
Universität des Saarlandes

U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Fachrichtung 6.1 – Mathematik

Preprint Nr. 320

Fast Retinal Vessel Analysis

Michael Krause, Ralph Maria Alles,
Bernhard Burgeth and Joachim Weickert

Saarbrücken 2012





Fachrichtung 6.1 – Mathematik Preprint No. 320

Universität des Saarlandes submitted: Dec 18, 2012, update: Feb 28, 2013

Fast Retinal Vessel Analysis

Michael Krause

Institute of Microelectronics

Building A5.1

Saarland University

66041 Saarbrücken

Germany

michael.krause@lme.uni-saarland.de

Ralph Maria Alles

Augenärzte Bies-Alles-Mély-Hadavi

66740 Saarlouis

Germany

email2005@dr-alles.de

Bernhard Burgeth

Dept. of Mathematics

Faculty of Mathematics and Computer Science

Building E2.4

Saarland University

66041 Saarbrücken

Germany

burgeth@math.uni-sb.de

Joachim Weickert

Mathematical Image Analysis Group

Faculty of Mathematics and Computer Science

Building E1.7

Saarland University

66041 Saarbrücken

Germany

weickert@mia.uni-saarland.de



Edited by

FR 6.1 – Mathematik

Universität des Saarlandes

Postfach 15 11 50

66041 Saarbrücken

Germany

Fax: + 49 681 302 4443

e-Mail: preprint@math.uni-sb.de

WWW: http://www.math.uni-sb.de/



Abstract

We introduce a fast image processing system that allows to analyse dig-

ital databases of retinal images in a short time, and to process the image in

situ while the patient is examined. While it achieves a comparable quality

as state-of-the-art methods, it differs from most of them by the fact that it is

extremely fast.

Retinal blood vessels are enhanced via convolution with the second

derivative of the local Radon kernel. It is rotated by different angles, and it

adapts itself via a maximisation procedure to the vessel directions. We com-

bine smoothing along vessel directions with contrast enhancement across

them. We detect vessels as connected structures with very few interruptions.

A subsequent skeletonisation allows a higher-level description of the vessel

tree.

To end up with a very fast system, we combine efficient algorithms for

numerical integration, differentiation and interpolation, and we propose an

automatic parameter selection strategy. Our convolution kernels are precom-

puted and stored into cached constant memory. All essential subroutines are

intrinsically parallel, and the resulting system is implemented on GPUs us-

ing CUDA.

Our qualitative evaluations with the DRIVE database and our own

database shows that the system achieves competitive performance. It is pos-

sible to process images of size 4288 × 2848 pixels in 1.2 seconds on an

NVIDIA Geforce GTX680. Compared to our sequential implemention, this

amounts to a speed-up by two orders of magnitude.

1 Introduction

The inspection of retinal vessels is a well established and scientifically evaluated

method for the screening of important vascular diseases. Widely available ”Non-

Mydriatic” cameras allow ophthalmologists to create considerable databases that

prepare the path for unprecedented numerical and statistical analysis. Thus, it

would be attractive to have an efficient image processing system for the analysis

of huge databases of retinal images. In this way, it also becomes possible to test

the quality of a retinal image in interactive time while the patient sits before the

camera, and to take another image, if necessary. Unfortunately, most systems that

have been proposed in the research literature and give results of high quality are

too slow for these tasks.

The goal of the present paper is to address these problems by introducing a system

for retinal image analysis that combines high quality with high computational

efficiency. It combines a number of very useful concepts:

• A local Radon transform [7] is used for smoothing along vessel directions.

1



• Perpendicular to these directions, contrast enhancement is achieved by a

second-order differential operator.

• The resulting convolution kernel is precomputed and stored to constant

memory.

• We propose a novel strategy for the automatic adaptation of a threshold

parameter that has a large influence on the quality of the output. This allows

to process an entire database without manual interactions.

• All components of our system have been selected on the basis of their in-

trinsic parallelism.

• This parallelism is exploited in a highly efficient CUDA-based implemen-

tation on general purpose graphics processing units (GPUs).

We end up with a system that achieves a qualitative performance with state-of-

the-art methods, but outperforms most of them with respect to its computational

efficiency.

Organisation of the paper. The structure of our paper is as follows: As the

understanding of the underlying model is necessary for understanding its efficient

parallel implementation, the modelling aspects are discussed first. To do this, in

Section 2 the preprocessing as well as the use of second order derivative filters

for vessel detection are explained. In Section 3 the use of our main tool, the

second derivative of the local Radon transform, is explained. We further apply a

skeletonisation algorithm and detect the branching points for better visualisation

of our results in Section 4. In Section 5, fast parallel implementation aspects are

addressed. We report on experiments with a public database and our own clinical

database in Section 6. The paper is concluded with a summary in Section 7.

Related work. Retinal vessel segmentation algorithms can be grouped into vari-

ous categories. Some algorithms – including ours – rely on matched filter response

techniques, see [1, 2, 5, 9, 13, 22]. A shape model that resembles the vessel cross-

section is convolved with the image and rotated by several angles in the search for

an optimal fit. The filter exists in one or two-dimensional versions [13].

The Laplacian of a Gaussian (LoG) is used by Vermeer et al. [25] to extract ves-

sels. The LoG is a second order derivative filter, such as the second derivative of

the local Radon transform used by us. Vermeer et al. derive optimal values for the

standard deviation of the Gaussian and for the threshold value in order to extract

bar-shaped vessels. Separable kernels composed from a second order Gaussian

derivative and a window function are used by Gang et al. [5] and Sofka and Stew-

art [22]. Gang et al. employ a box function, while Sofka and Stewart utilise a

2



Gaussian window function. The algorithms proposed in [14] use morphological

operators for preprocessing, as we also do.

In [9] a piecewise threshold is used to separate vessel pixels from non-vessel

pixels. An alternative way to distinguish between vessels and non-vessels is su-

pervised classification based on a training set: to each pixel a feature vector is

assigned containing different properties, for example greyscale, matched filter re-

sponse to a wavelet filter [21], line operators [18], directional derivatives and more

[24]. Vessel segementation with suitable filters has been done already 1998 by

Frangi et al. [4].

A recent article dealing with the implementation of a matched filter technique for

general medical imaging on GPUs and FPGAs has been written by Savrarimuthu

et al. [20]. It analyses vessels in the human forearm, and it concentrates on

achieving video resolution (640×480) in real-time.

2 Vessel segmentation using second order deriva-

tives

2.1 The cross section of a vessel

Vermeer et al. [25] consider a vessel as a ”brightness gap” with step size h and

width w. The grey-value of the vessel is by the value h lower than the surrounding

retina, and its width is w. In order to segment vessels from background, Vermeer

et al. convolve the cross section of the vessel with the second derivative of a

Gaussian with standard deviation σ . As the vessel profile is modelled as a bright-

ness gap and the vessel is darker than the background, the second derivative of

the vessel profile contains two positive peaks showing to the interior of the vessel

and two negative peaks outside the vessel. Due to the Gaussian convolution, these

positive peaks are propagated to the interior of the vessel, thus allowing to detect

the interior of the vessel via thresholding. Thus, Vermeer et al. determine the

interior of the vessel via a carefully chosen threshold depending on the relation of

the Gaussian standard deviation σ and the vessel width w.

Gao et al. [6] and Chapman et al. [2] use a Gaussian shaped model of a vessel. The

vessel profile of Gao et al. assumes the vessel profile to be convex in the interior

of the vessel, this way the second derivative in direction of the vessel profile to be

greater than a threshold T > 0.

2.2 Vessel detection using separable convolution kernels

The method proposed in this article belongs to the class of matched filter ap-

proaches. As we have seen so far, vessels are valley-like structures, see Vermeer

3



et al. [25]. Such structures can be detected using convolution kernels that are

composed by a low-pass filter in direction of the vessel run and a second-order

derivative in direction of the cross-section. The realisation of such kernels is per-

formed by the tensor product of the components. In fact, the convolution kernel

used in this article is composed by a second order central difference quotient ten-

sored with a Gaussian.

Kernels that can detect lines in many directions and use a large neighbourhood

are proposed by Gang et al. [5], and by Sofka and Stewart [22]. Gang et al. cal-

culate a Gaussian derivative perpendicular to the vessel direction multiplied with

a box function in tangential direction. Instead, Sofka and Stewart use a Gaussian

convolution in tangential direction as well.

In contrast to these approaches, our matched filter computes finite difference

approximations of the second order derivative combined with true Gaussian

weighted line integrals that are obtained by interpolation; see next sections. This

enhances the localisation of our kernel and lowers the computational load in com-

parison with Sofka and Stewart [22] and Gang et al. [5].

3 Vessel detection using the local Radon transform

3.1 Techniques for Preprocessing

In our early experiments it became apparent that the brightness of the optic disc

was responsible for erroneous results at its boundary. These errors can be dimin-

ished with a classical morphological operator, namely the black top hat, followed

by an image inversion. Detailed information about morphological operators are

provided, for example, in [23]. Note that the black top hat only effects the bound-

ary of the optic disc which would lead to a large number of false positives. An-

other preprocessing step is a convolution of the input image f with a Gaussian

Kσ ,

fσ = Kσ ∗ f . (1)

This convolution is the main regularisation of our algorithm. Alternatively we

have also tried anisotropic smoothing techniques, but they were more noise sensi-

tive than isotropic Gaussian smoothing and did not lead to a substantial improve-

ment of the results.

3.2 Coordinates

One of the main aspects of our vessel detection algorithm is the adaptivity to the

actual vessel profile. This is achieved by convolving the image with a strongly

anisotropic kernel, whose orientation is determined by a rotation angle θ .

4



Figure 1: Vessel appearance and local coordinates, ω and ω⊥ span the image

plane, z-coordinate shows the grey value

We introduce local coordinates as shown in Fig. 1 where we depict a three-

dimensional vessel model in its representation as a grey-scale image. The im-

age plane is spanned by two axes, one in direction ω and one in direction ω⊥

perpendicular to it,

ω =

(

cosθ
sinθ

)

, ω⊥ =

(

−sinθ
cosθ

)

. (2)

The direction ω⊥ corresponds to the vessel run, while the grey-value represen-

tation of the vessel profile is represented in the ω-z plane. Later on, we will

differentiate in direction ω and integrate in direction ω⊥. The grey-scale intensity

f at a point p = sω + tω⊥ in the image plane is represented by a z-value, hence

the darker inner part of the vessel attains a smaller z-value than the surrounding

retina.

We have seen that the interior of the vessel can be detected via the convolution of

fσ with a kernel elongated in the direction ω⊥ of the vessel. In order to treat each

point x ∈ R
2 as the centre of the ω-ω⊥ coordinate system, we slightly modify the

coordinate system by introducing the centre point x. Thus, each point p can be

written as p = x+ sω + tω⊥ for a fixed x.

3.3 The second derivative of the local Radon transform

The coordinate system from subsection 3.2 is used to define the local Radon trans-

form of fσ [7]:

Rρ fσ (x,ω,s) =
∫ ∞

−∞
Kρ(t) fσ (x+ sω + tω⊥)dt, (3)

Rρ produces a regularised version of fσ . The smoothing is performed in the direc-

tion of the vessel run, which is an advantage of using the local Radon transform.

5



Remarkably, the convexity of the cross sections carries over to the second deriva-

tive of the local Radon transform:

(Rρ fσ )
′′(x,ω,s) :=

∫ +∞

−∞
Kρ(t)

∂ 2

∂ s2
fσ (x+ sω + tω⊥)dt

≥ T

∫ +∞

−∞
Kρ(t)dt = T > 0 , (4)

where we have used the assumption ∂ 2

∂ s2 fσ (x+sω+tω⊥)≥ T > 0 in the inner part

of the vessel and the normalisation
∫+∞
−∞ Kρ(t)dt = 1. The second-order differenti-

ation perpendicular to the vessel orientation is an additional contrast-enhancement

between vessels and surrounding retina. In [12] the local Radon transform has

been used to detect edges in digital images.

3.4 Criterion for vessel segmentation

In order to use the local Radon transform and its derivative to decide whether a

point x is a vessel point or not, we consider (Rρ f )′′(x,ω ,0) as a function of ω
alone for a fixed point x. If a direction ωx exists for which

(Rρ fσ )
′′(x,ωx,0)> T > 0 (5)

holds, we recognise x as a vessel point. It is important to remark that for the

classification of the vessel points the accurate estimation of the vessel direction

is not crucial due to the employed threshold technique (5). We compute the sec-

ond derivative via a central difference with step size h = 1, as we assume the

image to be sampled with that grid size. The resulting approximation H(x,ω) to

(Rρ fσ )
′′(x,ω,0) is given by

H(x,ω) = Rρ fσ (x,ω,−1)−2Rρ fσ (x,ω,0)+Rρ fσ (x,ω,1) . (6)

In our basic assumptions vessels are always convex. Hence, points with H(x,ω)<
0 for all ω are of no interest. Therefore, we can restrict our attention to the func-

tion

res(x) := max(0,max
ω

H(x,ω)) . (7)

Vessel points x are characterised by res(x)> T .

3.5 Efficient implementation

We can implement the calculation of H as correlations with pre-computed kernels

gω , in the ω-ω⊥-coordinate system. Exploiting the symmetry of both the Radon

6



kernel and the Gaussian kernel, the correlations are in fact convolutions. To see

this we assume x to be 0, and we approximate Rρ fσ (0,ω, l) with a trapezoid rule,

Rρ fσ (0,ω , l)≈ ∑
k∈Z

Kρ(k) fσ (lω + kω⊥) . (8)

The points where fσ has to be evaluated are approximated by bilinear interpolation

which leads to a formula of the form

Rρ fσ (0,ω , l)≈ ∑
m∈Z2

αω,l(m) fσ (m) (9)

with suitable weights αω,l(m). From the central difference quotient in (6) we

obtain

H(0,ω)≈ ∑
m∈Z2

gω(m) fσ (m) (10)

for some gω . The approximation of H(x,ω) at an arbitrary point x can be obtained

by a correlation with the symmetric kernels gω :

H(x,ω)≈ ∑
m∈Z2

gω(m) fσ (x+m) . (11)

Since gω have a small support, the correlations with the pre-computed kernels gω

are highly efficient. Our filters gω consist of about 300 nonzero points per direc-

tion requiring 600+600+1200 = 2400 bytes, each for x-coordinate, y-coordinate

and float value. These 2400 bytes fit to constant memory cache and can be ac-

cessed in a very fast manner.

The filters act like the second derivative operator (1,−2,1) in ω-direction and a

Gaussian in ω⊥-direction. As the different gω are obtained from the local Radon

transform via discretising the involved integral and differentiation operators, they

can be seen as a discretised version of the local Radon transform. Note that the gω

filters are separable in the ω–ω⊥ coordinate system, but not in the standard coor-

dinate system. The kernels gω represent the precomputation steps that involve

interpolation, integration with the trapezoidal rule and differentiation. Precom-

puting these kernels increases the efficiency.

3.6 Eliminating small connected components

To address the problem that our algorithm might produce false positives in addi-

tion to real vessels, we have to ensure that only relevant components are recog-

nised as vessels. Small connected components are dismissed as non-vessels. The

components and their size are computed via a Union-Find algorithm [3].

7



The central light reflex in the middle of larger vessels establishes a relatively small

non-vessel component which is completely surrounded by an already detected

vessel. As before these small components are identified with the help of a Union-

Find algorithm and then turned into vessel points.

3.7 Automatic selection of the threshold

In our system the threshold parameter T has a large impact on the quality of the

segmentation. Unfortunately, it does not give good results to use an identical

threshold for all images. On the other hand, a manual optimisation of T to each

individual image is prohibitive for a large database. Therefore, we have designed

an automatic procedure that adapts T to each image without user interaction.

We have performed a lot of investigations in this direction to come up with a

method that behaves in a stable way and gives good results. In a nutshell the main

steps are as follows.

1. Compute the histogram of the local Radon result.

2. Smooth the histogram by convolving with a Gaussian.

3. Compute the third derivative of the smoothed histogram.

4. Choose the highest point T at which the graph of the this derivative leaves

a small corridor of diameter Th around the x-axis.

In this way, a relatively sensitive threshold T has been replaced by an insensitive

threshold Th. Note that Th has to be set only once per image type and not again

for every single image. Although at first glance it may seem to be unstable to use

the third derivative of the histogram for threshold selection, practical experiments

show that it is in fact stable. The used technique is shown in Fig. 2, where

the threshold is taken at the point where the graph of the third derivative of the

histogram of the second derivative of the local Radon transform first leaves a

small corridor from −35 to 35 around the x-axis. For better visualisation, the

graph starts with x = 10.

4 Skeletonisation and detection of branching points

In order to obtain a more abstract representation of the vessels we construct a

graph-like structure, the so called 1-pixel wide vascular tree [1]. This representa-

tion facilitates the analysis of the vessel. To this end we apply a skeletonisation

algorithm as described, for example, in [8]. The employed procedure is a prairie-

fire algorithm, avoiding the well-known failures of other thinning-line algorithms

8



10 20 30 40 50 60 70 80 90 100
−100

−50

0

50

100

150

200

Figure 2: Using the third derivative of the histogram for threshold probing. The

horizontal lines show the interval [−35,35] around the x-axis.

[26]. As a result of the algorithm connectivity patterns of the vessel structure are

represented correctly by the obtained skeleton. After the skeleton is computed, the

branching points are detected by regarding 0-1 transitions of the points surround-

ing the candidates for branching points. Note that endpoints p of the skeleton

are characterised by having only one neighbour in the skeleton. The skeletoni-

sation can be used for further analysis of the vascular tree, such as arteria-vein

decomposition.

5 Fast implementation using NVIDIA CUDA

63

5

5
2

1 m

f2

f

f3 R res1 res2 7 h

8

cc8 9 sk 1110 out4 B

4

Figure 3: Flow diagram of our algorithm

Now that we have discussed all components of our system, let us focus on its

implementation aspects.

9



Table 1: Runtime on a NVIDIA Geforce GTX680 for an image of size 4288×

2848.

Step Function Runtime [s] result

1 create mask 0.0173 m

2 inverted black-top-hat 0.0331 f2

3 Gaussian convolution 0.0110 f3

4 correlation with gω 0.1530 R

5 apply mask 0.0011 res1

6 linear rescale 0.0014 res2

7 create histogram 0.0020 h

8 create binary image 0.0033 B

9 analyse connected components 0.0681 cc

10 create skeletonised image 0.0506 sk

11 mark crossing points 0.0047 out

sum 0.3748

Apart from reading from and writing to hard disk, all parts of our system are im-

plemented in the CUDA environment. CUDA is a programming language exten-

sion for languages such as C used for general-purpose programming on NVIDIA

graphics cards; see [17]. Basic introduction to programming in CUDA is given

by [19, 11]. For a more detailed introduction to CUDA see [17]. Note that the

pre-computation of the kernels gω (11) does not need to be implemented parallel

as the pre-computation is fast enough.

The individual steps of our implementation are listed in Table 1. Note that only

one copy of the input image f from host (CPU) to device (GPU) has to be per-

formed, and that only those intermediate images have to be copied from device

to host which must be stored to hard drive. Figure 3 shows the flow of our algo-

rithm. The names in the squares indicate the computed intermediate result, while

the numbers above the arrows indicate the current step in the algorithm; see

Table 1. Let us now have a more detailed look at the 11 steps within our system.

1. Create Mask: The first part of the implementation is the creation of a mask

image m describing the Region of Interest. It is created from the input image

f by first determining the black parts of f via thresholding and can be im-

plemented fully in parallel. An erosion with a separable square structuring

element [23] is applied to reduce boundary effects which had been created

while computing the second derivative of the local Radon transform.

2. Inverted black-top-hat: An inverted black top-hat [23] is applied in order

to reduce the effects created by the boundary of the optic disc. Due to the

10



local behaviour of erosion and dilation the latter algorithms can be imple-

mented in parallel. The structuring element was a separable square, thus

being implemented in two kernels, one for the x-direction and one for the

y-direction. The resulting image is called f2 =: f̃ , where f̃ is the applied

erosion to the image f .

3. Gaussian convolution: The main regularization is achieved by a Gaussian

convolution to compute f3 := f̃σ . Its parallel implementation uses tex-

ture memory for the input image f2 = f̃ in order to enable local caching

[19]. The Gaussian kernel is accessed using constant memory, thus allow-

ing caching.

4. Correlation with gω : The computation of the second derivative of the local

Radon transform Rρ is approximated by a convolution with the kernels gω .

As these kernels are sparse, their coordinates in Z
2 as well as their values fit

to constant memory. This allows caching and fast access. The input image

f3 = f̃σ is accessed using read-only cached texture memory. The output

is denoted by R. Note that it is only necessary to compute the correlation

(which is in fact a convolution) in the pre-computed region of interest; see

the arrow in Figure 3 from m to R.

5. Apply mask: The application of the mask is just a multiplication with 1 or

0. It can be implemented fully in parallel. The result is called res1 and it

holds res1 ≥ 0, see (7).

6. Linear rescale: The linear rescaling to [0,255] is a parallel reduction [19]

to compute the maximum value of the second derivative of the local Radon

transform image followed by a point-wise multiplication. The resulting im-

age is called res2.

7. Create histogram: The histogram h was created as described in [19]. The

image is decomposed into blocks, each block storing the local histogram

in shared memory of size 256. The local histograms are computed us-

ing shared memory atomics, thus requiring Compute Capability 1.3 of the

GPU for running our program. Then the local histograms are combined to

a global histogram by using global atomics, which are already available for

Compute Capability 1.1.

8. Create binary image: The creation of the binary image B from res2 is just a

point-wise operation, assigning each point the values 0 or 255, respectively.

As indicated in Figure 3, the threshold depends on the histogram h of res2.

11



9. Analyse connected components (ccl): The connected component analysis

resulting in the image cc was performed via a Union-Find algorithm, see

[10, chapter 35] for details. The Union-Find algorithm used in [10] works

as follows. Each point is assigned its father in the Union-Find forest as an

integer containing the father’s number. A point which is assigned its own

number is the representative of its set. The Union function merges two sets

together, and the Find function finds the set a point is assigned to. The

crucial step in the Union function is an atomicMin called when two sets are

merged together and the new label of the set is smaller than the old label, see

[10, Figure 35.8]. The algorithm starts in fast shared memory working on a

single tile of the input image. The next steps are merging the points at the

boundary of tiles with border length increasing by the factor 2 in each step,

until the whole image is processed. The last step is an optional flattening

of the Union-Find forest, reducing future Find queries. For a very detailed

description, see [10].

10. Create skeletonised image: the skeleton sk is computed in the way described

in [8]. The algorithm consists of a prairie-fire-like algorithm. As we

assume that the diameter of all vessels is smaller than 40, the skeletonization

algorithm is implemented by a fixed number of 20 steps. In each step, the

boundary pixels, which are not needed to be part of the skeleton are marked.

After all boundary pixels have been marked, they are removed. As soon as

the 20 iterations have been performed, only the real skeleton points remain,

see [8] for details. In the sequential setting, a loop would pass over all pixels

in the image, marking most of the boundary for deletion and delete these

pixels after the marking step is completed. A corresponding parallelization

is essentially a parallel unrolling of the loop.

11. Mark crossing points: The crossing points are easily determined by

analysing the 8-point vicinity of each point of the skeleton, leading to the

final image out. More detailed, order the 3× 3-vicinity of a point P1 as a

sequence P2,P3, . . . ,P9,P2, such as in Fig. 4. If the number of 0-1 transitions

in the above sequence is greater than or equal 3, we have a crossing point.

Note that endpoints have only one 0-1 transition.

12



P2 P3 P4

P9 P1 P5

P8 P7 P6

Figure 4: 8-point vicinity of a point P1.

6 Experiments

6.1 Fast parallel implementation using NVIDIA CUDA

As already described earlier, a black top hat followed by a Gaussian convolution

are performed as preprocessing steps. The chosen number of directions ω was

p = 6, so 6 different convolutions have been performed in the convolution steps.

The chosen directions are distributed equidistantly in the interval [0,5π/6]. Data

that are not directly accessible have been obtained by linear interpolation. Using 6

directions is a good compromise between angular resolution and efficiency. Table

2 shows the parameters of our settings.

Table 2: Parameter Settings

Parameter DRIVE 2048×1536 4288×2848

σ 1.75 2 4

ρ 4.5 6 12

size of conn. comp. 25 100 500

The total runtime of our system on an NVIDIA Geforce GTX680 is less than

0.78 seconds for an image of mid resolution (2048×1536 pixels, σ = 2, and ρ =
6), including reading and writing to hard drive, For an image of high resolution

(4288×2848 pixels, σ = 4, and ρ = 12), the runtime is less than 1.2 seconds. On

an Intel Core i5 CPU with 2.67GHz, the corresponding runtime would amount to

26 seconds for the mid-resolution image and 127 seconds for the high-resolution

image. Note that the main part of the runtime for the parallel implementation is

dedicated to reading and writing to hard disc. On our GPU-based system. it is

possible to evaluate 6500 images of size 4288×2848 or more than 20000 images

of size 2048×1536 in about 3 hours.

13



Table 3: Performance of vessel segmentation methods (DRIVE database) The

results for other techniques are taken from [14].

Method Accuracy True pos. False pos.

Human observer [15] 0.9473 0.7761 0.0275

Our method 0.9468 0.7517 0.0259

Mendonça [14] (grey) 0.9463 0.7315 0.0219

Mendonça [14] (green) 0.9452 0.7344 0.0236

Niemeijer, [15], Staal [24] 0.9442 0.7194 0.0227

Niemeiijer, [16], [15] 0.9417 0.6898 0.0304

(a) Original (b) Segmentation, cropped at

boundary

(c) Ground truth

Figure 5: Results of our algorithm on DRIVE-database

6.2 Evaluation on DRIVE database

As the segmentation steps 1-9 are the most important steps of our method, they

are evaluated using a publicly available database. When applying our method

to the DRIVE database, we follow the standard rules described in detail in [14]

and [24]. Table 2 shows the parameter settings of our experiments. The noise

scale σ refers to the standard deviation of the Gaussian presmoothing that was

performed for regularisation. The integration scale ρ determines the size of the

applied local Radon kernel. The numbers in the last line in Table 2 indicate the

minimal size (in terms of numbers of pixels) of the connected components that are

displayed in the final result. Connected components that have less pixels than the

user defined number have been eliminated. The specific results of our experiments

are displayed in Table 3. For comparison and examples, see Fig. 5. The bold

letters indicate the best results in the following categories:

accuracy =
number of correctly classified pixels

total number of pixels
,

14



true positives =
number of detected vessel pixels
total number of true vessel pixels

,

false positives =
number of falsely detected vessel pixels

total number of non-vessel pixels
.

We observe that our method leads to very good results that are competitive to

modern approaches from the literature. Two advantages of our algorithm are the

smoothness and connectedness of the detected vessels.

6.3 Evaluation on our own database

Fig. 6 shows the results on our own clinical database, high resolution. The figure

on the top left is the original image, the figure on the top right is the result of the

application of the second derivative of the local Radon transform. The figures in

the middle are the segmentation step followed by a connected component analysis.

The bottom row shows the skeleton and the branching points. A careful evaluation

by an ophtalmologist has confirmed the high quality that can be achieved with our

automised system.

7 Conclusion

We have shown that for analysing retinal images, high quality and high speed

requirements do not exclude each other. To this end, we have designed a fully

automatic system that is based on the local Radon transform and uses only algo-

rithms that are well parallelisable on GPUs by means of CUDA. They enable the

analysis of large databases in a short time span. For instance, one can analyse

more than 20,000 images of size 2048× 1536 in about 3 hours on an NVIDIA

Geforce GTX680. Moreover, interactive image analysis during the examination

of the patient is no problem at all. Since the necessary graphics hardware is widely

available for a few hundred dollars, our research has a good potential of becoming

widely used within the ophtalmologic community.

Acknowledgements

We thank the authors of the DRIVE database for making their database avail-

able and thus allowing us to evaluate our results. Furthermore we like to thank

Rüdiger Leilich for providing the tool ”Algo-Verifier” for better visualisation and

documentation of the results in our specifically designed database.

15



(a) Original image (b) Application of the local Radon transform

(c) Thresholded image (d) Show only larger connected components

(e) Skeleton (f) Skeleton with branching points

Figure 6: Results of the skeletonisation algorithm using CUDA - own clinical

database, resolution 4288×2848

16



References

[1] Chanwimaluang T, Fan G (2003) An efficient algorithm for extraction of

anatomical structures in retinal images. In: Proc. IEEE International Confer-

ence on Image Processing, vol 1, pp 1093–1096

[2] Chapman N, Witt N, Bharat A, et al (2001) Computer algorithms for the

automated measurement of retinal arteriolar diameters. British Journal of

Ophtalmology 85:74–79

[3] Cormen TH, Leiserson CE, Rivest RL (1990) Introduction to algorithms.

MIT Press

[4] Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale ves-

sel enhancement filtering. In: Medical Image Computing and Computer-

Assisted Intervention- MICCAI’98, Lecture Notes in Computer Science, vol

1496, Springer, pp 130–137

[5] Gang L, Chutape O, Krishnan M (2002) Detection and measurement of ves-

sels in fundus images using amplitude modified second-order Gaussian filter.

IEEE Transactions on Biomedical Engineering 49(2):168–172

[6] Gao X, Bharat A, Hughes A, et al (1997) Towards retinal vessel parameteri-

zation. In: Medical Imaging 1997: Image Processing, SPIE Proc., vol 3034,

pp 734–744

[7] van Ginkel M (2002) Image analysis using orientation space based

on steerable filters. PhD thesis, Delft University of Technology, URL

http://www.ph.tn.tudelft.nl/˜michael/publications.html

[8] Gonzalez R, Woods R (2002) Digital Image Processing. Prentice Hall, New

Jersey

[9] Hoover A, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in

retinal images by piecewise threshold probing of a matched filter response.

IEEE Transactions on Medical Imaging 19(3):203–210

[10] Hwu WMW (2011) GPU Computing Gems Emerald Edition. Morgan Kauf-

mann

[11] Kirk DB, Hwu WMW (2010) Programming Massively Parallel Processors:

A Hands-on Approach. Morgan Kaufmann

17



[12] Krause M (2006) Corner detection in digital images using local tomography.

Bachelor’s thesis, Dept. of Mathematics and Computer Science, Saarland

University

[13] Lowell J, Hunter A, Steel D, Basu A, Kennedy RL (2004) Measurement

of retinal vessel widths from fundus images based on 2-D modeling. IEEE

Transactions on Medical Imaging 23(10):1196–1204

[14] Mendonça AM, Campilho A (2006) Segmentation of retinal blood vessels

by combining the detection of centerlines and morphological reonstruction.

IEEE Transactions on Medical Imaging 25(9):1200–1213

[15] Niemeijer M, van Ginneken B (2002) Drive database. URL

www.isi.uu.nl/Research/Databases/DRIVE/results.php

[16] Niemeijer M, Staal J, van Ginneken B, Loog M, Abrámoff M (2004) Com-

parative study of retinal vessel segmentation methods on a new publicly

available database. In: Proc. SPIE Medical Imaging, M. Fitzpatrick and M.

Sonka, Eds., vol 5370, pp 648–656

[17] NVIDIA (2012) Nvidia. URL http://www.nvidia.com

[18] Ricci E, Perfetti R (2007) Retinal blood vessel segmentation using line oper-

ators and support vector classification. IEEE Transactions on Medical Imag-

ing 26(10):1357–1365

[19] Sanders J, Kandrot E (2011) CUDA by example, An Introduction to General-

Purpose GPU programming. Addison Wesley

[20] Savarimuthu TR, Kjaer-Nielsen A, Sorensen AS (2011) Real-time medical

video processing, enabled by hardware accelerated correlations. Journal of

Real-Time Image Processing 6:187–197

[21] Soares JVB, Leandro JJG, Cesar RM Jr, Jelinek HF, Cree MJ (2006) Retinal

vessel segmentation using the 2-D Gabor wavelet and supervised classifica-

tion. IEEE Transactions on Medical Imaging 25(9):1214–1222

[22] Sofka M, Stewart C (2006) Retinal vessel centerline extraction using multi-

scale matched filters, confidence and edge measures. IEEE Transactions on

Medical Imaging 25(12):1531–1546

[23] Soille P (1999) Morphological Image Analysis. Springer

18



[24] Staal J, Abrámoff MD, Viergever MA, van Ginneken B (2004) Ridge-based

vessel segmentation in color images of the retina. IEEE Transactions on

Medical Imaging 23(4):501–509

[25] Vermeer K, Vos F, Lemij H, Vossepoel A (2004) A model based method for

retinal blood vessel detection. Computers in Biology and Medecine 34:209–

219

[26] Wang L, Bhalerao A, Wilson R (2007) Analysis of retinal vasculature using

a multiresolution Hermite model. IEEE Transactions on Medical Imaging

26(2):137–152

19


