) Comparison of Algorithms: Point-to-point ICP is robust

with respect to large perturbations if the point set itself has

not changed. However, as Fig. 6 shows, P-P ICP becomes

brittle if applied to two successive views with moderate pose

change. In the example, it was a rotation of about 12◦. This

lack of robustness occurs due to the points in one view which

are absent in the other. Fig. 6(a) shows the solution given by

the MUMC algorithm, which shows good alignment. Even if

we initialize the ICP with this solution, it still converges to

the result in Fig. 6(b). Thus, the real solution is not even a

local minimum with respect to the P-P ICP cost function. In

fact, it converges to a wrong solution for all except one of

the pairs of view shown in Fig. 2. The exception pair is from

Figs. 2(b) and 2(c), between which the robot does not move,

although the odometry says it does, and the only difference in

the point-clouds is due to the sensor noise.

This lack of robustness is, of course, a function of the field

of view (FOV) and range of the 3D sensor employed. Higher

values of these parameters will effectively increase the pose-

difference convergence radius of ICP. Nüchter et al [6] used

a servo-operated laser range finder (LRF) in a stop-and-go

fashion. Their sensor had the FOV of 180◦(h)× 120◦(v). The

range was not mentioned, although the SICK LRF employed is

known to have a range of about 30 m. Such a high FOV and

range allowed them to take measurements every 2.5 m. On

the other hand, the Swiss-Ranger has a much smaller FOV

and range. As shown in Sec. IV-B, having a sensor with a

higher FOV only helps the MUMC algorithm, since in this

case the number of overlapping planes within successive views

increases.

The comparison of computation times is summarized in

Table IV. A scan-matching success is marked with
√

, failure

with ×, and if the matching was only partially successful (e.g.

in Fig. 6(b), where the rotation is more or less correct), it is

marked with a ‘P’. The heading ‘100 %’ in P-P and P-L ICP

shows that all the points were taken. The heading ‘100 %’

in MUMC is the parameter Ft% value and shows that all

planes were considered in matching. On the other hand, ‘50

%’ means that the planes were sorted based on their evidence

and only the top half were considered for matching. The

matching results remain unaffected, though the computation
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(a) Point clouds initialized with
the MUMC solution. Note the
good alignment.
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(b) Final convergent solution
from initialization using MUMC
solution of Fig. 6(a).

Fig. 6. Registration done using point-to-point ICP. Top view of point-cloud
pair corresponding to successive samples of Figs. 2(d) and 2(e). Point-cloud
sub-sampled by 3 for better visualization.

time is drastically reduced. For 3D NDT 100% of the points

are supplied, though due to the grid discretization, the point-

cloud is effectively compressed.

As Table IV makes clear, both P-P and P-L ICP can be made

faster and more accurate by providing odometry estimates. P-P

ICP was overall least successful for this data-set. Both P-L ICP

and 3D NDT were unable to match pair 3, 4 without odometry.

In this pair, a predominant plane suddenly goes out of view.

By contrast, MUMC was able to process all scan-pairs without

being provided any odometry or prior estimate. Even if we add

the time for plane-extraction using region-growing (Table III)

to the time taken by MUMC, it still remains the fastest method

among the four. We note that the polygonization step is only

required for visualization, and that, except for the first pair,

the matching of two scans requires the planes extraction by

region-growing of only one new scan. The relatively higher

time of processing for the first pair by MUMC for the ‘100

%’ case is because of the large number (39) of patches in the

first scan, most of which were of low evidence. The columns

with heading # show the number of corresponding pairs found.

We can thus conclude that the MUMC approach is both

faster and more robust than both variants of ICP. As compared

to 3D NDT, MUMC is more robust with a similar computation

time when no evidence based sorting is used. When the

planes are sorted based on their evidence and only the top

half are considered for matching, the matching results remain

unaffected and the computation time for MUMC is drastically

reduced, making it by far the fastest.

Another major advantage is in terms of storage require-

ments. A plane summarizes the information from a lot of

spatial points. Storing these planes in a graph node in

a GraphSLAM-like approach is thus much more storage-

efficient than storing whole point-clouds. This continues to

be valid, even if we store the polygonized boundaries of the

points belonging to a plane, along with the parameters of

the infinite plane. The only disadvantage of MUMC is that

it requires planar features, i.e., indoors and urban outdoor

scenarios, though we also had surprisingly good results in

quite unstructured outdoor environments [16].

C. USF Odetics LADAR Ego-Motion Data-set r1

The USF range-image is a popular data-set, which has been

online now for over a decade. We tested our algorithm with the

ego-motion data-subset r1 recorded using the Odetics LADAR
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TABLE IV
SR DATA-SET: COMPARISON OF COMPUTATION TIME (SEC.) AND MATCHING-SUCCESS FOR DIFFERENT ALGORITHMS. MUMC WAS THE ONLY MATCHER

TO SUCCEED FOR ALL PAIRS WITHOUT ODOMETRY. IN ADDITION, IT IS BY FAR THE FASTEST, ESPECIALLY WHEN EVIDENCE BASED SORTING IS USED.

Scan ICP (Point-Point) ICP (Point-Plane) 3D NDT MUMC

Pair No Odo. Odometry No Odo. Odometry No Odo. Odometry No Odo.

100% 100% 100% 100% 100% 100% 100% # 50% #

1,2 7.64 × 1.13 × 19.44
√

9.78
√

10.2
√

11.2
√

4.781 4 0.493 4
√

2,3 1.25
√

2.16
√

1.43
√

8.56
√

5.89
√

8.77
√

1.550 9 0.120 6
√

3,4 5.84 × 0.72 × 42.14 × 60.03
√

10.5 × 13.4 × 0.318 5 0.042 4
√

4,5 5.01 × 0.80 P 8.73
√

3.96
√

12.1 P 11.3
√

0.164 6 0.048 6
√

5,6 13.66 × 3.25 P 16.28
√

7.83
√

8.07
√

12.5
√

0.613 5 0.096 6
√

(a) The first sample r1 0
in the sequence.

(b) The last sample r1 20
in the sequence.

Fig. 7. Intensity images for the first and the last samples taken from [41].
The others can be viewed online.

with resolution 128 × 128, FOV 60◦ × 60◦, and a relatively

poor range-resolution of 3.66 cm. It is available online at [41]

(left dataset, see Fig. 7). The data-set represents a sequence of

samples taken from the LADAR mounted on a robot moving

in a cluttered lab environment. No odometry or ground-truth is

available. It has also been studied in [2, Fig. 17], who provide

the result for the registration of only 9 samples (r1 1 to r1 9)

out of 40.

The results of MUMC matching for the first 21 successive

samples r1 0 to r1 20 are shown in Fig. 8 and 9. We have

applied the coordinate-transform x 7→ −x,y 7→ z, z 7→ y

to their point-clouds to retain our definition of roll-pitch-yaw

angles. Figs. 9(a) and 9(b) show the computed robot pose

change. MUMC reports insufficient overlap for the pair r1 20

to r1 21, which is also obvious to the human eye. Since

no odometry is available, the sequence is broken. There are,

however, other sequences which match.

Due to similar resolution, the time for region-growing and

polygonization remain similar to that of the Swiss-Ranger. The

number of planar patches per scan varied between 8 and 19.

Since odometry was unavailable, we set Ft = 100%, for which

the MUMC matching time per pair varied between 0.1− 0.66
seconds.

D. Actuated LRF Data-sets

Finally, we provide some larger examples of data collected

using a large FOV sensor, namely the ALRF. The ALRF

provides only range-images but no intensity images. Two

scenarios are considered.

1) Multistory Robot Rescue Arena: The robot was teleop-

erated to go around the arena, and data was collected in a

stop-and-go fashion. A total of 29 scans were taken. Due to

the discrete rotations of the actuator pitching the LRF, each
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Fig. 8. Annotated front view with final fused planes. Note that even far away
objects were matched and their geometry is recognizable. The number-ranges
in parenthesis are the view numbers in the data-set in which the object is
visible. Refer to website [41] for intensity images of the views. It appears
that the LADAR was mounted on the robot tilted downwards.

scan took about 20 seconds. The main difficulty in this data-set

are the large occlusions when the robot turns a corner.

The arena, its odometry map, its point-to-plane ICP map,

and different views of its MUMC map are shown in Figs. 10

and 11. Odometry was provided to the algorithms. Point-

to-plane ICP fully succeeded in 53.6% of pairs, partially

succeeded in 35.7% of pairs, and failed for 10.7% of pairs.

Point-to-point ICP was, as expected, less robust than point-to-

plane ICP. It succeeded in only about 30% of pairs, partially

succeeded in 35%, and failed in 35% of cases. 3D NDT

performed much better than P-L ICP for this scenario than

in the Swiss-Ranger scenario of Sec. IV-B. In both cases, its

parameters were tuned by its designers [5].

The plane-fitting time per scan was on an average 3 seconds,

and MUMC took about 0.8 seconds on average for matching

a scan-pair for Ft = 15%. Another 3 seconds are required

for polygonizations of planar patches for visualization. The

accuracy of the scan-matching can be seen by the fact that

there is hardly any rotation or translation error present when

the loop is closed and the robot returns near its starting

location. Thus the map is already quite self-consistent even

without any relaxation step.

2) Hannover Fair German Robocup 2009 Hall: Data was

collected as before, except that the robot movements between

scans were large: sometimes up to 5 meters in translation

and 55◦ in rotation. No odometry was available. Due to
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(a) (b) (c) Robot collecting data. (d) (e)

(f) The top view of the odometry based point-
cloud map. The robot starts at upper right.

(g) The top view of the point-cloud map
created by point-to-plane ICP.

(h) The top view of the point-cloud map
created by 3D NDT. Unlike in the scenario
of Sec. IV-B, 3D NDT performed better than
P-L ICP.

(i) The top view of the MUMC map. The robot starts at top left and
goes clockwise around.

(j) The tilted top view showing the windows in the front which are
visible in Fig. 10(a).

Fig. 10. The photos of the indoor multistory robot rescue arena are shown in Figs. 10(a) to 10(e). The robot goes one full round around it. The robot is
shown at scan locations in the map– see also Fig. 11. The matched planes are shown in the same semi-transparent color, while unmatched planes are grayed
out.
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(a) Computed robot rotation. Sample 1 corresponds to r1 0,
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(b) Computed robot translation. Sample 1 corresponds to
r1 0, the zeroth view.

Fig. 9. The results from matching the first 21 views of the USF-Odetics r1
data-set.

Fig. 11. The inside view of the map of Fig. 10. The robot is shown at scan
locations in the map by its 3D avatar which is true to scale– for a rough
estimation it can be considered to be a cube of side 0.5 meter.

these constraints, more conservative size-similarity and overlap

parameters had to be taken, viz. L̄det = 7 and χ̄2
ovlp = 1.25,

although Ft = 20% as before. The resulting map is shown in

Fig. 12.

3) Other Data-sets and Multimedia: Further data-sets in-

cluding a quite unstructured outdoor scenario at Disaster City

are available at http://robotics.jacobs-university.de/projects/

3Dmap/. Multimedia of all 3D maps are also provided there.

(a) View of the hall

(b) A tilted top view from below the ceiling.

Fig. 12. Hannover Fair German Robocup 2009 hall and its map created using
MUMC. No odometry was provided to the algorithm. Note the relatively large
area covered compared to the size of the robot.

V. CONCLUSIONS

The mathematical machinery for doing online pose regis-

tration based solely on planes extracted from range-images

was presented. First, the simpler case of known plane cor-

respondences was tackled. We derived expressions for least-

squares pose and its covariance estimation considering plane-

parameter uncertainty. Then, the work is extended to the gen-

eral case by introducing a new algorithm for determining the

unknown plane correspondences. This is done by maximizing

geometric consistency. In doing so, a very efficient way to

search the space of possible correspondences was introduced.

To supplement the theoretical results, experiments for three

3D sensors were presented. Compared to ICP and 3D NDT,

the presented algorithm is shown to be faster, to have a bigger

convergence radius, and to require less memory.

APPENDIX A

LEAST SQUARES PLANE FITTING

The planar patches are first extracted from a given range-

image from a 3D sensor using a region-growing algorithm de-

scribed in [29]. The uncertainty analysis of the plane extraction

process is given in [17] and summarized here. Assume that a

planar patch has been extracted, and is known to be composed

of a set of points pj , j = 1 . . . N . Their covariances Cp,j ,
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which are usually taken to be linear or quadratic functions of

their respective ‖pj‖, are also known. The weights and the

weighted center of mass for these points is given by

w−1
j , trace(Cp,j), (47)

pc ,

∑

N

j=1 wjpj
∑

N

j=1 wj
, Cpc

=
(

N
∑

j=1

wj
)−1

I. (48)

The very same weights have also been employed in [9]. Then

the least-squares plane parameters are determined as follows.

M ,
N
∑

j=1

wj(pj − pc)(pj − pc)
T. (49)

The plane-normal n̂ is the Eigenvector of M corresponding

to its minimum Eigenvalue. The plane-parameter d = n̂Tpc,

as the plane passes through pc. The covariance of the plane-

parameters is C = −H+, where the Hessian matrix H is

defined as

H =

[

Hn̂n̂ Hn̂d

HT

n̂d Hdd

]

, where, (50a)

Hdd = −
N
∑

j=1

wj , Hn̂d = −Hddpc, (50b)

Hn̂n̂ = −M+Hddpcp
T

c + (n̂TMn̂)I3. (50c)

From these expressions, it can be derived that

H

[

n̂

d

]

= 0 ⇒ C

[

n̂

d

]

= 0. (51)

APPENDIX B

DECOUPLING THE COVARIANCES

To be able to use the nicely decoupled equations (4) for

determining rotation and translation separately, we need to

estimate the total uncertainty in n̂ by marginalizing, i.e.

integrating out the effect of d and vice-versa. Standard results

for marginalization of Gaussians are not directly applicable

because they are written in terms of the covariance matrix

and not the Hessian; the latter is what is directly estimated

[17], and the former is computed from it by Moore-Penrose

inverse. We show that the marginalization can still be easily

performed, if we start from first principles.

Let ν̄ , (n̄T, d̄)T be the mean plane parameters and we

define the perturbations about the mean as

∆ν ,

[

∆n̂

∆d

]

,

[

n̂− n̄

d− d̄

]

. (52)

The corresponding joint probability distribution function

(PDF) is given in terms of the plane’s Hessian H as

p(ν | ν̄,H) = η exp

{

1

2
∆νT

[

Hn̂n̂ Hn̂d

HT

n̂d Hdd

]

∆ν

}

, (53)

where, η is the normalizing constant, and the Hessian has been

written in a partitioned form in the exponent. This PDF is

defined on the tangent-plane of the domain of ν at ν̄, which

implies that

(∆n̂) · n̄ ≈ 0. (54)

From the first of (51) it can be deduced that

Hdd −HT

n̂dH
−1
n̂n̂

Hn̂d = 0. (55)

Using this we can algebraically decompose the exponent of

the joint PDF by the method of completion of squares as

∆νTH∆ν = ξTHn̂n̂ξ, ξ , ∆n̂+∆dH−1
n̂n̂

Hn̂d, (56)

which shows that the random variable ξ ∈ R3 is normally

distributed with mean 0 and covariance −H−1
n̂n̂

. Taking the

component of ξ along n̄ and using (54) gives

n̄Tξ = ∆d n̄TH−1
n̂n̂

Hn̂d. (57)

This finally allows us to derive the decoupled covariance of

∆d as

Ddd =
−n̄TH−1

n̂n̂
n̄

(

n̄TH−1
n̂n̂

Hn̂d

)2
. (58)

To compute the decoupled covariance of ∆n̂, we decompose

the exponent of the joint PDF again by method of completion

of squares as

∆νTH∆ν = ∆n̂T(Hn̂n̂ −Hn̂dH
−1
ddH

T

n̂d)∆n̂

+Hdd

(

∆d+H−1
ddH

T

n̂d∆n̂
)2
. (59)

This decomposition can be used to integrate out ∆d from the

joint PDF, and we get the decoupled Hessian for ∆n̂ as

H′
n̂n̂ , Hn̂n̂ −Hn̂dH

−1
ddH

T

n̂d. (60)

Using (51) it can be verified that we have the nice property

H′
n̂n̂n̄ = 0. Finally, the decoupled covariance of ∆n̂ is

Dn̂n̂ , −(H′
n̂n̂)

+, Dn̂n̂n̄ = 0. (61)
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