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Abstract

An improved technique for 3D head tracking under varying illumination conditions is pro-
posed. The head is modeled as a texture mapped cylinder. Tracking is formulated as an image
registration problem in the cylinder's texture map image. The resulting dynamic texture map
provides a stabilized view of the face that can be used as input to many existing 2D techniques
for face recognition, facial expressions analysis, lip reading, and eye tracking. To solve the
registration problem in the presence of lighting variation and head motion, the residual error
of registration is modeled as a linear combination of texture warping templates and orthogonal
illumination templates. Fast and stable on-line tracking is achieved via regularized, weighted
least squares minimization of the registration error. The regularization term tends to limit
potential ambiguities that arise in the warping and illumination templates. It enables stable
tracking over extended sequences. Tracking does not require a precise initial fit of the model;
the system is initialized automatically using a simple 2D face detector. The only assumption
is that the target is facing the camera in the first frame of the sequence. The formulation
is tailored to take advantage of texture mapping hardware available in many workstations,
PC's, and game consoles. The non-optimized implementation runs at about 15 frames per
second on a SGI O2 graphic workstation. Extensive experiments evaluating the effectiveness
of the formulation are reported. The sensitivity of the technique to illumination, regularization
parameters, errors in the initial positioning and internal camera parameters are analyzed.
Examples and applications of tracking are reported.
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1 Introduction

Three-dimensional head tracking is a crucial task for several applications of computer vision. Prob-

lems like face recognition, facial expression analysis, lip reading, etc., are more likely to be solved

if a stabilized image is generated through a 3D head tracker. Determining the 3D head position

and orientation is also fundamental in the development of vision-driven user interfaces and, more

generally, for head gesture recognition. Furthermore, head tracking can lead to the development

of very low bit-rate model-based video coders for video telephony, and so on. Most potential ap-

plications for head tracking require robustness to significant head motion, change in orientation,

or scale. Moreover, they must work near video frame rates. Such requirements make the problem

even more challenging.

In this paper, we propose an algorithm for 3D head tracking that extends the range of head

motion allowed by a planar tracker[6, 11, 16]. Our system uses a texture mapped 3D rigid surface

model for the head. During tracking, each input video image is projected onto the surface texture

map of the model. Model parameters are updated via image registration in texture map space. The

output of the system is the 3D head parameters and a 2D dynamic texture map image. The dynamic

texture image provides a stabilized view of the face that can be used in applications requiring that

the position of the head is frontal and almost static. The system has the advantages of a planar

face tracker (reasonable simplicity and robustness to initial positioning) but not the disadvantages

(difficulty in tracking out of plane rotations).

As will become evident in the experiments, our proposed technique can also improve the per-

formance of a tracker based on the minimization of sum of squared differences (SSD) in presence

of illumination changes. To achieve this goal we solve the registration problem by modeling the

residual error in a way similar to that proposed in [16]. The method employs an orthogonal illumi-

nation basis that is pre-computed off-line over a training set of face images collected under varying

illumination conditions.

In contrast to the previous approach of [16], the illumination basis is independent of the per-

son to be tracked. Moreover, we propose the use of a regularizing term in the image registration;

this improves the long-term robustness and precision of the SSD tracker considerably. A similar

approach to estimating affine image motions and changes of view is proposed by [5]. Their ap-
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proach employed an interesting analogy with parameterized optical flow estimation; however, their

iterative algorithm is unsuitable for real-time operation.

Some of the ideas presented in this paper were initially reported in [22, 23]. In this paper we

report the full formulation and extensive experimental evaluation of our technique. In particular

the sensitivity of the technique to internal parameters as well as to errors in the initialization of

the model are analyzed using ground truth data sensed with a magnetic tracker[1]. All the se-

quences used for the experiments and the corresponding ground truth data are publicly available 1.

Furthermore, a software implementation of our system is available from this site.

2 Background

The formulation of the head tracking problem in terms of color image registration in the texture

map of a 3D cylindrical model was first developed in our previous work [22]. Similarly Schödl,

Haro and Essa [30] proposed a technique for 3D head tracking using a full head texture mapped

polygonal model. Recently Dellaert, Thrun and Thorpe [12] formulated the 3D tracking of planar

patches using texture mapping as the measurement model in an extended Kalman filter framework.

Several other techniques have been proposed for free head motion and face tracking. Some of

these techniques focus on 2D tracking (e.g., [4, 9, 14, 16, 27, 35, 36]), while others focus on 3D

tracking or stabilization. Some methods for recovering 3D head parameters are based on tracking

of salient points, features, or 2D image patches. The outputs of these 2D trackers can be processed

by an extended Kalman filter to recover 3D structure, focal length and facial pose [2]. In [21],

a statistically-based 3D head model (eigen-head) is used to further constrain the estimated 3D

structure. Another point-based technique for 3D tracking is based on the tracking of five salient

points on the face to estimate the head orientation with respect to the camera plane[20].

Others use optic flow coupled to a 3D surface model. In [3], rigid body motion parameters

of an ellipsoid model are estimated from a flow field using a standard minimization algorithm.

In another approach [10], flow is used to constrain the motion of an anatomically-motivated face

model and integrated with edge forces to improve tracking results. In [24], a render-feedback loop

was used to guide tracking for an image coding application.

1http://www.cs.bu.edu/groups/ivc/HeadTracking/
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Still others employ more complex physically-based models for the face that include both skin

and muscle dynamics for facial motion. In [34], deformable contour models were used to track the

non-rigid facial motion while estimating muscle actuator controls. In [13], a control theoretic ap-

proach was employed, based on normalized correlation between the incoming data and templates.

Finally, global head motion can be tracked using a plane under perspective projection [7]. Re-

covered global planar motion is used to stabilize incoming images. Facial expression recognition

is accomplished by tracking deforming image patches in the stabilized images.

Most of the above mentioned techniques are not able to track the face in presence of large ro-

tations and some require accurate initial fit of the model to the data. While a planar approximation

addresses these problems somewhat, flattening the face introduces distortion in the stabilized im-

age and cannot model self occlusion effects. Our technique enables fast and stable on-line tracking

of extended sequences, despite noise and large variations in illumination. In particular, the image

registration process is made more robust and less sensitive to changes in lighting through the use

of an illumination basis and regularization.

3 Basic Idea

Our technique is based directly on the incoming image stream; no optical flow estimation is re-

quired. The basic idea consists of using a texture mapped surface model to approximate the head,

accounting in this way for self-occlusions and to approximate head shape. We then use image

registration in the texture map to fit the model with the incoming data.

To explain how our technique works, we will assume that the head is a cylinder with a 360o-

wide image, or more precisely a video showing facial expression changes, texture mapped onto the

cylindrical surface. Only an 180o-wide slice of this texture is visible in any particular frame; this

corresponds with the visible portion of the face in each video image. If we know the initial position

of the cylinder then we can use the incoming image to compute the texture map for the currently

visible portion, as shown in Fig. 1. The projection of the incoming frame onto the corresponding

cylindrical surface depends only on the 3D position and orientation of the cylinder (estimated by

our algorithm), and on camera model (assumed known).

As a new frame is acquired it is possible to estimate the cylinder's orientation and position
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Figure 1: Mapping from image plane to texture map.

such that the texture extracted from the incoming frame best matches the reference texture. In

other words, the 3D head parameters are estimated by performing image registration in the model's

texture map. Due to the rotations of the head, the visible part of the texture can be shifted with

respect to the reference texture. In the registration procedure we should then consider only the

intersection of the two textures.

The registration parameters determine the projection of input video onto the surface of the

object. Taken as a sequence, the projected video images comprise a dynamic texture map. This

map provides a stabilized view of the face that is independent of the current orientation, position

and scale of the surface model.

In practice, heads are not cylindrical objects, so we should account for this modeling error.

Moreover, changes in lighting (shadows and highlights) can have a relevant effect and must be

corrected in some way. In the rest of the paper, a detailed description of the formulation and

implementation will be given. An extensive experimental evaluation of the system will also be

described.
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(a) (b) (c)

Figure 2: Generalized cylinder model constructed from average Cyberware head data (a). Model registered
with video (b) and the corresponding texture map (c). Only the part of the texture corresponding to the
visible part of the model is shown

4 Formulation

The general formulation for a 3D texture mapped surface model will now be developed. Fig. 1

shows the various coordinate systems employed in this paper: (x; y; z) is the 3D object-centered

coordinate system, (u; v) is the image plane coordinate system, (s; t) is the surface's parametric

coordinate system. The latter coordinate system (s; t) will be also referred to as the texture plane,

as this is the texture map of the model. The (u; v) image coordinate system is defined over the

range [�1; 1]� [�1; 1], and the texture plane (s; t) is defined over the unit square.

The mapping between (s; t) and (u; v) can be expressed as follows. First, assume a parametric

surface equation:

(x; y; z; 1) = x(s; t); (1)

where 3D surface points are in homogeneous coordinates.

If greater generality is desired, then a displacement function can be added to the parametric

surface equation:

�x(s; t) = x(s; t) + n(s; t)d(s; t); (2)

allowing displacement along the unit surface normal n, as modulated by a scalar displacement

function d(s; t). For an even more general model, a vector displacement field can be applied to the

surface.

An example of a cylinder with a normal displacement function applied is shown in Fig. 2. The

was model computed by averaging the Cyberware scans of several people in known position 2 The

inclusion of a displacement function in the surface formula allows for more detailed modeling of

2The average Cyberware scan was provided by Tony Jebara, of the MIT Media Lab.
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the head. As will be discussed later, a more detailed model does not necessarily yield more stable

tracking of the head.

The resulting surface can then be translated, rotated, and scaled via the standard 4 � 4 homo-

geneous transform:

Q = DRxRyRzS; (3)

where D is the translation matrix, S is the scaling matrix, and Rx, Ry, Rz are the Euler angle

rotation matrices.

Given a location (s; t) in the parametric surface space of the model, a point's location in the

image plane is obtained via a projective transform:

�
u0 v0 w0

�T
= PQ�x(s; t); (4)

where (u; v) = (u0=w0; v0=w0), and P is a camera projection matrix:

P =

2
666664

1 0 0 0

0 1 0 0

0 0 1

f
1

3
777775
: (5)

The projection matrix depends on the focal length f , which in our system is assumed to be known.

The mapping between (s; t) and (u; v) coordinates can now be expressed in terms of a computer

graphics rendering of a parametric surface. The parameters of the mapping include the translation,

rotation, and scaling of the model, in addition to the camera focal length. As will be seen in the

next section, this formulation can be used to define image warping functions between the (s; t) and

(u; v) planes.

4.1 Image Warping

Each incoming image must be warped into the texture map. The warping function corresponds to

the inverse texture mapping of the surface �x(s; t) in arbitrary 3D position. In what follows we will

denote the warping function:

T = �(I; a) (6)

where T(s; t) is the texture corresponding to the frame I(u; v) warped onto a surface �x(s; t) with

rigid parameters a. The parameter vector a contains the position and orientation of the surface. An
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example of input frame I with cylinder model and the corresponding texture map T are shown in

Fig. 1.

4.2 Confidence Maps

As video is warped into the texture plane, not all pixels have equal confidence. This is due to

nonuniform density of pixels as they are mapped between (u; v) and (s; t) space. As the input

image is inverse projected, all visible triangles have the same size in the (s; t) plane. However,

in the (u; v) image plane, the projections of the triangles have different sizes due to the different

orientations of the triangles, and due to perspective projection. An approximate measure of the

confidence can be derived in terms of the ratio of a triangle's area in video image (u; v) over the

triangle's area in the texture map (s; t). For parts of the texture corresponding to the non-visible

part of the surface �x(s; t) contribute no pixels and therefore have zero confidence.

Stated differently, the density of samples in the texture map is directly related to the area of

each triangle in the image plane. This implies that the elements of the surface in the (s; t) plane do

not all carry the same amount of information. The amount of information carried by a triangle is

directly proportional to the number of pixels it contains in the input image I(u; v).

Suppose we are given a triangleABC whose vertices in image coordinates are (ua; va), (ub; vb),

and (uc; vc), and in texture coordinates are (sa; ta), (sb; tb), and (sc; tc). Using a well known

formula of geometry, the corresponding confidence measure is:

� =

q
j(ub � ua)(vc � va)� (vb � va)(uc � ua)jq
j(sb � sa)(tc � ta)� (tb � ta)(sc � sa)j

: (7)

Given this formula, it is possible to render a confidence map Tw in the (s; t) plane. The denomi-

nator is constant in the case of cylindrical or planar models, because the (s; t) triangle mesh does

not change.

In practice, the confidence map is generated using a standard triangular area fill algorithm. The

map is first initialized to zero. Then each visible triangle is rendered into the map with a fill value

corresponding to the confidence level. This approach allows the use of standard graphics hardware

to accomplish the task.

Note also that, in the case of a cylindrical model, the texture map is 360o wide but only a 180o

part of the cylinder is visible at any instant. In general, we should associate a zero confidence to
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the part of the texture corresponding to the back-facing portion of the surface.

The confidence map can be used to gain a more principled formulation of facial analysis algo-

rithms applied in the stabilized texture map image. In essence, the confidence map quantifies the

reliability of different portions of the face image. The non-uniformity of samples can also bias the

analysis, unless a robust weighted error residual scheme is employed. As will be seen later, the

resulting confidence map enables the use of weighted error residuals in the tracking procedure.

4.3 Model Initialization

To start any registration based tracker, the model must be fit to the initial frame to compute the

reference texture and the warping templates. This initialization can be accomplished automatically

using a 2D face detector [29] and assuming that the subject is approximately facing towards the

camera in the first frame. The approximate 3D position of the surface is then computed assuming

unit size. Note that assuming unit size is not a limitation, as the goal is to estimate the relative

motion of the head. In other words people with a large head will be tracked as “farther from the

camera” and people with a smaller head as closer.

It is important to note that using a simple model for the head makes it possible to reliably

initialize the system automatically. Simple models, like a cylinder, require the estimation of fewer

parameters in automatic placement schemes. As will be confirmed in experiments described in

Sec. 8, tracking with the cylinder model is relatively robust to slight perturbations in initialization.

A planar model [7] also offers these advantages; however, the experiments indicate that this model

is not powerful enough to cope with the self-occlusions generated by large head rotations.

On the other hand, we have also experimented with a complex rigid head model generated

averaging the Cyberware scans of several people in known position as shown in Fig. 2. Using such

a model we were not able to automatically initialize the model, since there are too many degrees

of freedom. Furthermore, tracking performance was markedly less robust to perturbations in the

model parameters. Even when fitting the detailed 3D model by hand, we were unable to gain

improvement in the tracker precision or stability over a simple cylindrical model. In contrast, the

cylindrical model can cope with large out-of-plane rotation, and it is robust to initialization error

due to its relative simplicity.

Once the initial position and orientation of the model a0 is known, we can generate the refer-
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ence texture and a collection of warping templates that will be used for the tracking. The reference

texture T0 is computed by warping the initial frame I0 onto the surface �x(s; t). Each warping

template is computed by subtracting from the reference texture T0 the texture corresponding to

the initial frame I0 warped through a slightly mis-aligned cylinder. Those templates are then used

during the track to estimate the change of position and orientation of the cylinder from frame to

frame as will be explained later.

For notational convenience, all images are represented as long vectors obtained by lexico-

graphic reordering of the corresponding matrices. Formally, given an initial positioning of the

model a0, and a parameter displacement matrix N = [n1;n2; : : : ;nK] we can compute the refer-

ence texture T0 and the warping templates matrixB = [b1;b2; : : : ;bK ]:

T0 = �(I0; a0) (8)

bk = T0 � �(I0; a0 + nk) (9)

where nk is the parameter displacement vector for the kth difference vector bk (warping template).

In practice, four difference vectors per model parameter are sufficient. For the kth parameter,

these four difference images correspond with the difference patterns that result by changing that

parameter by ��k and �2�k. In our system K = 24 as we have six model parameters and four

templates per parameter. The values of the �k can be easily determined such that all the difference

images have the same energy. Note that the need for using ��k and �2�k is due to the fact that the

warping function �(I; a) is only locally linear in a. Experimental results confirmed this intuition.

An analysis of the extension of the region of linearity in a similar problem is given in [8].

Fig. 3 shows a few difference images (warping templates) obtained for a typical initial image

using a cylindrical model. Note that the motion templates used in [5, 16] are computed in the

image plane. In our case the templates are computed in the texture map plane. A similar approach

has been successfully used in [8, 15, 31].

4.4 Illumination

Tracking is based on the minimization of the sum of squared differences between the incoming

texture and a reference texture. This minimization is inherently sensitive to changes in illumina-

tion. Better results can be achieved by minimizing the difference between the incoming texture
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T0 b1 b2 b3 b4 b5 b6

Figure 3: Example of warping templates. T0 is the reference texture. Warping templates b1, b2 and b3
correspond to translations along the (x; y; z) axes. Warping templates b4, b5 and b6 correspond to the Euler
rotations. Note the similarity between the templates for horizontal translation b1 and vertical rotation b5.
Note also the similarity between vertical translation b2 and horizontal rotation b4. Only that part of the
template with non-zero confidence is shown.

and an illumination-adjusted version of the reference texture. If we assume a Lambertian surface

in the absence of self-shadowing, then it has been shown that all the images of the same surface

under different lighting conditions lie in a three-dimensional linear subspace of the space of all

possible images of the object[32]. In this application, none of these conditions is met. Moreover,

the non-linear image warping from image plane to texture plane distorts the linearity of the three-

dimensional subspace. Nevertheless, we can still use a linear model as an approximation along the

lines of [16, 17]:

T�T0 � Uc: (10)

where the columns of the matrix U = [u1;u2; : : : ;uM ] constitute the illumination templates, and

c is the vector of the coefficients for the linear combination.

In [16], these templates are obtained by taking the singular value decomposition (SVD) for a

set of training images of the target subject taken under different lighting conditions. An additional

training vector of ones is added to the training set to account for global brightness changes. The

main problem of this approach is that the illumination templates are subject-dependent.

In our system, we generate a user-independent set of illumination templates. This is done by

taking the SVD of a large set of textures corresponding to faces of different subjects, taken under

varying illumination conditions. The SVD was computed after subtracting the average texture

from each sample texture. The training set of faces we used was previously aligned and masked as

explained in [26]. In practice, we found that ten illumination templates were sufficient to account

for illumination changes.

Note that the illumination basis vectors tend to be low-frequency images. Thus any mis-
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u1 u2 u3 u4 u5

u6 u7 u8 u9 u10

Figure 4: User-independent set of illumination templates. Only the part of the texture with non-zero
confidence is shown.

T0 T0 +Uc T

Figure 5: Example of the lighting correction on the reference texture. For a given input texture T, the
reference texture T0 is adjusted to account for change in illumination. The illumination-corrected reference
texture is computed in terms of a linear combination of illumination templates T0 +Uc.

alignment between the illumination basis and the reference texture is negligible. In addition, an

elliptical binary mask Tl is applied on the illumination basis to prevent the noisy corners of the

textures from biasing the registration.

The illumination basis vectors for the cylindrical tracker are shown in Fig. 4. Fig. 5 shows a

reference texture and the same image after the masking and the lighting correction (in practice T0,

T0 +Uc, and T).

4.5 Combined Parameterization

Following the line of [5, 16], a residual image is computed by taking the difference between the

incoming texture and the reference texture. This residual can be modeled as a linear combination
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of illumination templates and warping templates:

T�T0 � Bq+Uc (11)

where c and q are the vector of the coefficients of the linear combination. In our experience this is a

reasonable approximation for low-energy residual textures. A multi-scale approach using Gaussian

pyramids [28] is used so that the system can handle higher energy residual textures [33].

5 Registration and Tracking

During initialization, the model is automatically positioned and scaled to fit the head in the image

plane as described in Sec. 4.3. The reference texture T0 is then obtained by projecting the initial

frame of the sequence I0 onto the visible part of the cylindrical surface. As a pre-computation, a

collection of warping templates is computed by taking the difference between the reference texture

T0 and the textures corresponding to warping of the input frame with slightly displaced surface

parameters as described in Sec. 4.3.

Once the warping templates have been computed, the tracking can start. Each new input frame

I is warped into the texture map using the current parameter estimate a�. This yields a texture

map T. The residual pattern (difference between the reference texture and the warped image) is

modeled as a linear combination of the warping templates B and illumination templates U that

model lighting effects (Eq. 11).

To find the warping parameters a, we first find c and q by solving the following weighted least

squares problem:

W(T�T0) �W(Bq+Uc) (12)

where W = diag[Tw] � diag[Tl] is the weighting matrix, accounting for the confidence weights

Tw and the elliptical binary mask Tl mentioned earlier.

If we define:

R = T�T0; (13)

x =

2
64 c
q

3
75 ; (14)

M = [UjB]: (15)
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The solution can be written:

x = argmin
x

kR�MxkW (16)

= [MTWTWM]�1MTWTWR (17)

= KR (18)

where K = [MTWTWM]�1MTWTW and kxkW = xTWTWx is a weighted L-2 norm. Due

to possible coupling between the warping templates and/or the illumination templates, the least

squares solution may become ill-conditioned. As will be seen, this conditioning problem can be

averted through the use of a regularization term.

If we are interested only in the increment of the warping parameter �a, we may elect to com-

pute only the q part of x. Finally:

a = a� +�a (19)

where �a = Nq.

Note that this computation requires only a few matrix multiplications and the inversion of a

relatively small matrix. No iterative optimization [5] is involved in the process. This is why our

method is fast and can run at near NTSC video frame rate on inexpensive PCs and workstations.

5.1 Regularization

Independent of the weighting matrix W, we have found that the matrix K is sometimes close to

singular. This is a sort of general aperture problem and is due mainly to the intrinsic ambiguity be-

tween small horizontal translation and vertical rotation, and between small vertical translation and

horizontal rotation. Moreover, we found that a coupling exists between some of the illumination

templates and the warping templates.

Fig. 6 shows the matrixMTM for a typical sequence using the cylindrical model. Each square

in the figure corresponds to an entry in the matrix. Bright values correspond with large values in

the matrix, dark squares correspond with small values in the matrix. If the system were perfectly

decoupled, then all off-diagonal elements would be dark. In general, brighter off-diagonal elements

indicate a coupling between parameters.

By looking at the figure, it is possible to see the coupling that can cause ill-conditioning. The

top-left part of the matrix is diagonal because it corresponds with the orthogonal illumination
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Figure 6: Example of matrix MT
M.

basis vectors. This is not true for bottom-right block of the matrix. This block of the matrix

corresponds with the warping basis images. Note that the coupling between warping parameters

and appearance parameters is weaker than the coupling within the warping parameter space. Such

couplings can lead to instability or ambiguity in the solutions for tracking. To reduce the last kind

of coupling Schödl, Haro and Essa [30] used parameters that are linear combinations of position

and orientation; however, under some conditions this may lead to uncorrelated feature sets in the

image plane.

To alleviate this problem, we regularize our system. The simplest possible approach consists

of using truncated singular value decomposition (SVD)[18] to solve the least square problem of

Eq. 16. Given the truncated SVD of the matrixM:

M � U�VT ; (20)

and defining ~x = VTx we can rewrite Eq. 12 as:

WR �WU�~x: (21)

The regularized solution can be obtained as follows:

x = V~x = V(UTWU�)�1UTWR: (22)

A more principled approach consists of defining the regularizer by adding a penalty term to the

image energy shown in the previous section, and then minimize with respect to c and q:

E = k(T�T0)� (Bq+Uc)kW + 
1[c
T
ac]

+
2[a
� +Naq]

T
w[a
� +Naq]: (23)
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The diagonal matrix 
a is the penalty term associated with the appearance parameter c, and the

diagonal matrix 
w is the penalty associated with the warping parameters a.

We can define:

p =

2
64 0

a�

3
75 ; (24)

N =

2
64 I 0

0 Na

3
75 ; (25)


 =

2
64


1



a 0

0 
2



w

3
75 : (26)

and then rewrite the energy as:

E = kR�MxkW + 
[p+Nx]T
[p +Nx]: (27)

By taking the gradient of the energy with respect to x, and equating it to zero we get:

x = [MTWTWM+ 
NT
N]�1MTWTWR (28)

+ 
[MTWTWM+ 
NT
N]�1NT
p (29)

= ~KR+Qp (30)

where ~K = [MTWTWM+
NT
N]�1MTWTW andQ = 
[MTWTWM+
NT
N]�1NT
.

As before, if we are interested only in the warping parameter estimate, then we can save com-

putation by solving only for the q part of x. We can then find �a.

The choice of a diagonal regularizer implicitly assumes that the subvectors c and q are inde-

pendent. In practice this is not the case. However, our experiments consistently showed that the

performance of the regularized tracker is considerably superior with respect to the unregularized

one. Evaluation experiments will be described in Sec. 8.

The matrices 
a and 
w were chosen for the following reasons. Recall that the appearance ba-

sisU is an eigenbasis for the texture space. If 
a is diagonal and with elements equal to the inverse

of the corresponding eigenvalues, then the penalty term cT
ac is proportional to the distance in

feature space[26]. This term thus prevents an artificially large illumination term from dominating

and misleading the tracker.
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The diagonal matrix 
w is the penalty associated with the warping parameters (cylinder trans-

lation and rotation). We assume that the parameters are independently Gaussian distributed around

the initial position. We can then choose 
w to be diagonal, with diagonal terms equal to the inverse

of the expected variance for each parameter. In this way we prevent the parameters from explod-

ing when the track is lost. Our experience has shown that this term generally makes it possible

to swiftly recover if the track is lost. We defined the standard deviation for each parameter as a

quarter of the range that keeps the model entirely visible (within the window).

Note that this statistical model of the head motion is particularly suited for video taken from

a fixed camera (for example a camera on the top of the computer monitor). In a more general

case (for example to track heads in movies) a random walk model [2, 21] would probably be more

effective. Furthermore, the assumption of independence of the parameters could be removed and

the full non-diagonal 6� 6 covariance matrix estimated from example sequences.

6 System Implementation

For sake of comparison, we implemented the system using both a cylindrical and a planar surface

�x(s; t). To allow for larger displacements in the image plane we used a multi-scale framework.

The warping parameters are initially estimated at the higher level of a Gaussian pyramid and the

parameters are propagated to the lower level. In our implementation we found that a two level

pyramid was sufficient. The first level of the texture map pyramid has a resolution of 128 � 64

pixels.

The warping function �(I; a) was implemented to exploit texture mapping acceleration present

in modern computer graphics workstations. We represented both the cylindrical and the planar

models as sets of texture mapped triangles in 3D space. When the cylinder is superimposed onto

the input video frame, each triangle in image plane maps the underlying pixels of the input frame to

the corresponding triangle in texture map. Bilinear interpolation was used for the texture mapping.

The confidence map is generated using a standard triangular area fill algorithm. The map

is first initialized to zero. Then each visible triangle is rendered into the map with a fill value

corresponding to the confidence level. This approach allows the use of standard graphics hardware

to accomplish the task.
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The illumination basis has been computed from a MIT database[26] of 1,000 aligned frontal

view of faces under varying lighting conditions. Since all the faces are aligned, we had to deter-

mine by hand the position of the surface only once and then used the same warping parameters

to compute the texture corresponding to each face. Finally, the average texture was computed

and subtracted from all the textures before computing the SVD. In our experiments we found

that the first ten eigenimages are in general sufficient to model the global light variation. If more

eigenimages were employed, the system could in principle model more precisely effects like self-

shadowing. In practice, we observed that there is a significant coupling between the higher-order

eigenimages and the warping templates, which would make the tracker less stable. The eigenim-

ages where computed from the textures at 128 � 64 resolution. The second level in the pyramid

was approximated by scaling the eigenimages.

The system was implemented in C++ and OpenGL on a SGI O2 graphic workstation. The

current version of the system runs at about 15 frames per second when reading the input from a

video stream. The off-line version used for the experiments can process five frames per second.

This is due to I/O overhead and decompression when reading the video input from a movie file. The

software implementation, along with the eigenimages, and a number of test sequences is available

from the web site: http://www.cs.bu.edu/groups/ivc/HeadTracking/.

7 Experimental Setup

During real time operation, in many cases, the cylindrical tracker can track the video stream in-

definitely – even in the presence of significant motion and out of plane rotations. However, to

better test the sensitivity of the tracker and to better analyze its limits, we collected a large set of

more challenging sequences, such that the tracker breaks in some cases. Ground truth data was

simultaneously collected using a magnetic tracker.

The test sequences were collected with a Sony Handycam on a tripod. Ground truth for these

sequences was simultaneously collected via a “Flock of Birds” 3D magnetic tracker [1]. The

video signal was digitized at 30 frames per second at a resolution of 320 � 240 non-interleaved

using the standard SGI O2 video input hardware and then saved as Quicktime movies (M-JPEG

compressed).
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To collect ground truth of the position and orientation of the head, the transmitter of the mag-

netic tracker was attached on the subject's head. The “Flock of Birds” system [1] measures the

relative position of the transmitter with respect to the receiver (in inches) and the orientation (in

Euler angles) of the transmitter. The magnetic tracker, in an environment devoid of large metal

objects and electro-magnetic frequencies, has a positional accuracy of 0:1 inches and angular ac-

curacy of 0:5 degrees. Both accuracies are RMS averaged over the translational range. In a typical

laboratory environment, with some metal furniture and computers, we experienced a lower accu-

racy. However, the captured measurements were still good enough to evaluate a visual tracker. In

Figs. 8 and 9 it is possible to see how the noise level is certainly larger than the nominal accuracy

of the magnetic tracker.

7.1 Test Data

We collected two classes of sequences. One set of sequences was collected under uniform illumi-

nation conditions. The other set was collected under time varying illumination. The time varying

illumination has a uniform component and a sinusoidal directional component. All the sequences

are 200 frames long (approximatively seven seconds) and contain free head motion of several sub-

jects.

The first set consists of 45 sequences (nine sequences for each of five subjects) taken under

uniform illumination where the subjects perform free head motion including translations, and both

in-plane and out-of-plane rotations. The second set consists of 27 sequences (nine sequences for

each of three subjects) taken under time varying illumination and where the subjects perform free

head motion. These sequences were taken such that the first frame is not always at the maximum

of the illumination. All of the sequences and the corresponding ground truth are available on-line:

http://www.cs.bu.edu/groups/ivc/HeadTracking/. The reader is encouraged to visit the web site and

watch them to have a precise idea of the typology of motion and illumination variation.

Note that the measured ground truth and the estimate of the visual tracker are expressed in two

different coordinates systems. The estimated position is in a coordinate system that has its origin

in the camera plane and is known only up to a scale factor. This is an absolute orientation problem

[19] as we have two sets of measurements expressed in two coordinate systems with different

position, orientation, and units. To avoid this problem, we carefully aligned the magnetic receiver
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and the camera such that the two coordinate systems were parallel (see Fig. 7). The scale factor

in the three axis directions was then estimated using calibration sequences. All visual tracker

estimates are then transformed according to these scale factors before comparison with ground

truth data.

FoB receiverCamera

FoB transmitter

Figure 7: Camera and magnetic tracker coordinates systems. All the sequences were taken under this
condition.

For the sake of comparing ground truth vs. estimated position and orientation, we can safely

assume that at the first frame of the sequence the visual estimate is coincident with the ground

truth. The graphs reported in Figs. 8 and 9 are based on this assumption.

7.2 Performance Measures

Once the coordinate frames of magnetic tracker and visual tracker are aligned, it is straightfor-

ward to define objective measures of performance of the system. We are mainly concerned about

stability and precision of the tracker.

We formally define these measures as a function of the Mahalanobis distance between the esti-

mated and measured position and orientation. The covariance matrices needed for the computation

of the distance have been estimated over the entire set of collected sequences. In particular we

define for any frame of the sequence two normalized errors:

e2t;i = [at;i � ~at;i]
T�t[at;i � ~at;i] (31)

e2r;i = [ar;i � ~ar;i]
T�r[ar;i � ~ar;i]; (32)

where et;i and er;i are the error in the estimates of the translation and rotation at time i, The vectors

at;i and ar;i represent the visually estimated position and orientation at time i after the alignment

20



to the magnetic tracker coordinate frame. The corresponding magnetically measured values for

translation and rotation are represented by ~at;i and ~ar;i respectively.

We can now define a measure of tracker stability in terms of the average percentage of the test

sequence that the tracker was able to track before losing the target. For the sake of our analysis, we

defined the track as lost when et;i exceeded a fixed threshold. This threshold has been set equal to

2.0 by inspecting different sequences where the track was lost and the measuring the corresponding

error as given by Eq. 32.

The precision of the tracker can be formally defined for each sequence as the root mean square

error computed over the sequence up to the point where the track was lost (according to the def-

inition of losing track from above). It is important to discard the part of the sequences after the

track is lost as the corresponding estimates are totally insignificant and make the measure of the

error useless. The positional and angular estimation error errt and errr for a particular sequence

can then be expressed as:

errt
2 =

1

N

NX
i=1

e2t;i (33)

errr
2 =

1

N

NX
i=1

e2r;i (34)

where N is the number of frames tracked before losing the track. For some of the experiments, it

is also useful to analyze the precision of the single components of the estimate that can be defined

in a similar way.

8 System Evaluation

We evaluated our technique using the full set of sequences collected as described above. We

compared the effectiveness of a texture mapped cylindrical model as opposed to a planar model.

We also evaluated the effect of the lighting correction term. Finally, experiments were conducted

to quantify sensitivity to errors in the initial positioning, regularization parameter settings, and

internal camera parameters.

Three versions of the head tracker algorithm were implemented and compared. The first tracker

employed the full formulation: a cylindrical model with illumination correction and regularization

terms (Eq. 27). The second tracker was the same as the first cylindrical tracker, except without the
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Figure 8: Example tracking sequence collected with uniform illumination. Ground truth was collected via
a 3D “Flock of Birds” sensor. Images taken from test sequence and tracking with the cylindrical model
are shown in the top rows. The transmitter for the magnetic tracker is visible in the image sequence; it is
the small box with the incoming wire that hangs on the subject's head. The graphs depict estimated head
parameters vs. ground truth. In all of the graphs, the dashed curve depicts the estimate gained via the visual
tracker and the solid curve depicts the ground truth. The first row of graphs shows the x, y and z translation
respectively, where translation is measured in inches. The second row of graphs shows estimates for rotation
around the x, y, and z axes respectively, as measured in degrees.

illumination correction term. The third tracker utilized a 3D planar model to define the warping

function �(I; a); this model was meant to approximate planar head tracking formulations reported

in [5, 16]. Our implementation of the planar tracker included a regularization term, but no illumi-

nation correction term.

Before detailed discussion of the experiments, two examples of tracking will be shown. These
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Figure 9: Example test sequence and tracking with time varying illumination. Frames taken from test
sequence and tracking with the cylindrical model are shown in the top rows. The graphs depict estimated
head parameters vs. ground truth. In all of the graphs, the dashed curve depicts the estimate gained via the
visual tracker and the solid curve depicts the ground truth. The first row of graphs shows the x, y and z
translation respectively, where translation is measured in inches. The second row of graphs shows estimates
for rotation around the x, y, and z axes respectively, as measured in degrees.

are intended to give an idea of the type of test sequences gathered and the tracking results obtained.

In Fig. 8 a few frames from one of the test sequences are shown together with the tracking

results. Three-dimensional head translation and orientation parameters were recovered using the

full tracker formulation that includes illumination correction and regularization terms. The graphs

show the estimated rotation and translation parameters during tracking compared to ground truth.

The version of the tracker that used a planar model was unable to track the whole sequence without

losing track.
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Figure 10: Experiment 1: sensitivity of head trackers to the regularization parameter 
2. Average perfor-
mance was determined over all the 45 sequences taken under uniform illumination. In each graph, the solid
curve depicts performance for the cylindrical head tracker with illumination correction, the dashed curve
depicts performance for the cylindrical tracker without the illumination correction, and the dash-dot curve
depicts performance for the planar tracker. The first graph shows the average number of frames tracked over
the full test set of 45 sequences, taken under uniform illumination. The second graph shows the average
position error errt. The third graph shows the average orientation error errr. The unit on the horizontal axis
of each graph is log10(
2).

Fig. 9 shows a test sequence with varying illumination. Tracking results using illumination

correction is shown together with ground truth. The version of the cylindrical tracker without

lighting correction diverged around frame 60.

8.1 Experiment 1: General Performance of the Tracker

The first experiment was designed to test sensitivity of the three different trackers to variation in

the warping regularization parameter 
2. Multiple trials were conducted. In each trial, 
2 was fixed

at a value ranging from 10 to 106. At each setting of 
2, the number of frames tracked and the

precision of the trackers was determined for all sequences in the first dataset (45 sequences taken

under uniform illumination). For all trials in this experiment the focal length f = 10:0, the global

regularization parameter 
 = 1:0, and 
1 = 105.

Graphs showing average stability and precision for the different trackers are shown in Fig. 10.

On each graph, the solid curve depicts performance for the full head tracker using the cylindri-

cal model with illumination correction. The dashed curve depicts performance for the cylindrical

tracker without the illumination correction. Finally, the dash-dot curve corresponds to the perfor-

mance of the planar tracker. The horizontal axis is log10(
2). The curves show average perfor-

mance taken over all the 45 sequences.
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The performance of the two cylindrical trackers (with and without the illumination term) is

nearly identical. This is reasonable as the sequences used in this experiment where taken un-

der uniform illumination; therefore, the lighting correction term should have little or no effect on

tracking performance. In contrast, the planar tracker performed generally worse than the cylindri-

cal trackers; performance was very sensitive to setting of the regularization parameter. Note also

that the precision of the planar tracker's position estimate seems better for low values of 
2 (smaller

error). This is due to the error computation procedure that takes into account only those few frames

that were tracked before track is lost. In our experience, when the tracker is very unstable and can

track on average less than 50% of each the test sequences, the corresponding precision measure is

not very useful.

8.2 Experiment 2: Lighting Correction

The second experiment was designed to evaluate the effect of the illumination correction term in

performance of the cylindrical tracker. In this experiment, the second set of test sequences was

used (27 sequences taken under time varying illumination conditions). For all the test sequences

in the dataset, we computed the number of frames tracked and the precision of the tracker while

varying 
1 over the range of 102 to 109. For all trials in this experiment, the focal length f = 10:0,

the global regularization parameter 
 = 1:0, and 
2 = 105.

The results of this experiment are reported in Fig. 11. In each graph, the solid curve depicts

performance of the head tracker with illumination correction term. For comparison, the perfor-

mance of the cylindrical tracker without the illumination correction term was tested, as shown by

the dashed curve in the graph. Each graph shows the average performance over the full test set of

27 sequences taken under time varying illumination. The unit on the horizontal axis of each graph

is log10(
1). The first graph in Fig. 11 shows the average number of frames tracked before losing

track, as determined by Eq. 32. The second graph shows the average position error errt. The third

graph shows the average error in estimating orientation, errr.

As can be seen in the graphs, the stability of the tracker is greatly improved through inclusion of

the illumination correction term. It is also interesting to note that the system is not very sensitive

to the regularization parameter 
1. For a wide range of values of this parameter performance is
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Figure 11: Experiment 2: sensitivity of the cylindrical head tracker to the illumination regularization
parameter 
1. Average performance was measured over a test set of 27 sequences taken under time varying
illumination, as described in the text. In each graph, the solid curve depicts performance of the cylindrical
tracker with illumination correction term. For comparison, performance of the cylindrical tracker without
illumination correction is reported (shown as dashed curve). The first graph shows the average number of
frames tracked before loosing track. The second graph shows the average position error errt, while tracking
(before loosing track). The third graph shows the average error in estimating head orientation errr, while
tracking (before loosing track). The unit on the horizontal axis of each graph is log10(
1).

approximatively constant, with performance dropping to the level of the non-illumination corrected

tracker only when over-regularizing.

In this experiment, the precision of the tracker does not seem improved by the lighting cor-

rection. This is reasonable as the precision is averaged only over those frames before losing the

track of the target. The tracker without lighting correction is as good as the one using the lighting

correction up to the first change in illumination; at that point the non-illumination corrected model

usually loses the track immediately while the illumination-corrected model continues tracking cor-

rectly.

8.3 Experiment 3: Sensitivity to Initial Positioning of the Model

Experiments were conducted to evaluate the sensitivity of the tracker to the initial placement of

the model. Given that our system is completely automatic and that the face detector we use [29] is

sometimes slightly imprecise, it is important to evaluate if the performance of the tracker degrades

when the model is initially slightly misplaced. The experiments compared sensitivity of the planar

tracker vs. the cylindrical tracker.

Experiments were conducted using the test set of 45 sequences, taken under uniform illumina-

tion. Three sets of experimental trials were conducted. Each set tested sensitivity to one parameter
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that is estimated by the automatic face detector: horizontal position, vertical position, scale. In

each trial, the automatic face detector's parameter estimate was altered by a fixed percentage:

�5%, �10%, �15%, and �20%. Over all the trials, the other parameters were fixed: f = 10:0,


 = 1:0, and 
1 = 
2 = 105.

In the first set of trials, we perturbed the horizontal head position. by �5%, �10%, �15%,

and �20% the estimated face width. The graphs in Fig. 12 show the stability and precision of the

two head trackers, as averaged over all 45 test sequences. In each graph, the solid curve depicts

performance of the cylindrical tracker and the dashed curve depicts performance of the planar

tracker. The first graph shows the average number of frames tracked before loosing track. The

second graph shows the average error in estimating errt, as obtained during parts of the sequences

in which tracking was not lost. The third graph shows the error errr in estimating head orientation,

averaged over parts of the sequences in which tracking was not lost. The horizontal axis shows the

percentage offset in the detected x position of the face.

Similarly, in the second set of trials, we perturbed the vertical head position by �5%, �10%,

�15%, and �20% the estimated face height. The graphs in Fig. 13 show the performance of the

two trackers, as averaged over all 45 test sequences. As before, the solid curve in each graph

depicts performance of the cylindrical tracker and the dashed curve depicts performance of the

planar tracker.

Finally, in the third set of trials, we measured performance of the system when varying the

initial size of the detected face. This was meant to evaluate sensitivity of tracking to errors in

estimating the initial head scale. Fig. 14 shows graphs of performance of both trackers under such

conditions.

As expected, the planar tracker is almost insensitive to perturbations of the initial positioning

of the model. The cylindrical tracker, which out performed the planar model in all previous experi-

ments in terms of precision and stability, is also not very sensitive to errors in the initial positioning

of the model. This is a very interesting behavior as the main limitation of more detailed 3-D head

trackers [10, 13] is the need for a precise initialization of the model. At present, such precise

initialization cannot in general be performed in fast or automatic way.

Finally, it should be noted that these experiments were conducted by perturbing only one pa-

rameter at the time. In informal experiments, perturbing simultaneously the horizontal position,
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Figure 12: Experiment 3: sensitivity of cylindrical and planar tracker to errors in estimating horizontal
position of face. The horizontal position was perturbed by �5%, �10%, �15%, and �20% of the face
width. The graphs show performance of the planar vs. the cylindrical tracker, as averaged over all 45 test
sequences as described in the text. In all the graphs the solid curve corresponds to the performance of the
cylindrical tracker, and the dashed curve to the planar tracker. The horizontal axis of each graph is the
amount of perturbation added to the x position of the head. The first graph shows the average number of
frames tracked before track was lost. The second graph shows the average error in estimating head position
errt. The third graph shows the average error in estimating head orientation.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

∆ y
0

Average % of frames tracked

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

∆ y
0

er
r t

Position error

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

∆ y
0

er
r r

Orientation error

Figure 13: Experiment 3 (continued): sensitivity of cylindrical and planar tracker to errors in estimating
vertical position of face, as described in the text. In all the graphs the solid curve corresponds to the per-
formance of the cylindrical tracker, and the dashed curve to the planar tracker. The horizontal axis of each
graph shows the offset added to the initial y position of the head. The first graph shows the average num-
ber of frames tracked before track was lost. The second graph shows the average error in estimating head
position errt. The third graph shows the average error in estimating head orientation.

the vertical position and the size of the estimated face, yielded similar results.

8.4 Experiment 4: Sensitivity to Focal Length

In our system the focal length is implicitly embedded in the warping function �(I; a) of Eq. 6.

The focal length is not estimated but it is assumed to be known. This experiment was intended to

determine how the performance of the tracker is affected by the choice of the focal length.
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Figure 14: Experiment 3 (continued): Sensitivity of cylindrical and planar tracker to errors in estimating
the scale of the face. Estimated head scale was perturbed by �5%, �10%, �15%, and �20%. The graphs
show performance of the planar vs. cylindrical trackers, as averaged over all 45 test sequences as described
in the text. In all the graphs the solid curve corresponds to the performance of the cylindrical tracker, and the
dashed curve to the planar tracker. The horizontal axis of each graph is the amount of perturbation added to
the head scale estimate. The first graph shows the average number of frames tracked before track was lost.
The second graph shows the average error in estimating head position errt while tracking. The third graph
shows the average error in estimating head orientation.

We computed stability and precision for the 45 test sequences taken under uniform illumination

conditions using focal length equal to 2; 4; 8; 16; 32, and 64. The results of this experiment are

reported in Fig. 15. In all the graphs the solid curve corresponds to the cylindrical tracker and the

dashed line to the planar tracker. For all the trials in this experiment the regularization parameters

were fixed: 
 = 1:0, 
1 = 
2 = 105.

The average number of frames tracked is reported in the top graph in Fig. 15. The precision

of the trackers in estimating translation and rotation is reported in the other graphs. For this ex-

periment we reported the precision with respect to the different parameters, as there are significant

differences in precision between them. The error graphs for translation along the three axes x; y

and z are reported respectively in the second row of Fig. 15. Graphs of error in the estimated

rotation are shown in the bottom row of Fig. 15.

Note that the planar tracker is relatively insensitive to the assumed focal length; the only com-

ponent adversely influenced was the estimate of the depth when the focal length becomes too

long. Similarly, the cylindrical tracker was somewhat sensitive for very short focal lengths and

also tended to mis-estimate the depth as the focal length became too long.
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Figure 15: Experiment 4: sensitivity of cylindrical and planar tracker to the focal length. In all the graphs,
the solid curve corresponds to the cylindrical tracker and the dashed curve to the planar tracker. The first
(top) graph shows the average number of frames tracked over the set of 45 sequences, while varying focal
length. The next three graphs show the average error in estimating the x; y and z position, respectively. The
bottom three graphs show the average error in estimating the rotation about the x; y and z axes, respectively.

9 Discussion

The experiments indicate that the cylindrical model generally allows tracking of longer sequences

than when using a planar model. Furthermore, it allows us to estimate more precisely the 3D

rotations of the head. The error in the estimates of the position is on average slightly smaller when

using the planar tracker. This is not surprising as the planar tracker can accurately estimate the

position of the head but tends to lose the target as soon as there is some significant out of plane

30



rotation. The difference in the behavior of the two trackers is even more evident in the interactive

use of the system. Moreover, the cylindrical tracker is much less sensitive to the regularization

parameter.

The use of an illumination correction term was shown to greatly improve the performance of

the system in the case of sequences taken under time-varying illumination. Furthermore, the exper-

iments indicated that the choice of the regularization parameter is not critical and the performance

of the system remains approximately constant in a wide range of variability.

As exhibited in the experiments, the system is relatively insensitive to error in the initial es-

timate of the position and scale of the face. The precision and stability of the tracker remain

approximately constant for a range of initialization errors up to 20% the size of the face detected.

It is also interesting to note that the focal length used in the warping function did not seem to be a

critical parameter of the system in the experiments. In practice, we have found that this parameter

can be chosen very approximately without particular difficulties.

The experiments confirmed our hope that our tracker could overcome the biggest problem

of a planar tracker (instability in presence of out of plane rotations) without losing its biggest

advantages (small sensitivity to initialization errors and low computational load).

Beyond the quantitative testing reported in the previous section, we analyzed qualitatively the

behavior of our technique through interactive use of the real-time version of the system. This

analysis coherently confirmed the strengths and weaknesses that emerged from the quantitative

testing.

In most cases, the cylindrical tracker is stable and precise enough to be useful in practical

applications. For example in an informal experiment we tried to control the mouse pointer with

small out of plane rotations of the head. After a few minutes of training the subjects were able to

control the pointer all over the computer screen with a precision of about 20-30 pixels. The head

tracker has also been successfully tested in head gesture recognition, and expression tracking [22].

We also analyzed which are the most common cases when the tracker fails and loses the target.

We noticed that all of the cases where the target was lost were due to one of the following reasons:

1) motion was too fast, 2) simultaneous large rotation around the vertical axis and large horizontal

translation, 3) simultaneous large rotations around the vertical and the horizontal axis, 4) very large

rotation around the vertical axis.
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The first failure mode can easily be addressed, through the use of higher resolution input video,

and then more levels in the Gaussian pyramids. Alternatively, this problem could also be addressed

by using higher frame rate video input. The second source of instability is due to the general

aperture problem. This ambiguity is very well highlighted in Fig. 6 as an off diagonal element in

the matrixMTM. The use of a regularization term greatly reduced this problem.

The other failure modes are due mainly to the fact the head is only approximated by a cylinder.

This sometimes causes error in tracking large out-of-plane rotations of the head. As stated earlier,

using a more detailed, displacement-mapped model did not seem to improve tracking substantially;

the resulting tracker tended to have greater sensitivity to initialization in our informal experiments.

A more promising approach for coping with large out-of-plane rotations would be to use more than

one camera in observing the moving head.

10 Summary

In this paper, we proposed a fast, stable and accurate technique for 3D head tracking in presence

of varying lighting conditions. We presented experimental results that show how our technique

greatly improves the standard SSD tracking without the need of a subject-dependent illumination

basis or the use of iterative techniques. Our method is accurate and stable enough that the estimated

pose and orientation of the head is suitable for applications like head gesture recognition and visual

user interfaces.

Extensive experiments using ground truth data showed that the system is very robust with

respect to errors in the initialization. The experiments also showed that the only parameters that

we had to choose arbitrarily (the regularization parameters and the focal length) do not affect

dramatically the performance of the system. Using the same parameter settings, the system can

easily track sequences with different kinds of motion and/or illumination.

The texture map provides a stabilized view of the face that can be used for facial expression

recognition, and other applications requiring that the position of the head is frontal view and almost

static. Furthermore, the formulation can be used for model-based very low bit-rate video coding

of teleconferencing video. Moreover, the proposed technique utilizes texture mapping capabilities

that are common on entry level PC and workstations, running at NTSC video frame rates.
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Nevertheless, our technique can still be improved on several fronts. For example we believe

that the use of two cameras could greatly improve the performance of the tracker in presence of

large out of plane rotations. In the future we also plan to develop a version of our method that

employs robust cost functions [31]. We suspect that this could further improve the precision and

stability of the tracker in presence of occlusions.
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