
1

Fast ReRoute on Programmable Switches
Marco Chiesa∗, Roshan Sedar†, Gianni Antichi‡,

Michael Borokhovich§, Andrzej Kamisiński¶, Georgios Nikolaidis‖, Stefan Schmid∗∗

∗KTH Royal Institute of Technology †Telecommunications Technological Center of Catalonia
‡Queen Mary University of London §Independent Researcher ¶AGH University of Science and Technology

‖Intel, Barefoot Switch Division ∗∗University of Vienna

Abstract—Highly dependable communication networks usually
rely on some kind of Fast Re-Route (FRR) mechanism which
allows to quickly re-route traffic upon failures, entirely in the
data plane. This paper studies the design of FRR mechanisms for
emerging reconfigurable switches. Our main contribution is an
FRR primitive for programmable data planes, PURR, which pro-
vides low failover latency and high switch throughput, by avoiding
packet recirculation. PURR tolerates multiple concurrent failures
and comes with minimal memory requirements, ensuring compact
forwarding tables, by unveiling an intriguing connection to
classic “string theory” (i.e., stringology), and in particular, the
shortest common supersequence problem. PURR is well-suited
for high-speed match-action forwarding architectures (e.g., PISA)
and supports the implementation of a broad variety of FRR
mechanisms. Our simulations and prototype implementation (on
an FPGA and a Tofino switch) show that PURR improves TCAM
memory occupancy by a factor of 1.5x–10.8x compared to a naı̈ve
encoding when implementing state-of-the-art FRR mechanisms.
PURR also improves the latency and throughput of datacenter
traffic up to a factor of 2.8x–5.5x and 1.2x–2x, respectively,
compared to approaches based on recirculating packets.

Index Terms—programmable networks, network robustness,
fast reroute, fast failover, P4, shortest common supersequence.

I. INTRODUCTION

Emerging applications, e.g., in the context of business and

entertainment, pose stringent requirements on the depend-

ability and performance of the underlying communication

networks, which have become a critical infrastructure of our

digital society. In order to meet such requirements, many

communication networks provide Fast Re-Route (FRR) mech-

anisms [3], [4], [5], which allow to quickly reroute traffic upon

unexpected failures, entirely in the data plane. By proactively

provisioning the switches with backup forwarding rules, the

robustness and availability of a network can be increased: as

soon as a switch detects a failure, i.e., defective link or port,

it quickly detours traffic using local backup rules.

Networking equipment manufacturers have so far integrated

FRR capabilities directly in the silicon of their switches,

allowing network operators to simply use such functionality as

a black-box option. Emerging Programmable Data Planes [6],

PDPs, are about to break this black-box approach to data plane

network functionalities. Indeed, by allowing network operators

to deploy customized packet processing algorithms, PDPs are

considered a key enabler of many interesting new use cases

including monitoring [7], [8], traffic load-balancing [9], and

many others [10]. However, little is known today about how

This paper is an extended version of [1] and [2].

to implement FRR mechanisms with reconfigurable switches.

One simple approach is to recirculate the packet back at

the input of the switching pipeline when a failure has been

detected and select a different output port. This however leads

to increased packet processing latency and reduced throughput.

We therefore aim to make FRR efficient, thus avoiding

expensive packet recirculations, and programmable, thus al-

lowing operators to pick any FRR mechanism (e.g., [11]).

This is challenging and involves multiple goals:

• Flexibility: We aim to devise an FRR primitive that supports

a broad variety of FRR mechanisms robust to single and

multiple link failures [12], [13]. FRR mechanisms deal with

the computation of primary and backup forwarding rules.

• Low latency and high throughput: Packets affected by

a failure should be rerouted to an alternate active port as

fast as possible without incurring any packet processing

degradation. This means packet processing latency should

not depend on the number of failed ports on a switch: a key

requirement for latency-critical applications.

• Memory efficiency: A programmable FRR mechanism

should come with minimal memory requirements, i.e., the

resulting forwarding tables are required to be compact.

Memory (especially TCAM) is, in fact, a scarce yet precious

resource of today’s hardware PDPs [14].

In this paper we propose a new FRR primitive, PURR, that

serves as a building block for implementing FRR mecha-

nisms while meeting the above requirements. At the heart

of PURR lies a technique that avoids recirculating packets

through the switch pipeline in search of an active port, which

would lead to worsened performance, i.e., higher latency

and lower throughput. To provide memory efficiency, PURR

leverages a connection between compact FRR forwarding

tables and algorithmic string theory (i.e., stringology): the

main theoretical contribution of this paper. Specifically, we

show that it is possible to implement a wide range of FRR

mechanisms very efficiently using our primitive, by modeling

the optimization problem as a variant of a Shortest Common

Supersequence (SCS) problem. To this end, we devise and

analyze several new algorithms to efficiently solve this SCS

variant. We show how optimized SCS solutions translate into

low-memory realizations of the given FRR mechanisms.

In summary, we make the following contributions:

• We explore the design space alongside the trade-offs of

implementing FRR mechanisms on hardware-based PDPs.

• We propose PURR, a new FRR primitive that can be

2

P
a

ck
e

ts
 i

n

Match

FRR_id

Action wrt

port_set

1 1111000

………... ………….

4 0001111

Input

headers &

metadata

Match

port_set

Match

status

Action

fwd

1****** 1*** 1

…………. …………. …….

******1 **1* 3

P
a

ck
e

ts
 o

u
tIngress pipeline Egress pipeline

Packet recirculation

st
a

g
e

 1

Selected-Ports table Fwd-Packet table

st
a

g
e

 …

st
a

g
e

 N

st
a

g
e

 1

st
a

g
e

 …

st
a

g
e

 N

in
g

re
ss

b

u
ff

e
r

e
g

re
ss

b

u
ff

e
r

Runtime P4

(Control plane)

P
a

rs
e

r

Figure 1: PISA abstraction with PURR pipeline.

adopted as a building block for implementing FRR al-

gorithms. PURR provides very low failover latency and

high packet processing throughput by requiring a single

TCAM lookup, and low memory overhead by exploiting an

unexplored connection to classic algorithmic string theory.

• PURR comes with solid algorithmic underpinnings. In

particular, we show that the underlying problem is a variant

of SCS without repetitions, and prove that this variant is still

NP -hard. We then present a novel and efficient heuristic to

solve this variant of the SCS problem, which may be of

interest beyond the scope of this paper.

• We report on an extensive evaluation, combining analytical

results and simulations. We assessed PURR using micro-

benchmarks and large-scale simulations. Our main findings

show PURR dramatically reduces memory requirements

by a factor of 1.5x–10.8x for a variety of existing FRR

mechanisms compared to a naı̈ve approach. Our large-scale

simulations show that packet recirculation has devastating

effects on the flow completion times of the latency-sensitive

flows, up to 2.8x—5.5x worse than PURR.

• We assessed the feasibility of realizing PURR in practice

by implementing it in P4 on the bmv2 software switch [15],

a Tofino switch [16], and an FPGA [17].

Our code is available and fully reproducible [18].

II. BACKGROUND AND MOTIVATION

P4 background. P4 [6] is a programming language specif-

ically designed to program data plane packet processing

pipelines based on a match-action architecture. The P4 lan-

guage is target-independent [19], i.e., it abstracts from the

specific hardware characteristics of a switch. A P4 compiler

translates high-level P4 programs into target-dependent switch

configurations. Network operators write forwarding behavior

using P4 and subsequently compile these programs into P4-

enabled switches using vendor-specific compilers. In this pa-

per, we focus solely on hardware-based P4 switches.

The top part of Fig. 1 depicts a high-level abstraction of the

standard de-facto P4 packet processing pipeline, i.e., the PISA

pipeline [19]. This pipeline consists of a parser component

followed by an ingress and an egress forwarding pipelines. The

parser can be configured by the network operators to match

arbitrary (ad-hoc) fields in the packet header. Each pipeline

consists of a sequence of match-action stages, similarly to

OpenFlow. The network operator can decide upon the size

Table T1

out_port tag

1 1
2 2
3 3
4 4

Table T2

tag status fwd tag & recirc

1 1*** 1 -

2 *1** 2 -

3 **1* 3 -

4 ***1 4 -

* **** − (tag++ % 4) +1

Figure 2: A packet recirculation forwarding table.

and number of match tables, their matching type (e.g., exact,

wildcard, range), and the actions associated with a match “hit”

(e.g., rewrite the packet header, increase a counter). Similarly

to OpenFlow, P4 programmers can use metadata fields to carry

information across different stages and match on those fields.

The metadata attached to a packet is lost as soon as the packet

leaves the switch. It is worth noting that P4 does not dictate

how the match-action tables are mapped onto the TCAM and

other memories contained within each stage of the pipeline.

Clearly, different memories strike different trade-offs in terms

of cost, energy consumption, and latency. TCAM memories

support a wildcard, which we will leverage in the rest of the

paper. The complexity of computing the mapping of the match

tables to the hardware memories is left to the P4 compiler,

which is different for each target packet processing switch.

P4 and Fast ReRoute (FRR). The P4 abstraction has gained

ever-growing interests from the networking community thanks

to its flexibility and general-purpose interface. Yet, P4 comes

with no built-in support for commonly used Fast Re-Route

(FRR) forwarding operations, i.e., the forwarding action con-

sists of a sequence of ports such that a packet matching that

action is forwarded to the first active (i.e., non-failed) port in

the sequence. This is similar to FRR groups, henceforth called

FRR sequences, of OpenFlow [20]. For example, consider an

FRR mechanism that i) indexes all the switches’ ports from

1 to k and ii) when the switch fails to send a packet on

a port with index i, it tries with ports i+ 1, i+ 2, and so on,

modulo the number of ports, until an active port is found. We

call the resulting FRR sequences (i.e., 〈1, 2, 3, 4〉, 〈2, 3, 4, 1〉,
〈3, 4, 1, 2〉, and 〈4, 1, 2, 3〉), circular FRR sequences.

Based on our extensive discussions with P4 developers, the

implementation of FRR sequences in P4 is today left to the

operator [21]. We note that FRR primitives devised in different

contexts (e.g., BGP-PIC [22], [23]) cannot support arbitrary

FRR sequences (namely, only FRR sequences of size 2).

Implementing an FRR primitive is far from being trivial.

Without specific built-in FRR hardware support within the

hardware switch devices, operators have to rely only on

the match-action processing pipeline to enable quick packet

forwarding recomputation upon any number of link failures.

One way to achieve this goal entails recirculating a packet

through the switch pipeline multiple times in search of the

first non-failed port in an FRR sequence, or alternatively, by

writing a P4 program that checks the state of the links in

the FRR sequence either sequentially (i.e., through multiple

stages) or in parallel (i.e., using a TCAM). We now analyze

these three different possible solutions.

FRR sequences with packet recirculation. One simple way

to implement FRR is to recirculate a packet until an active

outgoing port is found. Consider the simple example shown

3

10 20 30 40 50 60 70

Load [%]

0.0

0.5

1.0

1.5

2.0

S
m

a
ll

fl
o
w

s
F

C
T

[m
s
]

2.4x

FRR recirculation

CP reconvergence

(a) One link failure.

10 20 30 40 50 60 70

Load [%]

0.0

0.5

1.0

1.5

2.0

S
m

a
ll

fl
o
w

s
F

C
T

[m
s
]

3.7x

FRR recirculation

CP reconvergence

(b) Two link failures.

10 20 30 40 50 60 70

Load [%]

10
0

10
1

T
h
ro

u
g
h
p
u
t
[G

b
p
s
]

2.7x

FRR recirculation

CP reconvergence

(c) One link failure.

10 20 30 40 50 60 70

Load [%]

10
0

10
1

T
h
ro

u
g
h
p
u
t
[G

b
p
s
]

3.3x

FRR recirculation

CP reconvergence

(d) Two link failures.

Figure 3: Packet recirculation performance analysis.

in Fig. 2 in which we want to support an FRR mechanism that

is based on the aforementioned set of FRR circular sequences,

i.e., 〈1, 2, 3, 4〉, 〈2, 3, 4, 1〉, 〈3, 4, 1, 2〉, and 〈4, 1, 2, 3〉. To

realize an FRR sequence with packet recirculation, we store in

the packet header/metadata information about the port through

which we want to forward the packet, i.e., the tag field, and

increment this value if the pointed port is down. The first table

T1 is used to simply attach the initial tag to a packet. Each

packet carries a port status metadata where each bit in the

status metadata represents the status of a port: it is set to 1 if

the port is active or to 0 otherwise. We assign a port identifier

to each port of the switch and let the ith bit in status

represent the ith port of the switch. The status matching

operation simply checks whether the port indexed by the tag

field is up or down. For instance, consider a packet destined

to port 4. In the absence of failures, this packet will enter the

switch with status = 1111 and get assigned tag = 4 in

T1. It will then match the 4th entry in the second table T2

and be forwarded on port 4. When port 4 fails (i.e., it is not

active), the same packet will now match the 5th entry in T2.

This will modify tag to 1 and the packet will be recirculated,

now matching the 1st entry and being routed on port 1.

Packet recirculation degrades flow completion time. There

are few drawbacks with the above implementation: when

a packet is recirculated, i) it creates a “self-induced incast” on

the ingress buffer, consuming extra bandwidth, ii) it increases

the packet processing latency since the same packet needs to

go through the match-action pipeline (including its buffers)

multiple times. To understand the impact of recirculating pack-

ets, we ran a series of simulations using the ns3 discrete-event

simulator. We validated our ns3 model with a manufacturer

of hardware PDPs. We took an existing ns3 implementation

from the state-of-the-art datacenter load-balancing codebase

(i.e., Hermes [24]) and implemented the F10 [11] state-

of-the-art FRR mechanism. The network topology is a 2-

tier leaf-spine datacenter topology, the congestion control is

DCTCP, and the routing is OSPF/ECMP. Refer to §V for

detailes about the datacenter setting. In Fig. 3, we failed

one or two links simultaneously and compared an “ideal”

OSPF routing approach that reconverges at the time of the

failure (i.e., “CP reconvergence”) with the packet recirculation

approach (i.e., “FRR recirculation”). Our results show that

the flow completion time (FCT) of latency-sensitive flows

(i.e., small flows with size ≤ 100 KB) is a factor of 2.4x

and 3.7x higher with “FRR recirculation” under one and two

link failures, respectively, compared to CP-reconvergence. We

also measured the average throughput achieved by the large

flows (i.e., size ≥ 10 MB) when recirculating packets, which

achieved a 2.7x and 3.3x times lower throughput than CP-

reconvergence under one and two link failures, respectively.

A sequential search of the first active port wastes hardware

resources. Another way to implement the above FRR on

a match-action pipeline would be to either sequentially or

simultaneously check through a specific sequence of outgoing

ports, which port is the first active one. This approach can

easily be expressed in P4 as a set of nested “if-else” statements

and the compiler has to decide whether to realize it in a se-

quential (on SRAM memory) or parallel (on TCAM memory)

manner. In the sequential case, the status of each port in an

FRR sequence is tested in each subsequent stage of the match-

action pipeline. This approach has two clear limitations: i) it

cannot support FRR sequences whose sizes are larger than the

number of stages and ii) it wastes resource at each stage that

cannot be used by forwarding functions that have a functional

dependency with the selected egress port.

A TCAM-based parallel search to the rescue! A P4 compiler

can encode a set of if-else statements within a TCAM memory,

anabling a parallel active-port search. We present a naı̈ve

encoding approach in Fig. 4a where we realize the same

circular FRR sequences of the packet recirculation case with

one single TCAM lookup. We assign an identifier FRRid to

each FRR sequence. When a packet arrives at the switch, we

attach both the status metadata field and a given FRRid to it.

We then match the packet with the TCAM memory and extract

the first active forwarding port in one single TCAM lookup. As

an example, the first four entries in the table realize the FRR

sequence 〈1, 2, 3, 4〉. We now compute the amount of TCAM

space needed to realize a set of n circular FRR sequences using

the aforementioned naı̈ve TCAM encoding. If the number

of ports in each sequence is k, then the number of TCAM

entries will be nk and the TCAM occupancy is nk(k+log n),
where we need log n bits to encode FRR identifiers and k
bits to encode the status match part for each of the nk
entries. In the specific example of Fig. 4a, we can see that

just a single circular FRR sequence requires 4 TCAM entries

and thus 24 bits of TCAM memory. Observe that already for

k = 24 and 10 sets of FRR circular sequences (each set has 24

sequences — all cyclic shift options), we need 5760 TCAM

entries and ∼ 130 kbit of TCAM space, which is already two

orders of magnitude larger than what is available in today’s

high-performance PDPs [14]. In the remaining sections, we

therefore address the following main question:

“Can we enable a new FRR primitive for pro-

grammable data planes that requires minimal TCAM

overhead while minimizing flow performance degrada-

tion due to network failures?”

4

Table T1

FRRid status fwd

1 1*** 1
1 *1** 2
1 **1* 3
1 ***1 4
2 *1** 2
2 **1* 3
2 ***1 4
2 1*** 1
3 **1* 3
3 ***1 4
3 1*** 1
3 *1** 2
4 ***1 4
4 1*** 1
4 *1** 2
4 **1* 3

(a) Naı̈ve approach

Table T1

FRRid port_set

1 1111000

2 0111100

3 0011110

4 0001111

↓
Table T2

port_set status fwd

1****** 1*** 1

*1***** *1** 2

1** **1* 3

1 ***1 4

****1** 1*** 1

*****1* *1** 2

******1 **1* 3

(b) Encoded approach

Figure 4: TCAM encodings of a circular FRR sequence.

III. A PRIMITIVE FOR FAST REROUTE

Here, we provide an approach for encoding an arbitrary set

of FRR sequences into a match-action TCAM-based packet

processing pipeline. We discuss how to do that when the

sequences are “circular”, as in a wide variety of FRR mech-

anisms that have been proposed [11], [25], [26], [27]. Then,

we devise three different heuristics that efficiently encode any

type of arbitrary FRR sequences into TCAM memories.

A. A Model for Programmable FRR

Fast ReRoute (FRR) sequences. Network operators rely on

FRR mechanisms to compute a set of primary and backup

forwarding rules. These rules are used to reroute network

traffic upon arbitrary number of failures without the need

to invoke the slower control plane. When a switch receives

a packet, it classifies it, possibly modifies the packet header,

and finally applies a forwarding action. In this paper, we model

each forwarding action with an FRR sequence, i.e., a sequence

of ports, e.g., 〈port1, port4, port2, port3〉, or 〈1, 4, 2, 3〉 for

brevity. A switch forwards packets to the first (traversing from

left to right) active port in a sequence. For instance, when

all ports are active, a switch using the FRR sequence F0 =
〈1, 2, 3, 4〉 will forward packets through port 1. If both ports 1
and 2 fail, the switch reroute packets through port 3. Packets

belonging to different flows may share the same forwarding

behavior, that is, the same FRR sequence.

Target-dependent constraints. The architecture of a packet

processing system highly influences the way FRR sequences

would be supported. For instance, a software switch can-

not leverage dedicated memories for ternary matching (i.e.,

TCAMs). Even among switches with TCAM support there

are differences to be taken into account. As an example,

Intel FlexPipe [28] does not support arbitrary width sizes for

TCAM tables, a functionality that is supported in the RMT

(Reconfigurable Match Tables) architecture [29]. We note that

these details are not exposed to the P4 programmer but handled

by target-dependent P4 compilers. In this paper, we focus our

attention on the emerging PDPs that support wildcard match

tables (e.g., TCAM memories). We now describe a set of

architectural constraints for hardware PDPs.

• Match-action pipeline stages. There are a fixed number of

stages through which packets are being classified and mod-

ified. Some stages may allow to perform parallel matches

in different tables (e.g., FlexPipe) and each stage contains

a certain amount of resources for exact, prefix, and ternary

matches. As noted in §II, implementing FRR sequences in

a sequential manner is highly undesirable in practice. In

fact, it prevents any forwarding operations with a functional

dependency on the egress port calculation to leverage the

spare SRAM and TCAM memories that reside within the

stages used to implement the FRR sequences. We therefore

require the bulk of our encoding to fit within a single stage

(a small table can be allowed in the previous stage to assign

FRR identifiers and initialize data structures).

• Number of TCAM entries and bits. Each stage s of the

match-action pipeline has a certain number of TCAM en-

tries. For instance, the RMT architecture states a maximum

of 32K TCAM entries per stage, though this amount may

be smaller in practice depending on the specific vendor and

product [14].1 In FlexPipe, there are only two stages with

12K entries each. In each stage s, the amount of TCAM

memory (in bits2) is also limited. In the RMT architecture,

roughly 1 Mbit of TCAM memory is available per stage.

FRR encoding goal. Our objective is to provide a primitive

that allows efficient realization of any set of FRR sequences.

We already explained in §II that such a solution must be based

on a single TCAM lookup implementation. Given a set of FRR

sequences that correspond to a specific fast failover algorithm

(e.g., DFS traversal [26] or circular-arborescence [30]) our

proposed primitive will allow deploying them in a way that

reduces the amount of TCAM memory required.

B. A Primitive for Circular FRR

We now describe a TCAM scheme for encoding a specific

class of widely adopted FRR sequences, i.e., circular FRR

sequences. This class of FRR sequences is common of several

existing FRR mechanisms, including F10 [11], arc-disjoint

arborescences [30], and graph-traversals [26]. We say that a set

of FRR sequences is circular if every FRR sequence in the set

can be obtained from any other sequence by a finite number

of circular shift operations. Consider a switch with four ports

and the following set of FRR sequences: F1 =〈1, 2, 3, 4〉,
F2 =〈2, 3, 4, 1〉, F3 =〈3, 4, 1, 2〉, and F4 =〈4, 1, 2, 3〉. Since

every Fi can be obtained from any other Fj by circularly

shifting Fi to the left j − i mod 4 times, the FRR sequences

in the set {F1, F2, F3, F4} are circular.

Encoding circular FRR sequences. We already described

a naı̈ve approach for encoding circular FRR sequences in

§II, which was illustrated in Fig. 4a. As discussed earlier,

this approach requires nk(k + log n) TCAM bits, where n
is the number of sets of circular FRR sequences and k is the

number of ports of the switch (and hence, the length of an

FRR sequence). Let us now propose a more efficient way of

1Also based on private communication with vendors.
2For simplicity, we use the “bit” terminology as opposed to the more correct

“trits” one, which captures the ternary nature of the TCAM elements.

5

encoding any set of circular FRR sequences (see Fig. 4b).

Let fi,j represent the j’th element of a sequence Fi. For

each sequence Fi, we assign a bit vector port_set of size

2k − 1, where each bit represents a port of the switch in

the order defined by the sequence F1, i.e., bit number b of

port_set represents port f1,b mod k. For each sequence

Fi we set k bits in its port_set vector that correspond

to the ports in Fi but in the same order that the ports

appear in Fi. In our example (Fig. 4b), the port_set vector

represents ports 〈1, 2, 3, 4, 1, 2, 3〉. Hence, for the sequence

F1, the port_set is 1111000, which means that the bits

corresponding to ports 〈1, 2, 3, 4〉 are set to 1. For the sequence

F3, we will have port_set = 0011110 which means that

the bits corresponding to ports 〈3, 4, 1, 2〉 are set.

Table T1 in Fig. 4b assigns the corresponding port_set

for each circular sequence of a given FRR set. Then, table

T2 matches the port_set and the status metadata fields

to determine the first active port for a given FRR sequence.

For example, if a packet needs to be rerouted according to

sequence F4 (this is determined at an earlier stage, not shown

here), then table T1 will assign it port_set = 0001111.

Now, let’s assume that ports 1 and 4 are not active and ports 2

and 3 are active, which corresponds to the status = 0110.

Then, the first matching entry in table T2 will be in row 6

(where port_set = ∗ ∗∗ ∗ ∗1∗) and thus, the packet will be

forwarded via port 2. Notice that different circular FRR sets

will be assigned different FRRid in table T1, and thus will

have dedicated sets of entries in table T2.

Our encoding achieves an order of magnitude smaller

TCAM memory usage compared to a naı̈ve approach.

Let us analyze the TCAM space required to encode a set

of n circular FRR sequences, each of length k (notice that

there are at most k such sequences, i.e., n ≤ k). The table

T1 requires n entries, each of size log n bits. The table

T2 requires 2k − 1 entries, each of size 2k − 1 + k bits.

So, the total TCAM space required for a single FRR set is

n log n + (2k − 1) × (3k − 1) = O(k2). This is an order

of magnitude better than the naı̈ve approach which requires

nk(k + logn) = O(k3) TCAM bits. Moreover, table T1 does

not need ternary matches, thus can be then implemented in

SRAM, further saving expensive TCAM space.

C. A Primitive to Implement Them All

We now introduce the general problem of encoding an

arbitrary set of FRR sequences that are not necessarily circular.

The input is a set of sequences and the output is the set of

wildcard (TCAM) and exact (SRAM) matches and actions to

be installed in the forwarding plane. The aim is to generalize

the port_set vector described in the previous subsection.

Single-table optimization. We first consider the problem of

encoding a set of FRR sequences in a single TCAM table. The

challenge with arbitrary FRR sequences is that the mapping

between bits in the port_set vector and ports is not as

obvious as it was in the circular case. The port_set now has

to represent a sequence of ports that contains all the given FRR

sequences as subsequences. Essentially, this means finding

Algorithm 1 Definition of GREEDY.

Global parameters: A constant d ∈ N
Input: A set F = {F1, . . . , Fcd} of FRR sequences

1) Set currscs :=〈〉
2) Repeat for each i = 1, . . . , c

◦ currscs := DP-SCS (currscs,F(i−1)d+1, . . . , Fid)

3) return currscs

F1=2 3 1 0

F2=0 2 1 3

F3=3 0 2 1

F4=1 0 2 3

2 3 1 0

0 2 1 3 1 0

3 0 2 1 3 1 0

3 1 0 2 1 3 1 0

Figure 5: GREEDY example.

the shortest sequence that contains all the given sequences

as subsequences (i.e., skipping elements is allowed).

Unveiling an unexplored connection between FRR encod-

ings and algorithmic string theory. Our encoding problem

can be seen as a special (and unexplored) version of the classic

Shortest Common Supersequence (SCS) [31] problem, where

no repetitions are allowed. In the SCS problem, the input

is a set of sequences S = {S1, . . . , Sk} and the goal is to

compute a sequence of elements S̄ such that any element

of S is a subsequence of S̄ and S̄ is of minimal size. This

connection is interesting and raises the question whether our

version of the problem without repetitions can render the

problem simpler: SCS is known to be notoriously hard, in fact

NP-hard already for strings over a binary alphabet [32], and

also hard to approximate within polylogarithmic factors [33].

Unfortunately, this is not the case: we state this insight as

a theorem as the result is of independent interest.

Theorem 1. The SCS problem without repetitions is NP -hard

to optimize and approximate.3

The proof follows directly from [33].

The dynamic programming building block: DPSCS. We

first discuss a well-known technique used to solve the SCS

problem optimally based on Dynamic-Programming [34],

called DPSCS. This approach computes an optimum SCS

solution in time O(kn), thus solving the problem in efficient

(polynomial) time only when the number of sequences is con-

stant. We use DPSCS as a baseline to compare our heuristics

and to deal with arbitrary number of sequences. The input to

our problem is a set F = {F1, . . . , Fn} of FRR sequences,

where fi,j indicates the j’th element of sequence Fi. The value

of fi,j represents an index of a port in the switch. We assume

that all the sequences have the same length k.

The GREEDY heuristic. We present a novel greedy algorithm

GREEDY (Alg. 1) which is based on iteratively applying the

optimal DPSCS approach to a subset of sequences. GREEDY

first partitions the FRR sequences F into small groups of con-

3 There exists a constant δ > 0 such that, if SCS has a polynomial-time
approximation algorithm with ratio logδ n, where n is the number of input
sequences, then NP is contained in DTIME(2polylogn).

6

table T1

FRRid port_set

1 00010111

2 00111100

3 10111000

4 01110100

→

table T2

port_set status fwd

1******* ***1 3

*1****** *1** 1

1*** 1*** 0

1* **1* 2

****1*** *1** 1

*****1** ***1 3

******1* *1** 1

*******1 1*** 0

Figure 6: GREEDY TCAM implementation.

stant size d, which are then solved optimally using DPSCS.

More specifically, GREEDY merges subsolutions sequentially,

by feeding the DPSCS subroutine with (currscs, F(i−1)d+1,

. . . , Fid) where currscs is the intermediate SCS solution. We

show an example of GREEDY in Fig. 5 with four sequences

F1=〈2 3 1 0〉, F2 =〈0 2 1 3〉, F3=〈3 0 2 1〉, and F4=〈1 0 2 3〉,
where d = 1. GREEDY first computes the SCS between F1

and F2 using DPSCS, obtaining the sequence 〈0 2 1 3 1 0〉.
It then computes the SCS between this sequence and the

next one, that is, F3, again using DPSCS on just these two

sequences. The output is then fed as input to the last SCS

computation with F4, returning a sequence of 8 elements. We

show the TCAM implementation of this sequence in Fig. 6.

The dynamic program DPSCS is based on a (n× n+ 1)-
dimensional matrix M and can be used to compute the shortest

common supersequence when the number of input sequences,

n, is constant. The complexity of GREEDY is n
d
O(kd), and

assuming d is constant, we have O(nkd).

The HIERARCHICAL heuristic. An alternative approach is to

merge subsequences hierarchically (in a tournament fashion),

rather than sequentially like in GREEDY.4 This idea is pursued

by the HIERARCHICAL algorithm (Alg. 2). As we will see,

such an algorithm is faster than GREEDY and computes sub-

sequences of length similar to GREEDY. Like GREEDY, HI-

ERARCHICAL uses DP-SCS to compute optimal solutions in

polynomial time for a constant number of sequences, splitting

F into d sets M1, . . . ,Md. However, unlike GREEDY, HI-

ERARCHICAL merges these optimal sequence hierarchically,

using DP-SCS (H-SCS(M1), . . . , H-SCS(Md)). In Fig. 7,

we show an example with HIERARCHICAL using the same

four sequences as in the GREEDY example and setting d = 2.

The lowest level of the recursion in HIERARCHICAL computes

the SCS among pairs of sequences using DPSCS, i.e., F1

with F2 and F3 with F4. The two resulting SCS sequences

are fed as input to a final SCS computation (again using

DPSCS) in order to obtain the output of HIERARCHICAL.

The asymptotical complexity of this algorithm is the same as

GREEDY. At the lowest level of the hierarchy, there will be n
d

executions of the DP-SCS; at the previous level we have n
d2

executions, and so on. This results in O(nkd) complexity.

The FAST-GREEDY heuristic. The DPSCS algorithm com-

putes optimal solutions at the cost of running time, i.e.,

exponential time in the number of sequences. For this reason,

we introduce FAST-GREEDY (Alg. 3), which strikes a different

trade-off in terms of fast running time and reasonably good

accuracy. At each iteration, we trim the left-most element

4We note that this algorithm has traditionally been used to solve general
SCS problems [35], thus we use it only as a means of comparison.

Algorithm 2 Definition of HIERARCHICAL (H-SCS).

Global parameters: A constant d ∈ N
Input: A set F = {F1, . . . , Fn} of FRR sequences

1) If |F| ≤ d
◦ return DP-SCS (F)

2) else

a) split F into d sets M1, . . . ,Md

b) return DP-SCS (H-SCS(M1), . . . , H-SCS(Md))

F1=2 3 1 0

F2=0 2 1 3

F3=3 0 2 1

F4=1 0 2 3

0 2 1 3 1 0

3 1 0 2 3 1

3 1 0 2 1 3 1 0

Figure 7: HIERARCHICAL example.

Algorithm 3 Definition of FAST-GREEDY.

Input: A set F = {F1, . . . , Fn} of FRR sequences

each of length k, where fi,j is the j’th element of

sequence Fi.

1) Set currscs :=〈〉
2) Repeat until ∃i ∈ [1, . . . , n], |Fi| > 0

• Let S = {i | |Fi| = m, i ∈ [1, . . . , n]}, where

m = maxi |Fi|
• Let a be the most frequent element in {fi,1 | i ∈
S}

• ∀i ∈ S , if fi,1 = a then Fi = 〈fi,2, . . . , fi,k〉
• currscs := currscs ∪ 〈a〉

3) return currscs

F1=2 3 1 0

F2=0 2 1 3

F3=3 0 2 1

F4=1 0 2 3

remove 2

F1=3 1 0

F2=0 2 1 3

F3=3 0 2 1

F4=1 0 2 3

remove 0

F1=3 1 0

F2=2 1 3

F3=3 0 2 1

F4=1 0 2 3

remove 3

F1=1 0

F2=2 1 3

F3=0 2 1

F4=1 0 2 3

remove 1

F1=0

F2=2 1 3

F3=0 2 1

F4=0 2 3

remove 0

F1= ---

F2=2 1 3

F3=2 1

F4=2 3

remove 2

F1= ---

F2=1 3

F3=1

F4=3

remove 1

F1= ---

F2=3

F3= ---

F4=3

remove 3

Figure 8: FAST-GREEDY example.

from some of the input sequences according to the following

approach. First, the algorithm identifies the set S of the

longest sequences at the current iteration. Then, it looks

at the leftmost elements of all these longest sequences and

identifies the one that appears most often (ties are broken

arbitrarily). This “most-frequent” element (denoted as a) is

removed from the sequences in S where it appears as the left-

most element, and added to the resulting SCS sequence. The

process continues until all the input sequences are empty. The

running time of FAST-GREEDY is O(n2k) — much faster than

any O(kn) DPSCS-based heuristic, where k is the size of a

7

Table T1

FRRid port_set

1 10111000

2 01010101

3 00101110

4 00011101

→

Table T2

port_set status fwd

1******* **1* 2

*1****** 1*** 0

1*** ***1 3

1* *1** 1

****1*** 1*** 0

*****1** **1* 2

******1* 1*** 1

*******1 ***1 3

Figure 9: FAST-GREEDY TCAM implementation.

FRR sequence. Note that we look at the most frequent element

among the longest sequences as this helps in making progress

over all the sequences. In Fig. 8, we show an example of FAST-

GREEDY with four sequences F1=〈2 3 1 0〉, F2 =〈0 2 1 3〉,
F3=〈3 0 2 1〉, and F4=〈1 0 2 3〉. We highlight with a green

background the longest sequences during the computation,

which are those sequences from which we extract the most

frequent element. At the beginning, all sequences have the

same length and all the left-most elements appear exactly

once. The algorithm selects 2 as the most frequent element and

removes it from all the sequences where it appears as the left-

most element, i.e., only from F1. FAST-GREEDY then applies

the same procedure until the input sequences are empty.

Consider the 3rd stage where FAST-GREEDY selects element 3
as the most frequent and removes it. The element is removed

from F3 (where we selected it) and also from F1 where it

appears as the left-most element. The final supersequence is

〈2 0 3 1 0 2 1 3〉. By iteratively removing the common left-

most elements of each subsequence, we can guarantee the

final sequence will be a supersequence of each individual

subsequence.

We now analyze the computational complexity of FAST-

GREEDY. At each iteration, finding the most frequent left-most

element costs O(n) and each element is removed exactly once

so the number of removals is O(nk). Thus, the running time

of this algorithm is O(n2k).

Multi-table optimization. Here we consider the problem

where the FRR encoding can be realized across multiple

tables instantiated in the same pipeline stage, which is pos-

sible on today’s programmable switches [36]. This allows to

build even more compact representations of a set of FRR

sequences. In some cases, using multiple tables may also

be necessary as hardware switches cannot handle tables of

arbitrary width, e.g., 512 bits. We describe a heuristic that

carefully groups FRR sequences based on a novel insight into

the algorithmic theory of strings, which is tailored for the

specific case of FRR sequences (i.e., no element repetitions).

As an example, consider the same FRR sequences used for

the previous heuristics (see Fig. 8). Initially, S = S′ =
{(2, 3, 1, 0), (0, 2, 1, 3), (3, 0, 2, 1), (1, 0, 2, 3)} and assume the

maximum TCAM width is 10 bits. Clearly, we cannot realize

the solution obtained from FAST-GREEDY since it requires 8
TCAM bits for the port_set and 4 bits for the status. We

can however create two tables, each of 10 bits for the TCAM

width. In the first table, the enconding of the port_set

is (0, 2, 3, 1, 0, 3) while the encoding in the second table is

(1, 3, 0, 2, 1, 3). This requires 10 bits per table and encodes

the first (last) two FRR sequences in the first (second) table.

Algorithm 4 Definition of MULTITABLE-SCS (MT-SCS).

Function input: A set F = {F1, . . . , Fk} of FRR sequences,

and a max TCAM width of t > 0.

1) Let S = {}, add {F1}, . . . , {Fk} into S, and let f =
True

2) Repeat until f is True or ∃f ∈ S s.t. |f | > t
a) S′ = S and (Si, Sj) := maxi,j LCS(Si ∪ Sj)
b) add {Si, Sj} into S′ and remove Si and Sj from S′

c) if cost(S) ≤ cost(S′) and ∄f ∈ S s.t. |f | > t, then

f =False; else S = S′

3) return S

Algorithm 5 FAST-LCS: LCS without repetitions.

Function input: A universe U of elements and a set

F = {F1, . . . , Fn} of sequences each of length r, where

fi,j ∈ U indicates the j’th element of sequence Fi.

1) Build G(V,E) where V = U ∪ {s} contains a node for

each element in U and E contains a directed arc (a, b)
if a appears before b in all sequences. E also contains

(s, v) for all v ∈ U .

2) Compute the longest paths from s to any vertex of G
through a topological sorting of G from s.

3) return the longest path

The MULTITABLE-SCS heuristic. One way to “pack” FRR

sequences into multiple tables is to aggregate similar FRR

sequences together. Intuitively, this allows similar sequences to

share a small port_set vector, potentially achieving lower

memory overhead than with a single table. Finding similar

sequences leads us to consider a complementary problem

to SCS, i.e., the Longest Common Subsequence (LCS) [37]

problem.5 LCS is renowned for being NP-hard, but again, in

our context, we do need to consider LCS with a tweak: we

do not have any repetitions. This again poses the problem of

whether the NP-hardness of the LCS holds without repetitions.

Interestingly, in this case, we find that this version can be

solved efficiently, in polynomial time (i.e., O
(

nk2
)

). This

result is of independent interest.

Theorem 2. The LCS problem without repetitions is

polynomial-time solvable.

Proof. The proof is constructive and based on Alg. 5. The first

algorithm is by reduction: we note (step (1)) that we can build

a directed graph between the characters as follows: there is an

arc from character a to character b if a is before b in every

string. Now observe that only characters connected with arcs

can appear in the LCS at the same time. The graph must be

acyclic by construction. The problem boils down to finding

the longest path in an acyclic directed graph, which can be

solved efficiently where k is the size of a sequence.

We consider LCS as a way to efficiently group FRR

sequences into different tables so that the encoding of each

group of sequences fits within the maximum TCAM width

t or it produces an overall smaller cost than having a single

5Note that, formally, LCS is not the dual problem of SCS.

8

table. In MULTITABLE-SCS (Alg. 4), we divide the input FRR

sequences into n sets (step (1)) and then aggregate the two

sets Si and Sj with the largest LCS (steps (2a) and (2b)).

If aggregating these elements produces a lower memory cost

or reduces the amount of violations of the TCAM maximum

width, we repeat the procedure. We stop it otherwise and return

the set partitioning, each set corresponding to a table encoding.

IV. IMPLEMENTATION

In order to verify the feasibility of our primitive, we made

several implementations. In the following, we will first report

on P4-based implementations (i.e., bmv2 [15] and Tofino) and

will then discuss a Verilog implementation on the NetFPGA.

P4-based implementations. We successfully implemented

our primitive for a number of existing FRR mechanisms,

including arborescence-based FRR mechanisms [25], as well

as the Depth First Search (DFS), Breadth First Search (BFS)

and the rotor router mechanisms in [38]. We also success-

fully implemented our primitive on the Tofino switch, further

confirming the feasibility of our approach. We will share

our implementations together with this paper. We note that

implementing PURR in P4 simply requires to install the two

tables showed in Fig. 4b in the existing forwarding pipeline.

The first table only requires an exact match operation while

the second table requires the most complex wildcard match.

FPGA-based implementation. We built our prototype on

the NetFPGA-SUME [17], which is a PCIe adapter card with

4x10 Gbps Ethernet interfaces and an FPGA Xilinx Virtex-7.

We leveraged the existing layer-2 switch implementation

provided with NetFGPA-SUME package to deploy PURR. In

this system, packets first enter the device through one of the

four 10 Gbps network interfaces where packets are stored in

First-In-First-Out (FIFO) memory units, named input queues.

The interface modules are connected to the input arbiter.

The arbiter switches between the input queues in a round

robin fashion, each time selecting a non-empty queue and

moving one packet from it to the next stage in the data

path. From the input arbiter on, there is a single pipeline

with a data width of 256 bits running at the frequency of

200 MHz, thus guaranteeing enough bandwidth to support

40 Gbps transmission rates. The forwarding logic comes after

the input arbiter. It is responsible for selecting the output

port based on standard layer-2 switching operation. After the

decision is made, the packet reaches the PURR primitive

logic. Here, constant monitoring of the physical network

interfaces status is needed to activate the programmed FRR

mechanism. Indeed, the appropriate output port is selected

based on the status of the physical network interfaces and

the result of a matching against the TCAM memory. If the

originally selected destination port is active, then nothing

changes. In contrast, if the selected port is down, the new

destination port will be selected based on the TCAM matching

result, which depends on the adopted FRR algorithm.

V. EVALUATION

We now assess the performance of the algorithms introduced

in §III for encoding a set of FRR sequences into a TCAM

memory. We evaluate them along two dimensions: the amount

of memory (bits) needed to encode the FRR sequences and

their running time. First we focus on a single switch that

gets a set of FRR sequences as input and encodes them in

a TCAM memory. Then, we set up a datacenter Clos network

and implement the state-of-the-art FRR mechanism for Clos

networks, i.e., F10 [11], using circular FRR sequences. Using

this scenario, we run simulations in ns3 to study the impact of

using PURR w.r.t. an approach based on recirculating packets.

A. FRR Encoding

In this section, we answer the following question: “How

much TCAM memory (in bits and entries) do we need to

implement a given set of FRR sequences?”. We implement

DPSCS, GREEDY, HIERARCHICAL, and FAST-GREEDY in

Python and consider three different dimensions: i) the number

of FRR sequences n, ii) the size k of the FRR sequences, iii)

we either generate random sequences or construct sequences

derived from existing FRR mechanisms. For each simulation

setting, we run 6 simulations with different seeds.

Encoding FRR sequences is crucial in high port density

switches. We first evaluate the NAÏVE approach described

in Fig. 4a and compare with our encoding-based mechanism

described in Fig. 4b. The results are based on the calculations

described in §III-B. We consider the family of FRR mecha-

nisms (e.g., F10 [11], DFS [26], basic arc-disjoint spanning

trees [25], [39]), which rely on circular FRR sequences.

Realizing a circular FRR sequence over 8, 16, 32, and 64 ports

takes 1.5x, 2.8x, 5.5x, and 10.8x higher memory requirements

than using an encoding-based implementation, respectively.

A PDP with 64 ports would require 327 KB of TCAM to

implement 10 circular FRR sequences. This corresponds to 2
pipeline stages on the RMT architecture and 5 stages in other

programmable data planes [14]. An encoded approach would

require 30 KB, one tenth of the TCAM memory contained in

a single stage of the RMT architecture [29].

FAST-GREEDY performs close to the optimum and is fast.

We now compare FAST-GREEDY against the optimum SCS

solver, i.e., DPSCS. We set the size of the sequences to 7
elements and vary the number of sequences from 2 to 7.

Fig. 10a and Fig. 10b show that FAST-GREEDY performs

remarkably close to the optimum while it consumes roughly

20% more TCAM bits and 10% more TCAM entries than

the optimum. We report the processing time in Fig. 10c.

As expected, dynamic programming grows exponentially in

the number of sequences, requiring 15 minutes to find the

optimum SCS for even just 8 sequences. In contrast, FAST-

GREEDY runs in less than one millisecond.

FAST-GREEDY works best on large sets of sequences. We

compare our three heuristics using larger instances. We plot

our results for the consumption of TCAM memory in Fig. 11a,

Fig. 11b, and Fig. 11c for sequences with 8, 16, and 32
elements each, respectively, followed by their corresponding

running times in Fig. 11d, Fig. 11e, and Fig. 11f, respectively.

We draw two main conclusions. First, for large number of

sequences (i.e, ≥ 100), FAST-GREEDY outperforms both

9

2 3 4 5 6 7 8

number of sequences

0

200

400

600

800

1000

M
e
m

o
ry

c
o
s
t
[b

it
]

dpscs

greedy

hierarchical

fastgreedy

(a) Memory consumption in TCAM bits.

2 3 4 5 6 7 8

number of sequences

0

10

20

30

#
T

C
A

M
e
n
tr

ie
s dpscs

greedy

hierarchical

fastgreedy

(b) Memory consumption in TCAM entries.

2 3 4 5 6 7 8

number of sequences

10
−1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

T
im

e
[m

s
]

dpscs

greedy

hierarchical

fastgreedy

(c) Processing time.

Figure 10: Comparison of FAST-GREEDY with respect to the optimum. The size of the sequences is set to 7.

GREEDY and HIERARCHICAL in both TCAM memory utiliza-

tion and running times. Second, GREEDY and HIERARCHICAL

require one second to process merely 20 sequences. FAST-

GREEDY can process tens of thousand of sequences in the

same amount of time, thus achieving higher scalability.

FAST-GREEDY compresses hundreds of thousands of FRR

sequences within limited memory. Fig. 12a and Fig. 12b

show the amount of memory in bits and the number of entries

required to implement a given set of FRR sequences. By

doubling the number of ports on a switch, the number of

TCAM entries increases roughly by a factor of 3.5x while

the number of TCAM bits increases by a factor of 7x. The

required memory stabilizes around 1000 FRR sequences, after

which the encoding is capable of realizing the vast majority of

possible FRR sequences provided as input to FAST-GREEDY.

Compressing short sequences provides larger memory

saving. We also evaluated the case where we have a switch

with a large number of ports but the length of the sequences

is small. For instance, on a 64-port switch, an operator may

define FRR sequences of size 5 to protect against any arbitrary

4 possible link failures. Using the Naı̈ve approach described

in Fig. 4a, one would have to define all possible 4 elements

sequences out of 64 elements, i.e., 64!/(64− 4)! 900 million

sequences each requiring 5 TCAM entries. Using PURR, one

can compute a single SCS containing the 64 ports repeated

five times, i.e., 320 TCAM entries. We refer to the ratio

between the memory (in bits) used by the Naı̈ve approaches

and the memory used by PURR as the memory savings. In

Fig. 12c, we show the memory savings (y-axis) with PURR

for increasing sizes of FRR sequences (x-axis) and different

number of ports on the switch (different lines) in percentages.

We note that on a switch with 8 ports (green line) and FRR

sequences of size 8, PURR uses ∼ 0, 1% of the memory

used by the Naı̈ve approach. When the switch has 16, 32,

or 64, PURR reduces the memory requirements by 7, 9, 11
orders of magnitudes (not visible in the figure), respectively.

We can observe that the memory savings exist also for very

short sequences of just two elements per FRR sequence and

grows exponentially for increasing sizes of FRR sequences.

Memory requirements of state-of-the-art FRR mecha-

nisms. We so far evaluated the memory requirements when

the input of the problem consisted of randomly derived FRR

sequences. One may ask whether existing FRR mechanisms

(robust to multiple failures) would require higher or lower

memory than random sequences. To the best of our knowledge,

the best general FRR mechanisms that are i) scalable, ii)

robust to multiple failures, and iii) do not require expensive

transactional high-speed memories on the chip are those based

on computing a set of “arc-disjoint” spanning trees [25], [40].

We quantify the memory requirements of an arc-disjoint FRR

mechanism, called tree, in Fig. 13 deployed on Jellyfish [41]

datacenter topologies. Through tree, all the spanning trees are

ordered in a sequence and a packet is rerouted once on the

next spanning tree and once “bounced” on the opposite tree

each time it hits a failed link. Our results show that the FRR

sequences created via tree-based FRR approaches induce the

same memory requirements of random sequences.

Multiple tables. We ran simulations using random sequences

in order to assess the benefits of splitting a set of FRR

sequences into multiple tables. In each simulation, we gen-

erate between 10 and 100K different random FRR sequences

and run the LCS-based MULTITABLE-SCS algorithm where

the cost function minimizes the amount of TCAM bits. We

observe that the algorithm always returned a single table, thus

showing limited benefits in splitting a table into multiple tables

(unless some TCAM width constraints apply). We note that

all our encodings would fit in the TCAM width of the RMT

pipeline architecture in one single stage [29].

B. Datacenter Simulations

We now investigate the following main question: How

does the FCT of latency-sensitive flows and the throughput

of bandwidth-intensive applications vary depending on the

implemented FRR primitive? We assess the impact of our FRR

primitive on a real datacenter workload. We note that PURR

can be also applied to other types of networks, e.g., WANs.

We compare PURR against the performance achieved using i)

an FRR primitive based on recirculation (“recirc”), ii) an ideal

immediate reconvergence of the control-plane (“reconv”)6, and

iii) the case in which there are no failures (“no-fail”).

Simulation reproducibility. We used ns3 [43] to evaluate the

impact of different FRR primitives. To make our simulations

realistic, we leverage the publicly-available codebase of the

state-of-the-art datacenter load balancer, i.e., Hermes [24]. We

inherit the same datacenter topology, workloads, traffic gener-

ators, routing schemes, and transport protocols. We implement

different FRR primitives and FRR mechanisms on top of this

code and evaluate their performance. Our code is released to

the public and fully reproducible [18].

6In reality, reconvergence may take up to hundreds of milliseconds or even
seconds to happen [42]. During this time, packets arriving at the failed link
would be dropped.

10

10
1

10
2

10
3

number of sequences

0

1000

2000

3000

4000

5000
M

e
m

o
ry

c
o
s
t
[b

it
]

greedy

hierarchical

fastgreedy

(a) Sequence size = 8.

10
1

10
2

10
3

number of sequences

0

10000

20000

30000

40000

50000

M
e
m

o
ry

c
o
s
t
[b

it
]

greedy

hierarchical

fastgreedy

(b) Sequence size = 16.

10
1

10
2

10
3

number of sequences

0

100000

200000

300000

400000

500000

M
e
m

o
ry

c
o
s
t
[b

it
]

greedy

hierarchical

fastgreedy

(c) Sequence size = 32.

10
1

10
2

10
3

number of sequences

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

T
im

e
[µ
s
]

greedy

hierarchical

fastgreedy

(d) Sequence size = 8.

10
1

10
2

10
3

number of sequences

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

T
im

e
[µ
s
]

greedy

hierarchical

fastgreedy

(e) Sequence size = 16.

10
1

10
2

10
3

number of sequences

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

T
im

e
[µ
s
]

greedy

hierarchical

fastgreedy

(f) Sequence size = 32.

Figure 11: Comparison of TCAM memory bits and processing times with respect to the number of sequences.

10
1

10
2

10
3

10
4

10
5

number of sequences

10
2

10
3

10
4

10
5

10
6

10
7

M
e
m

o
ry

c
o
s
t
[b

it
]

k=8 k=16 k=32

(a) Memory consumption in TCAM bits.

10
1

10
2

10
3

10
4

10
5

number of sequences

10
1

10
2

10
3

#
T

C
A

M
e
n
tr

ie
s k=8 k=16 k=32

(b) Memory consumption in TCAM entries.

2 3 4 5 6 7 8

Length of sequences

10
−4

10
−2

10
0

10
2

M
e
m

o
ry

s
a
v
in

g
s

[%
]

8

32

16

64

(c) Memory savings for different number of ports.

Figure 12: (a-b) FAST-GREEDY with FRR sequences of size k. (c) Memory savings.

10
2

10
3

10
4

10
5

number of sequences

20000

30000

40000

50000

M
e
m

o
ry

c
o
s
t
[b

it
]

random

tree

Figure 13: (a-b) FAST-GREEDY with FRR sequences of size k.

(c) Comparing random and tree [25] sequences.

S1 S2 S3 S4

… … … …

L1 L2 L3 L4

spine

switches

8x10Gbps

leaf

switches

1st failed link

4x10Gbps

2nd failed

link

43
2

1

4
3

21

Figure 14: Topology used for simulated evaluation.

Topology. We instantiate 4 leaf and 4 spine switches (see

Fig. 14). Each leaf switch interconnects 8 servers. All links

are 10 Gbps. The switching fabric has a 2 : 1 oversubscription

factor [44], [24]. The buffer size is 100 packets per port. The

maximum packet size is 1.3 KB. The leaf-spine and leaf-server

link delays are 10 µs and 1 µs, respectively.

Routing and congestion control. We rely on the widely

adopted Valiant Load Balancing (VLB) routing mechanisms

to forward traffic in the datacenter [45]. Each flow between

two servers connected to two distinct leaf nodes is forwarded

to a random spine node and then directly to the destination

leaf node. VLB has been widely implemented using OSPF/

ECMP [46], which splits flows using a deterministic hash-

based equal traffic splitting mechanism.

Transport protocols. We use DCTCP [47] as the congestion

control mechanism. DCTCP supports low-latency and high-

throughput communication. We use the same parameters used

in Hermes, setting the ECN threshold to [15, 15] packets.

FRR mechanism: F10 [11]. We implement F10 as the FRR

mechanism. F10 is the state-of-the-art FRR mechanism in

datacenter networks. In a datacenter with k links between

a leaf node and the above spine layer, F10 is capable of

tolerating up to k−1 link failures, i.e., packets are guaranteed

to reach their correct destination without entering transient

forwarding loops or being dropped. F10 relies on circular FRR

sequences, which we implement on all the network nodes.

For example, in Fig. 14, the circular sequence at node S4 is

〈1, 2, 3, 4〉, which means that when both links (L4, S4) and

(L1, S4) fail, a packet that should be sent on port 4 would

instead be sent on port 2, which is the first non-failed port in

the circular sequence. When the packet is received at node L2,

we apply again circular FRR forwarding and the packet is sent

to S1, which, in turn, forwards it to the correct destination.

Workloads. We use two empirically-derived realistic work-

loads: i.e., web-search [47] and data-mining [45]. Both dis-

tributions are heavy-tailed, with the data-mining workload

being more skewed, thus causing higher imbalances due to

ECMP. The traffic generator is based on the work in [48],

which generates flows between inter-cluster hosts according

to a Poisson distribution and the given network load, which

11

10 20 30 40 50 60 70

Load [%]

0.0

0.5

1.0

1.5

2.0

S
m

a
ll

fl
o
w

s
F

C
T

[m
s
]

recirc

reconv

purr no-fail

(a) Data-mining, 1 link failure.

10 20 30 40 50 60 70

Load [%]

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

9
9
-s

m
a
llF

C
T

[m
s
]

recirc

reconv

purr no-fail

(b) Data-mining, 1 link failure.

10 20 30 40 50 60 70

Load [%]

10
0

10
1

T
h
ro

u
g
h
p
u
t
[G

b
p
s
]

recirc

reconv

purr no-fail

(c) Data-mining, 1 link failure.

10 20 30 40 50 60 70

Load [%]

0.0

0.5

1.0

1.5

2.0

S
m

a
ll

fl
o
w

s
F

C
T

[m
s
]

recirc

reconv

purr no-fail

(d) Data-mining, 2 links failures.

10 20 30 40 50 60 70

Load [%]

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

9
9
-s

m
a
llF

C
T

[m
s
]

recirc

reconv

purr no-fail

(e) Data-mining, 2 links failures.

10 20 30 40 50 60 70

Load [%]

10
0

10
1

T
h
ro

u
g
h
p
u
t
[G

b
p
s
]

recirc

reconv

purr no-fail

(f) Data-mining, 2 links failures.

Figure 15: Comparison between PURR and RECIRCULATION FRR primitives under 1 and 2 link failures.

ranges between 10% and 70%, a typical network utilization

in a datacenter [48]. We distinguish between small flows (i.e.,

size ≤ 100 KB) and large flows (i.e., size ≥ 10 MB).

Metrics. For each network load, workload, and FRR primitive,

we simulate 4 seconds of traffic. For the RECIRCULATION and

PURR FRR primitives, we fail one or two links after 500 ms

from the start of the simulation. This effectively simulates a

failure of 3.5s, which is a worst-case scenario in datacenter

networks [49]. For the OSPF reconvergence approach, we fail

one or two links at time zero and immediately recompute

the optimal routing. We measure the FCT, defined as the

time difference between the last received packet and the

first “time-scheduled” sent packet, for all the flows that end

after 500 ms. We use the OSPF reconvergence simulation to

compute an upper bound on the optimal FCT achievable by

an FRR primitive. For each setting, we ran a minimum of 40
simulations and compute the average and 99’th percentile of

the FCT and flow throughput.

Modeling packet recirculation in ns3. When we recirculate

a packet in a PDP, the packet moves back to the ingress

pipeline, thus congesting the ingress buffer. Since ns3 does

not model ingress buffers, we add one “virtual ingress buffer”

node in front of each port. We set all latencies to zero so

as to mimic an ingress buffer attached to the pipeline. We

collaborated with a network engineer from a manufacturer of

hardware PDPs to make the model general without breaching

our non-disclosure agreement.

PURR dramatically improves the FCT of small flows.

We ran our simulations for the data-mining workload using

the aforementioned setting and we collected our results in

Fig. 15. With low network loads, e.g., 10%, and one link

failure (see Fig. 15a) we observe that our FRR primitive

reduces the FCT of the small flows from the 653 µs with

packet recirculation to 384 µs. This means that the FCT

overhead introduced by FRR compared to the 295 µs of the

reconverged approach is reduced by a factor of 4.3x. The main

reason packet recirculation incurs a higher FCT at low network

loads is the packet recirculation operation, which requires

to traverse the forwarding pipeline (including its possibly

congested ingress buffer) a second time. Even at higher loads,

the PURR FRR primitive reduces the FCT overhead by a factor

of 2x compared to recirculating a packet. At higher network

loads, we note that PURR performs worse than the control

plane approach. This happens because PURR routes packets to

a core node that does not have a valid downward path towards

the destination. This means the traffic has to be rerouted to

a leaf node and bounced back to another core node with

a valid downward path. Consequently, PURR creates more

congestion on the buffers at the core node adjacent to the

failed link, which increases the FCT of the small flows. The

control plane approach instead routes these affected flows of

traffic directly to a core node with a non-failed downward path

to the destination. With two link failures (Fig. 15d) the trends

are similar though the improvements at 10% and 70% network

loads reach 5.5x and 2.8x as the buffers become even more

congested than with one single failure.

PURR guarantees near-optimal throughput at low net-

work loads. We measure the throughput of the largest flows in

the network and compare it among the same four approaches in

Fig. 15c and Fig. 15f under 1 and 2 failures, respectively. The

throughput of the large flows is computed as the ratio between

the amount of all the received bytes and the sum of the

FCTs. We note that at 10% network load, PURR achieves the

same throughput of the reconverged approaches, approaching

8 Gbps, a factor of 2x higher than with packet recirculation.

As the network load increases, the throughput of PURR quickly

decreases, faster than in the reconverged setting. This sharper

drop of throughput can be explained by the simple fact that at

higher load, the impact of going through a node with a lower

available bandwidth is exacerbated. We observe one peculiar

result that seems counter-intuitive. We note that we cannot

compare the performance between one and two link failures,

as both the set of affected flows as well as the number of flows

12

10 20 30 40 50 60 70

Load [%]

1.0

1.5

2.0

2.5

3.0

N
o
rm

.
S

m
a
ll

F
C

T recirc imm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o
rm

.
T

h
ro

u
g
h
p
u
t

recirc imm

(a) Web-search, 1 link failure.

10 20 30 40 50 60 70

Load [%]

1.0

1.5

2.0

2.5

3.0

N
o
rm

.
S

m
a
ll

F
C

T recirc imm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o
rm

.
T

h
ro

u
g
h
p
u
t

recirc imm

(b) Web-search, 2 link failures.

Figure 16: FCT and throughput of the large flows normalized

with respect to the PURR FRR primitive.

reaching the node with two failed links are different.

For instance, with two failures, the amount of traffic re-

ceived by leaf node L4 is half than with a single failure.

PURR improves performance on different workloads.

We run simulations using the web-search [45] workload and

measure the FCT of the small flows and the throughput of

the large flows. Fig. 16 quantifies the performance drop of

RECIRCULATION normalized with respect to PURR. As for

the data mining workload, we observe that the benefits of

PURR are higher at low network loads while they decrease as

the network becomes more congested and there is less spare

bandwidth for rerouting the affected flows.

C. FPGA Evaluation

Here, we answer the following question: “How many re-

sources do we need to implement PURR on an FPGA chip?”

Table I compares the resource utilization between a layer2

switch and the same system augmented with our primitive on

NetFPGA-SUME. FRR16, FRR32 and FRR64 represent the

case when PURR needs 16, 32, and 64 entries in the TCAM,

respectively. Such entries can be used to enable different FRR

sequences for the selected output port or to allow a single

FRR sequence in a system with a larger number of ports.

Considering the FRR16 case, PURR impacts only 0.07%

of the total available resources of the Slice Lookup Tables

(LUTs). The impact grows almost quadratically in the number

of TCAM rules. Other resources, i.e., Flip Flops and BRAM,

are not affected. This is because Slice LUTs are the main type

of resources being used to instantiate TCAMs on FPGAs.

Project Slice LUTs Flip Flops BRAM

Switch 43212 64811 204

Switch + FRR16 43523 64845 204

Switch + FRR32 44304 64901 204

Switch + FRR64 46476 65006 204

Table I: HW switch augmented with PURR

VI. FREQUENTLY ASKED QUESTIONS

Does PURR support any FRR mechanism? Yes! To the

best of our knowledge, PURR supports any deterministic FRR

mechanism in which the modifications of the header and the

selected output port only depend on the packet header itself,

the state currently stored on the switch (e.g., its registers,

tables), and the FRR sequence to be applied to the incoming

packet. If the selected outgoing port depends on the specific set

of failed ports, PURR cannot encode such FRR functions. We

are however not aware of any existing FRR scheme that would

not be implementable in PURR. As an example, consider

MPLS FRR [50], [51] where the header rewriting operation,

i.e., addition of a label on the stack, only depends on the

selected egress port and the current label. In this case, when

a packet arrives and its outgoing port is down, PURR selects

the first active outgoing port and the egress pipeline will

add the correct label identifying the backup path on that

interface for that specific packet. We note that restoration

mechanisms requiring control plane invocation require more

complex primitives than PURR, which operates at the data

plane level. We leave probabilistic FRR mechanisms (e.g.,

[30]) as future work.

Could PURR support selective traffic rerouting when

multiple links fail? Yes! When many links fail at one switch,

we could use priority queues to reroute the most critical traffic

(a small fraction of the overall traffic [52]) and drop the rest,

based on the remaining capacity. Studying how to reroute the

traffic and in which proportions is left as future work.

How does PURR deal with dynamic updates? When FRR

sequences need to be added or modified at runtime, we need

to dynamically update the match-action tables. Three cases

can happen (consider Fig. 4b): i) the mapping between bits

in the port_set vector and switch ports remains the same

ii) the mapping between bits in the port_set vector and

switch ports changes but its length remains the same iii) the

mapping between bits in the port_set vector and switch

ports changes and its length has increased. In case i), we do

not have to modify the encoding mapping in T2 and simply

modify or add the port_set entries in T1. In case ii), we

need to update or add the entries in both tables. In the first

two cases, the updates can be issued to the P4 runtime, as

long as the limit on the number of entries is not reached. In

the more remote case iii), the width of Table T2 has to be

increased and the answer clearly depends on the support from

the target device. For instance, techniques on how to partially

reconfigure an FPGA in an online manner exist [53]. Similar

techniques have been explored to dynamically reconfigure the

structure of the P4-based PISA forwarding tables [54], [55].

We note that an operator does not have to recompile the tables

if the sequences have non-uniform lengths as long as the

mapping allows to implement such sequences. Moreover, if

the target architecture imposes certain limits on the TCAM

table width, the multi-table approach (discussed in §III-C) can

be used for splitting the encoding across multiple tables with

a smaller width and length. Finally, we note that one can

carefully implement our encoding in a way that any update

13

to the (backup) FRR sequences does not impact the (primary)

forwarding rules, thus avoiding any disruption.

Could PURR be used to implement fast load-balancing

forwarding decisions? Yes! PURR can be generalized to

support fast forwarding decisions based on a wide range of

conditions. For instance, an operator may be interested in

sending a packet to the first active port that has ≤ 50%
utilization. We could implement such decision using a vector

similar to port status, which would however encode the

utilization of the ports. We leave this extension as future work.

VII. RELATED WORK

Connectivity disruptions in networks due to link failures are

common and happen in all kinds of networks, from wide-area

networks [56], [57] to data center networks [12]. Accordingly,

many mechanisms have been developed to provide fast re-

routing under failures entirely in the data plane, e.g., [23], [58],

[59], [30], [26], [60], [61], [11], [62], [63]. FRR mechanisms

are also included in MPLS networks [64], [4], IP networks [3]

and Openflow [20]. Detecting port failures falls beyond the

scope of this paper as it depends on specific hardware support.

FRR mechanisms can be generally categorized along different

dimensions: e.g., whether they tolerate only a single link/node

failure [65], [66], [67] or multiple ones [68], [69]; whether

routing tables are static (e.g., [11], [30], [60], [70], [69]) or

dynamic (e.g., [71], [62]); whether packet header rewriting

(e.g., [62], [61], [72], [68]) or packet duplication (e.g., [73])

is required; whether provide low stretch [74], [30] or maintain

relatively low load [75], [76], [77].

This paper complements all the above works as our goal is

not to devise a new robust routing mechanism, but rather a

primitive which can be used to efficiently implement existing

mechanisms. Several FRR primitives for quickly rerouting

traffic has been proposed, though in different contexts. BGP-

PIC [22] and Swift [58] support FRR sequences of size 2.

Plinko [69] devised both an FRR mechanism and an FRR

primitive to tolerate multiple failures. Unfortunately, the FRR

primitive is coupled with the proposed FRR mechanism, thus

it cannot support arbitrary FRR sequences. PURR is instead

general and supports arbitrary FRR sequences/mechanisms

of arbitrary size. Indeed, PURR leaves the choice of which

specific failover mechanisms to use to the network operator,

but then supports it with a low-latency and compact real-

ization, even tolerating multiple link failures. For example,

PURR could be used to realize compact implementations of

F10 [11] or [26] which are based on circular FRR sequences.

To give another example, PURR supports DDC [62], which

provides ideal forwarding connectivity by performing series of

link reversal operations dynamically, eventually complement-

ing it with load-aware FRR support as discussed in §VI.

VIII. CONCLUSION

This paper presented an FRR primitive for PDPs, which

allows to implement existing failover mechanisms with low

failover latency and high throughput. Our approach relies

on an interesting connection to a classic string manipulation

problem for which we also provide new insights, and shows

promising results on the PISA-based architectures for which

we implemented a prototype. We see our work as a first step

towards building highly robust and self-driving programmable

networks and believe that it opens several interesting avenues

for future research such as finding better heuristics possibly

with approximation gurantees. In particular, generalizing our

primitive for load-balancing purposes and supporting proba-

bilistic FRR mechanisms seem two attractive future directions.

ACKNOWLEDGEMENTS

We would like to thank Andy Fingerhut and Szymon

Dudycz for fruitful discussions. This research is supported by

the UK’s EPSRC under the EARL project (EP/P025374/1),

by the European COST Action CA15127, and by the WWTF

project WHATIF (ICT19-045).

REFERENCES

[1] M. Chiesa et al., “PURR: A Primitive for Reconfigurable Fast Reroute:
Hope for the Best and Program for the Worst”, in ACM CoNEXT’19.
DOI: 10.1145/3359989.3365410

[2] R. Sedar et al., “Supporting Emerging Applications With Low-
Latency Failover in P4”, in ACM SIGCOMM Workshop on Net-

working for Emerging Applications and Technologies’18. DOI:
10.1145/3229574.3229580

[3] A. Atlas and A. D. Zinin, “Basic Specification for IP Fast Reroute:
Loop-Free Alternates”, RFC 5286, Sep. 2008. DOI: 10.17487/RFC5286

[4] A. Atlas et al., “Fast Reroute Extensions to RSVP-TE for LSP Tunnels”,
RFC 4090, May 2005. DOI: 10.17487/RFC4090

[5] A. Kamisiński, “Evolution of IP Fast-Reroute Strategies”, in IEEE

RNDM’18. DOI: 10.1109/RNDM.2018.8489832

[6] P. Bosshart et al., “P4: Programming Protocol-Independent Packet
Processors”, SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, Jul.
2014. DOI: 10.1145/2656877.2656890

[7] V. Sivaraman et al., “Heavy-Hitter Detection Entirely in the Data Plane”,
in ACM SOSR’17. DOI: 10.1145/3050220.3063772

[8] C. Kim et al., “In-band network telemetry via programmable
dataplanes”, in ACM SIGCOMM Demos’15. [Online]. Available:
https://nkatta.github.io/papers/int-demo.pdf

[9] N. Katta et al., “Clove: Congestion-Aware Load Balancing at the Virtual
Edge”, in ACM CoNEXT’17. DOI: 10.1145/3143361.3143401

[10] Barefoot, “In-Network DDoS Detection”, November 2018, https://
barefootnetworks.com/use-cases/in-nw-DDoS-detection/.

[11] V. Liu et al., “F10: A Fault-Tolerant Engineered Network”,
in USENIX NSDI’13. [Online]. Available: https://www.usenix.org/
conference/nsdi13/technical-sessions/presentation/liu vincent

[12] P. Gill et al., “Understanding Network Failures in Data Centers: Mea-
surement, Analysis, and Implications”, in ACM SIGCOMM’11. DOI:
10.1145/2018436.2018477

[13] A. Markopoulou et al., “Characterization of Failures in an Operational IP
Backbone Network”, IEEE/ACM Transactions on Networking, vol. 16,
no. 4, 2008. DOI: 10.1109/TNET.2007.902727

[14] K. Qian et al., “FlexGate: High-Performance Heterogeneous Gateway
in Data Centers”, in ACM APNet’19. DOI: 10.1145/3343180.3343182

[15] P. L. Consortium, “Behavioral Model (BMv2)”, June 2019, https:
//github.com/p4lang/behavioral-model.

[16] Barefoot, “Tofino: World’s fastest P4-programmable Ethernet switch
ASICs”, 2019, http://barefootnetworks.com/products/brief-tofino/ (ac-
cessed on June 26, 2019).

[17] N. Zilberman et al., “NetFPGA SUME: Toward 100 Gbps as
Research Commodity”, IEEE Micro, vol. 34, no. 5, 2014. DOI:
10.1109/MM.2014.61

[18] GitHub, “PURR Repository”, 2019, https://bitbucket.org/marchiesa/purr.

[19] P. L. Consortium, “P4 Language Specification”, May 2017, https://p4.
org/p4-spec/p4-14/v1.0.4/tex/p4.pdf (accessed on June 26, 2019).

[20] O. N. Foundation, “Switch specification 1.3.1”, September 2012,
https://www.opennetworking.org/wp-content/uploads/2013/04/
openflow-spec-v1.3.1.pdf.

[21] P4-dev maling list, 2018, http://lists.p4.org/pipermail/p4-dev lists.p4.
org/2016-May/002027.html.

http://dx.doi.org/10.1145/3359989.3365410
http://dx.doi.org/10.1145/3229574.3229580
http://dx.doi.org/10.17487/RFC5286
http://dx.doi.org/10.17487/RFC4090
http://dx.doi.org/10.1109/RNDM.2018.8489832
http://dx.doi.org/10.1145/2656877.2656890
http://dx.doi.org/10.1145/3050220.3063772
https://nkatta.github.io/papers/int-demo.pdf
http://dx.doi.org/10.1145/3143361.3143401
https://barefootnetworks.com/use-cases/in-nw-DDoS-detection/
https://barefootnetworks.com/use-cases/in-nw-DDoS-detection/
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/liu_vincent
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/liu_vincent
http://dx.doi.org/10.1145/2018436.2018477
http://dx.doi.org/10.1109/TNET.2007.902727
http://dx.doi.org/10.1145/3343180.3343182
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
http://barefootnetworks.com/products/brief-tofino/
http://dx.doi.org/10.1109/MM.2014.61
https://bitbucket.org/marchiesa/purr
https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf
https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf
https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.3.1.pdf
https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.3.1.pdf
http://lists.p4.org/pipermail/p4-dev_lists.p4.org/2016-May/002027.html
http://lists.p4.org/pipermail/p4-dev_lists.p4.org/2016-May/002027.html

14

[22] Cisco, “BGP PIC Edge for IP and MPLS-VPN”, 2014,
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute bgp/
configuration/xe-3s/irg-xe-3s-book/irg-bgp-mp-pic.html.

[23] O. Bonaventure et al., “Achieving Sub-50 Milliseconds Recovery Upon
BGP Peering Link Failures”, IEEE/ACM Transactions on Networking,
vol. 15, no. 5, 2007. DOI: 10.1109/TNET.2007.906045

[24] H. Zhang et al., “Resilient Datacenter Load Balancing in the Wild”, in
ACM SIGCOMM’17. DOI: 10.1145/3098822.3098841

[25] M. Chiesa et al., “On the Resiliency of Randomized
Routing Against Multiple Edge Failures”, in ICALP’16. DOI:
10.4230/LIPIcs.ICALP.2016.134

[26] M. Borokhovich et al., “Provable Data Plane Connectivity with Lo-
cal Fast Failover: Introducing Openflow Graph Algorithms”, in ACM

HotSDN’14. DOI: 10.1145/2620728.2620746

[27] M. Chiesa et al., “A Survey of Fast Recovery Mechanisms
in the Data Plane”, May 2020, IEEE TechRxiv. DOI:
10.36227/techrxiv.12367508.v2

[28] R. Ozdag, “Intel R Ethernet Switch FM6000 SeriesSoft-
ware Defined Networking”, 2012, Whitepaper, Intel Corpo-
ration. [Online]. Available: https://people.ucsc.edu/∼warner/Bufs/
ethernet-switch-fm6000-sdn-paper.pdf

[29] P. Bosshart et al., “Forwarding Metamorphosis: Fast Programmable
Match-Action Processing in Hardware for SDN”, in ACM SIG-

COMM’13. DOI: 10.1145/2486001.2486011

[30] M. Chiesa et al., “The quest for resilient (static) forwarding tables”, in
IEEE INFOCOM’16. DOI: 10.1109/INFOCOM.2016.7524552

[31] D. Gusfield, “Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology”. Cambridge University Press,
1997. DOI: 10.1017/CBO9780511574931

[32] “The shortest common supersequence problem over binary alphabet is
NP-complete”, Theoretical Computer Science, vol. 16, no. 2, 1981. DOI:
10.1016/0304-3975(81)90075-X

[33] T. Jiang and M. Li, “On the approximation of shortest common su-
persequences and longest common subsequences”, in ICALP’94. DOI:
10.1007/3-540-58201-0 68

[34] Wikipedia, “Shortest common supersequence problem”, https:
//en.wikipedia.org/wiki/Shortest common supersequence problem
(accessed on June 26, 2019).

[35] K. Ning and H. W. Leong, “Towards a better solution to the shortest
common supersequence problem: The deposition and reduction algo-
rithm”, in IEEE IMSCCS’06. DOI: 10.1109/IMSCCS.2006.136

[36] L. Jose et al., “Compiling packet programs to reconfigurable switches”,
in USENIX NSDI’15. [Online]. Available: https://www.usenix.org/
conference/nsdi15/technical-sessions/presentation/jose

[37] D. Maier, “The Complexity of Some Problems on Subsequences
and Supersequences”, J. ACM, vol. 25, no. 2, Apr. 1978. DOI:
10.1145/322063.322075

[38] “The show must go on: Fundamental data plane connectivity services for
dependable SDNs”, Computer Communications, vol. 116, 2018. DOI:
10.1016/j.comcom.2017.12.004

[39] M. Chiesa et al., “Exploring the limits of static failover routing”,
CoRR, vol. abs/1409.0034, 2014. [Online]. Available: http://arxiv.org/
abs/1409.0034

[40] M. Chiesa et al., “On the Resiliency of Static Forwarding Tables”,
IEEE/ACM Transactions on Networking, vol. 25, no. 2, 2017. DOI:
10.1109/TNET.2016.2619398

[41] A. Singla et al., “Jellyfish: Networking Data Centers Randomly”,
in USENIX NSDI’12. [Online]. Available: https://www.usenix.org/
conference/nsdi12/technical-sessions/presentation/singla

[42] A. Singh et al., “Jupiter Rising: A Decade of Clos Topologies and
Centralized Control in Google’s Datacenter Network”, in ACM SIG-

COMM’15. DOI: 10.1145/2785956.2787508

[43] “ns3 Network Simulator”, June 2019, https://www.nsnam.org/.

[44] M. Alizadeh et al., “CONGA: Distributed Congestion-Aware
Load Balancing for Datacenters”, in ACM SIGCOMM’14. DOI:
10.1145/2619239.2626316

[45] A. Greenberg et al., “VL2: A Scalable and Flexible Data Center
Network”, in ACM SIGCOMM’09. DOI: 10.1145/1592568.1592576

[46] C. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm”, RFC
2992, Tech. Rep. 2992, Nov. 2000.

[47] M. Alizadeh et al., “Data Center TCP (DCTCP)”, in ACM SIG-

COMM’10. DOI: 10.1145/1851182.1851192

[48] W. Bai et al., “Enabling ECN in Multi-Service Multi-Queue
Data Centers”, in USENIX NSDI’16. [Online]. Available: https:
//www.usenix.org/conference/nsdi16/technical-sessions/presentation/bai

[49] N. K. Edet Nkposong, Tim LaBerge, “Experiences with BGP in Large
Scale Data Centers”, 2014, Janog 33. [Online]. Available: https://www.
janog.gr.jp/meeting/janog33/doc/janog33-bgp-nkposong-1-en.pdf

[50] K. Koushik et al., “Multiprotocol Label Switching Traffic Engineering
Management Information Base for Fast Reroute”, RFC 6445, Nov. 2011.
DOI: 10.17487/RFC6445

[51] K. Foerster et al., “TI-MFA: Keep calm and reroute segments fast”,
in IEEE Global Internet Symposium (INFOCOM WKSHPS’18). DOI:
10.1109/INFCOMW.2018.8406885

[52] S. Jain et al., “B4: Experience with a Globally-Deployed Software
Defined Wan”, in ACM SIGCOMM’13. DOI: 10.1145/2486001.2486019

[53] K. Vipin and S. A. Fahmy, “FPGA Dynamic and Partial Reconfiguration:
A Survey of Architectures, Methods, and Applications”, ACM Comput.

Surv., vol. 51, no. 4, Jul. 2018. DOI: 10.1145/3193827
[54] P. Zheng et al., “P4Visor: Lightweight Virtualization and Composi-

tion Primitives for Building and Testing Modular Programs”, in ACM

CoNEXT’18. DOI: 10.1145/3281411.3281436
[55] ——, “ShadowP4: Building and Testing Modular Programs”, in ACM

SIGCOMM’18 Posters and Demos. DOI: 10.1145/3234200.3234231
[56] C.-Y. Hong et al., “Achieving High Utilization with Software-Driven

WAN”, in ACM SIGCOMM’13. DOI: 10.1145/2486001.2486012
[57] H. H. Liu et al., “Traffic Engineering with Forward Fault Correction”,

in ACM SIGCOMM’14. DOI: 10.1145/2619239.2626314
[58] T. Holterbach et al., “SWIFT: Predictive Fast Reroute”, in ACM SIG-

COMM’17. DOI: 10.1145/3098822.3098856
[59] ——, “Blink: Fast Connectivity Recovery Entirely in the Data Plane”,

in USENIX NSDI’19. [Online]. Available: https://www.usenix.org/
conference/nsdi19/presentation/holterbach

[60] M. Borokhovich and S. Schmid, “How (Not) to Shoot in Your Foot with
SDN Local Fast Failover”, in OPODIS’13, R. Baldoni et al., Eds. DOI:
10.1007/978-3-319-03850-6 6

[61] K. Lakshminarayanan et al., “Achieving Convergence-Free Rout-
ing Using Failure-Carrying Packets”, in ACM SIGCOMM’07. DOI:
10.1145/1282380.1282408

[62] J. Liu et al., “Ensuring connectivity via data plane mechanisms”,
in USENIX NSDI’13. [Online]. Available: https://www.usenix.org/
conference/nsdi13/technical-sessions/presentation/liu junda

[63] B. Stephens and A. L. Cox, “Deadlock-free local fast failover for arbi-
trary data center networks”, in IEEE INFOCOM’16. DOI: 10.1109/IN-
FOCOM.2016.7524356

[64] F. Aubry et al., “Robustly Disjoint Paths with Segment Routing”, in
ACM CoNEXT’18. DOI: 10.1145/3281411.3281424

[65] S. Nelakuditi et al., “Fast Local Rerouting for Handling Transient Link
Failures”, IEEE/ACM Transactions on Networking, vol. 15, no. 2, 2007.
DOI: 10.1109/TNET.2007.892851

[66] J. Wang and S. Nelakuditi, “IP Fast Reroute with Failure Inferencing”, in
ACM SIGCOMM Workshop on Internet Network Management’07. DOI:
10.1145/1321753.1321764

[67] B. Zhang et al., “RPFP: IP fast reroute with providing complete
protection and without using tunnels”, in IEEE/ACM IWQoS’13. DOI:
10.1109/IWQoS.2013.6550274

[68] T. Elhourani et al., “IP Fast Rerouting for Multi-Link Failures”,
IEEE/ACM Transactions on Networking, vol. 24, no. 5, 2016. DOI:
10.1109/TNET.2016.2516442

[69] B. Stephens et al., “Scalable Multi-Failure Fast Failover via Forwarding
Table Compression”, in ACM SOSR’16. DOI: 10.1145/2890955.2890957

[70] ——, “Plinko: Building Provably Resilient Forwarding Tables”, in ACM

HotNets’13. DOI: 10.1145/2535771.2535774
[71] E. Gafni and D. Bertsekas, “Distributed Algorithms for Generating

Loop-Free Routes in Networks with Frequently Changing Topology”,
IEEE Transactions on Communications, vol. 29, no. 1, 1981. DOI:
10.1109/TCOM.1981.1094876

[72] S. S. Lor et al., “Packet Re-Cycling: Eliminating Packet Losses Due to
Network Failures”, in ACM Hotnets’10. DOI: 10.1145/1868447.1868449

[73] P. Hande et al., “Network Pricing and Rate Allocation with Content
Provider Participation”, in IEEE INFOCOM’09. DOI: 10.1109/INF-
COM.2009.5062010

[74] K. Foerster et al., “CASA: Congestion and Stretch Aware Static
Fast Rerouting”, in IEEE INFOCOM’19. DOI: 10.1109/INFO-
COM.2019.8737438

[75] Y. Pignolet et al., “Load-Optimal Local Fast Rerouting for Resilient
Networks”, in IEEE/IFIP DSN’17. DOI: 10.1109/DSN.2017.43

[76] Y. Wang et al., “R3: Resilient Routing Reconfiguration”, in ACM

SIGCOMM’10. DOI: 10.1145/1851182.1851218
[77] M. Suchara et al., “Network Architecture for Joint Failure Re-

covery and Traffic Engineering”, in ACM SIGMETRICS’11. DOI:
10.1145/1993744.1993756

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/xe-3s/irg-xe-3s-book/irg-bgp-mp-pic.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/xe-3s/irg-xe-3s-book/irg-bgp-mp-pic.html
http://dx.doi.org/10.1109/TNET.2007.906045
http://dx.doi.org/10.1145/3098822.3098841
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.134
http://dx.doi.org/10.1145/2620728.2620746
http://dx.doi.org/10.36227/techrxiv.12367508.v2
https://people.ucsc.edu/~warner/Bufs/ethernet-switch-fm6000-sdn-paper.pdf
https://people.ucsc.edu/~warner/Bufs/ethernet-switch-fm6000-sdn-paper.pdf
http://dx.doi.org/10.1145/2486001.2486011
http://dx.doi.org/10.1109/INFOCOM.2016.7524552
http://dx.doi.org/10.1017/CBO9780511574931
http://dx.doi.org/10.1016/0304-3975(81)90075-X
http://dx.doi.org/10.1007/3-540-58201-0_68
https://en.wikipedia.org/wiki/Shortest_common_supersequence_problem
https://en.wikipedia.org/wiki/Shortest_common_supersequence_problem
http://dx.doi.org/10.1109/IMSCCS.2006.136
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/jose
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/jose
http://dx.doi.org/10.1145/322063.322075
http://dx.doi.org/10.1016/j.comcom.2017.12.004
http://arxiv.org/abs/1409.0034
http://arxiv.org/abs/1409.0034
http://dx.doi.org/10.1109/TNET.2016.2619398
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/singla
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/singla
http://dx.doi.org/10.1145/2785956.2787508
https://www.nsnam.org/
http://dx.doi.org/10.1145/2619239.2626316
http://dx.doi.org/10.1145/1592568.1592576
http://dx.doi.org/10.1145/1851182.1851192
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/bai
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/bai
https://www.janog.gr.jp/meeting/janog33/doc/janog33-bgp-nkposong-1-en.pdf
https://www.janog.gr.jp/meeting/janog33/doc/janog33-bgp-nkposong-1-en.pdf
http://dx.doi.org/10.17487/RFC6445
http://dx.doi.org/10.1109/INFCOMW.2018.8406885
http://dx.doi.org/10.1145/2486001.2486019
http://dx.doi.org/10.1145/3193827
http://dx.doi.org/10.1145/3281411.3281436
http://dx.doi.org/10.1145/3234200.3234231
http://dx.doi.org/10.1145/2486001.2486012
http://dx.doi.org/10.1145/2619239.2626314
http://dx.doi.org/10.1145/3098822.3098856
https://www.usenix.org/conference/nsdi19/presentation/holterbach
https://www.usenix.org/conference/nsdi19/presentation/holterbach
http://dx.doi.org/10.1007/978-3-319-03850-6_6
http://dx.doi.org/10.1145/1282380.1282408
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/liu_junda
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/liu_junda
http://dx.doi.org/10.1109/INFOCOM.2016.7524356
http://dx.doi.org/10.1109/INFOCOM.2016.7524356
http://dx.doi.org/10.1145/3281411.3281424
http://dx.doi.org/10.1109/TNET.2007.892851
http://dx.doi.org/10.1145/1321753.1321764
http://dx.doi.org/10.1109/IWQoS.2013.6550274
http://dx.doi.org/10.1109/TNET.2016.2516442
http://dx.doi.org/10.1145/2890955.2890957
http://dx.doi.org/10.1145/2535771.2535774
http://dx.doi.org/10.1109/TCOM.1981.1094876
http://dx.doi.org/10.1145/1868447.1868449
http://dx.doi.org/10.1109/INFCOM.2009.5062010
http://dx.doi.org/10.1109/INFCOM.2009.5062010
http://dx.doi.org/10.1109/INFOCOM.2019.8737438
http://dx.doi.org/10.1109/INFOCOM.2019.8737438
http://dx.doi.org/10.1109/DSN.2017.43
http://dx.doi.org/10.1145/1851182.1851218
http://dx.doi.org/10.1145/1993744.1993756

15

Marco Chiesa is an Assistant Professor at the
KTH Royal Institute of Technology, Sweden. He
received his Ph.D. degree in computer engineering
from Roma Tre University in 2014. His research
interests include Internet architectures and protocols,
including aspects of network design, optimization,
security, and privacy. He received the IEEE William
R. Bennett Prize in 2020, the IEEE ICNP Best Paper
Award in 2013, and the IETF Applied Network
Research Prize in 2012. He has been a distinguished
TPC member at IEEE Infocom in 2019 and 2020.

Roshan Sedar received the M.Sc. degree in dis-
tributed computing from KTH Royal Institute of
Technology, Sweden, in 2014. He is currently a
researcher at the Telecommunications Technological
Center of Catalonia, Spain. He is pursuing his Ph.D.
degree at the Polytechnic University of Catalonia,
Spain. His research interests include cybersecurity in
vehicular communication and next-generation cellu-
lar systems, mobile cloud computing, and networked
and distributed systems.

Gianni Antichi is a Assistant Professor at Queen
Mary University of London and Alan Turing Insti-
tute fellow. He received his MSc (2007) and PhD
(2011) from University of Pisa, Italy. Subsequently,
Gianni Antichi worked as postdoc at University of
Pisa and University of Cambridge. From 2016 to
2018, he was senior researcher at University of Cam-
bridge. His research interests are at the intersections
of networks and systems with a special focus on data
plane offloading and end-host networking stacks.

Michael Borokovich received B.Sc. (2005), M.Sc.
(2009) and Ph.D. (2013) degrees in Communication
Systems Engineering from Ben-Gurion University
in Israel. The main research topics included fast
failover in OpenFlow SDN networks, distributed
algorithms, and optimization. Between 2014 and
2015, he was a Postdoc at UT Austin in Texas where
he worked on efficient algorithms for distributed
graph engines. Between 2015 and 2017, Michael
was with AT&T Labs-Research, where he worked on
ONAP (Open Network Automation Platform), and

VNFs (virtual network functions). Currently, Michael is with Amazon, where
he builds innovative SDN solutions for AWS networking.

Andrzej Kamisiński is an Assistant Professor at
the AGH University of Science and Technology
in Krakw, Poland. He received his B.Sc., M.Sc.,
and Ph.D. degrees from the same University in
2012, 2013, and 2017, respectively. In 2015, Andrzej
Kamisiński joined the QUAM Lab at NTNU (Trond-
heim, Norway) where he worked with Prof. Bjarne
E. Helvik and with Telenor Research on depend-
ability of Software-Defined Networks. In summer
2018, he was a Visiting Research Fellow in the
Communication Technologies group led by Prof.

Stefan Schmid at the Faculty of Computer Science, University of Vienna,
Austria. Between 2018 and 2020, he was a member of the Management
Committee of the Resilient Communication Services Protecting End-User

Applications From Disaster-Based Failures European COST Action, and in
2020, a Research Associate in the Networked Systems Research Laboratory
at the School of Computing Science, University of Glasgow, Scotland. His
primary research interests span dependability and security of computer and
communication networks.

Georgios Nikolaidis was born in Larisa, Greece
in 1983. He received his Diploma in electrical and
computer engineering from the National Technical
University of Athens in 2006, his M.Sc. in Data
Communication Networks and Distributed Systems
from University College London (UCL) in 2008
and his PhD in Computer Science from UCL in
2016. The same year he joined Barefoot Networks
(acquired by Intel in 2019), where he works in
the Advanced Applications group. His current inter-
ests include data plane programmability, in-network

computation, telemetry, and congestion control.

Stefan Schmid is a Professor at the University
of Vienna, Austria. He received his MSc (2004)
and PhD (2008) from ETH Zurich, Switzerland.
Subsequently, Stefan Schmid worked as postdoc at
TU Munich and the University of Paderborn (2009).
From 2009 to 2015, he was a senior research sci-
entist at the Telekom Innovations Laboratories (T-
Labs) in Berlin, Germany, and from 2015 to 2018 an
Associate Professor at Aalborg University, Denmark.
His research interests revolve around algorithmic
problems of networked and distributed systems, cur-

rently with a focus on self-adjusting networks (related to his ERC project
AdjustNet).

	Introduction
	Background and Motivation
	A Primitive for Fast Reroute
	A Model for Programmable FRR
	A Primitive for Circular FRR
	A Primitive to Implement Them All

	Implementation
	Evaluation
	FRR Encoding
	Datacenter Simulations
	FPGA Evaluation

	Frequently asked questions
	Related Work
	Conclusion
	References
	Biographies
	Marco Chiesa
	Roshan Sedar
	Gianni Antichi
	Michael Borokovich
	Andrzej Kamisinski
	Georgios Nikolaidis
	Stefan Schmid

