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Abstract

This paper proposes fast RSA-type public-key schemes based on singular
cubic curves y2 + azy = % over the ring Z,. The z and y coordinates of a 2
log n-bit long plaintext/ciphertext are transformed to a log n-bit long shadow
plaintext/ciphertext by isomorphic mapping. Decryption is carried out by ex-
ponentiating this shorter shadow ciphertext over Z,,. The decryption speed of
the proposed schemes is about 2.0 times faster than that of the RSA scheme for
a K-bit long message if [/log n] is even. We prove that breaking each of the
proposed schemes is computationally equivalent to breaking the RSA scheme
in one-to-one communication circumstances. We also prove that the proposed
schemes have the same security as the RSA scheme against the Hastad attack
when linearly related plaintexts are encrypted in broadcast applications.

1 Introduction

In 1991, an RSA-type scheme over elliptic curves, i.e., non-singular cubic curves, was
presented by I{oyama, Maurer, Okamoto and Vanstone [4]. This scheme, the KMOV
scheme for short, is more secure than the RSA scheme [9] against the Hastad attack
[2] [6]. The decryption speed of the KMOV scheme, however, is 5.8 times slower than
that of the RSA scheme even if rapid computational techniques are used [5].

By changing the base from elliptic curves to singular cubic curves, this paper
proposes faster RSA-type schemes based on curves £, : y* + axy = z* (modn). The
z and y coordinates of a 2 log n-bit long plaintext/ciphertext are transformed to a log
n-bit long shadow plaintext/ciphertext by isomorphic mapping. Decryption is carried
out by exponentiating this shorter shadow ciphertext over Z, instead of a sequential
addition of the points over singular cubic curves F,. The decryption speed of the
proposed schemes Is about 2.0 times faster than that of the RSA scheme for a K-bit
long message if [K/log n] is even. We prove that breaking each of the proposed
schemes is computationally equivalent to breaking the RSA scheme. This equivalence
in security is guaranteed under usual one-to-one communication circumstances. We
also prove that the proposed schemes have the same security as the RSA scheme
against the Hastad attack when linearly related plaintexts are encrypted in broadcast
applications.
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The organization of this paper is as follows. Section 2 mentions singular cubic
curves over a finite ficld and a finite ring. In Section 3, we describe new schemes. The
efficiency of the proposed and other schemes is discussed in Section 4. The security
of the proposed schemes is discussed in Section 5. Section 6 concludes this paper.

2 Singular Cubic Curves

Let F, be a finite field with p elements and F; be a multiplicative group of F,, where
p (> 3) is a prime.

Definition 1 ([3][7]) A non-singular part of a singular cubic curve, denoted by Ey(a,b),
is defined as the set of solutions (z,y) € F, X Fy to Eq.(1), excluding a singular point
(0,0) and including the point at infinity O.

y2 +azy = 2° 4+ bx? over F,, a,b€ F, (1)

An addition “®” on E,(a,b) is given by the chord-and-tangent law similar Lo thal for
elliptic curves.

The sum (a3, ys) of (z1,y1) and (z2,y2) in £, is computed as

{132 M tad—b—x ~ g, (2)

y3= Az —23) — 1,

where

oy if (21,31) # (22,42),
A=1%522 4n
z Ty = . .
IEIO =G it (o1, p1) = (22.90)-
Note that £,(a,b) is a group. Operation @ is defined as follows.

k times
E@(z,y) = (z,¥) ®--- B (z,y) over Ey(a,b).

A group E,(a,b) is isomorphic to F;. The isomorphic relationship is generally de-
scribed in (3] and (7] for curves (y — az)(y — Bz) = z* over F}, where o, € Fy,
which is equivalent to equation (1) with a = ~a — 8 mod p, b= —af mod p. When
b = 0, we can put @ = 0 and 8 = —a(# 0), and the simplified relationship is carried
out explicitly in the following theorem.

Theorem 1 The mapping w: £,(a,0) — F defined by

3

ar T

w:01, (zy)= 14 —=

Y Y
is a group isomorphism. The group isomorphism mapping w™' : Fy - E,(a,0) is

defined by
2 3
a
wl:iles O, v <—L§,—a~v—3)
(v—1)" (v—1)
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Hence, an order of E,(a,0), denoted by #FE,(a,0),is p — 1.
Let Z, = {0,1,---,n—1} and Z; be a multiplicative group of Z,. A non-singular
part of a singular cubic curve over Z, is defined as follows.

Definition 2 Let n be a product of primes p,q (> 3). A non-singular part of a
singular cubic curve, denoted by E,(a,b), is defined as the set of solutions (z,y) €
Zy X Z, to Eq.(3), excluding a singular point (0,0) and including the point at infinity
0.

y’ + azy = 2° + bx? over Z,, a,b€ Z,. (3)

An addition on E,(a,b) is defined by the chord-and-tangent law. Although the addi-
tion is not always defined, the probability for such a case is negligibly small for large
p and ¢. By Theorem 1 and the Chinese Remainder Theorem, the following theorem
holds.

Theorem 2 For (z;,y;) and (z1,y1) satisfying (z:,y:) = 1® (71, 31) over E,(a,0), we

have .
1+ i <1 + a*ﬂ) (mod n),
Yi Y1

3y i
= (_ac_;) (mod n).
Yi

The following theorem is a base of a pair of an encryption and a decryption of public-
key cryptosystems over E, (q,0).

i.e.,

R
T

Theorem 3 Let n be a product of primes p,q (> 3) and N = lem(p — 1,q—1). lor
any integer k salisfying k =1 (mod N), we have

(z,y) = k® (z,y) cver E,{(a,0)

with the overwhelming probability for large p and q.

3 New RSA-type Schemes Based on E,(a,0)

We can construct RSA-type public-key schemes over singular cubic curves E;(a,b)
with a message-dependent variable ¢ and a fixed constant b. Considering the compu-
tational efficiency among variants of instances of these schemes, we put b = 0. We
propose two new RSA-type schemes over £,(a,0): scheme 1 and scheme 2. These
proposed schemes can be used in both secret communications and digital signatures.
For simplicity, we describe protocols of secret communications.

The security of the proposed schemes is based on the difficulty of factoring n,
which is a product of large primes p and ¢. Let a plaintext (m,,m,) be an integer
pair, where m;,m, € Z; and m} # m! (mod n). A concept of RSA-type schemes
based on isomorphism over singular cubic curves is shown in Figure 1. This figure
also includes a flow diagram of scheme 1. In scheme 1, the encryption is carried
out over E,(a,0) along the path from plaintext (m,,m,) to ciphertext (c;,c,). In
scheme 2, the encryption is carried out over Z along the path from plaintext (mz, m,)
to shadow ciphertext ¢ via shadow plaintext m. Although the decryption of naive
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cryptosystems based on cubic curves is computed directly from (c;,¢,) to (mz,my)
over E, (= E, x E,) in the left half of Figure 1, the decryptions for schemes 1 and
2 are carried out over F; and F; because decryption over F; and Fy is faster than
that over E,(a,0) and E,(a,0).

Note that for the original RSA scheme, the encryption and decryption are carried
out between (shadow) plaintext m and (shadow) ciphertext ¢ in Z3, more exactly in
Zy, in the right half of Figure 1.

E, (= E, x E;) TIsomorphism Z; (= F; x F})

- N N

Plaintext Shadow Plaintext
|
(mz, my) m
w-—l

(ezycy)

m=c®modn
=eQ® (my;,my)

(€zyCy) c
w

Ciphertext Shadow Ciphertext

N L Y

Fig.1 Concept of RSA-type schemes and a flow of scheme 1

3.1 Key Generation of Scheme 1 and Scheme 2

A key generation procedure is common for scheme 1 and scheme 2.

Receiver R chooses two large primes p and q. Let n = pgand N = lem(p—1,¢9—1).
R determines an integer e satisfying ged(e, N) = 1. Decryption keys d, and d, are
computed from encryption key e as d, = % mod (p—1) and d, = % mod (g — 1),
respectively. R’s public keys are e and n. R’s secret keys are p, g, d, and d,.
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3.2 Scheme 1

Encryption
Sender S encrypts plaintext (m,,m,) with the receiver’s public keys ¢ and n as

(cx,cy) = € ® (mz,m,) over E(a,0),

2
m, —m
where a = —rErT;T‘FzTy' mod n, and sends a ciphertext (cz, ¢,) to receiver R.
emark
- Plaintext condition such that m,,m, € Z; and m$ # mZ (mod n) holds true with
overwhelming probability for large primes p and ¢ and uniformly distributed integers

m, and m,,.

Decryption
Receiver R decrypts ciphertext (cg,¢,) with secret keys p,¢q,d, and d,. First, R com-
3

. ¢ .
putes ¢,, = ¢; mod p, ¢, = ¢, mod p and shadow ciphertext ¢, = % mod p by using
¢

¥p
the isomorphic mapping w in Theorem 1. R computes shadow plaintext m, as

3 dp
¢
m, = cz’ mod p = (—?) mod p. (4)
c
vp
3 _ .2
R computes (mp, my,) € Ep(ap,0) with a, = rCrprp mod p by using the isomorphic

mapping w™! in Theorem 1 as
alm
p''lp Myply

—— mod p.
(m, — 1) modp

7 mod p, my, =

Mer = (my — 1)

R computes (m,,,m,,) € E,(ag,0) in the same way. Finally, R obtains (m,,m,) by
combining (m,,, myp) and (Mzg, My,) via the Chinese Remainder Theorem.

Remarks

- By the isomorphic mappings in Theorem 1, computing d, ® (czp, ¢yp) Over Ep(ay,0)
corresponds to computing (¢, /c},)% over F;. The decryption of scheme 1 corresponds
to the path from (¢, ¢,) to (mz,m,) via c and m.

- Since my,, my, € F; and m3, # m?, (mod p), we have m, # L.

3.3 Scheme 2

Encryption
Sender S encrypts plaintext (m;, m,) with the receiver’s public keys e and n as

m3\°
c=|—%] modn,
My

3 2
m; —m
a=———"Ymodn,
mem,
and sends a pair (c,a) of shadow ciphertext ¢ and the corresponding variable a to

receiver R.
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Remark

- The length of the transmitted message in scheme 2 is the same as that in scheme 1,
which is 2 log n bits.

Decryption

Receiver R decrypts shadow ciphertext (c,a) with secret keys p, ¢,d, and 4. First, R
computes ¢, = ¢ mod p and shadow plaintext m,, from ¢,,d,, and p as

my = cg” mod p. (5)

R computes (m,,, m,,) € E,(a,,0) with a, = a mod p by using the isomorphic map-
ping w™! in Theorem 1 as
2
a,m Mypa
pp , zp%p
—2——modp, m,, = —"=
(mp —1)° ! T (my - 1)
R computes (mzg,1my,) € E4(a,,0) in the same way. Finally, R obtains (mz, my) by
combining (myp, My} and (my,, my,) via the Chinese Remainder Theorem.
Remarks
- The decryption of scheme 2 corresponds to the path from ¢ to (mz,my) via m.
- Computations of ¢, and a, in the decryption of scheme 2 need less time than that of
scheme 1 because divisions of ¢, = ¢2,/c, and a, = (¢, — 2 ) /¢zpcyp can be avoided.

Myp = mod p.

4 Efficiency

4.1 Comparison of Proposed Schemes and Other Schemes

Since encryption key e can be set as a small value and decryption keys d, d, are large
enough such that logd, ~ log p, logd, 2 log ¢, we {ocus on the decryption procedure.
We evaluate the average number of modular multiplications for decryption. Here, we
assume log p == logq.

In the proposed schemes, i.e., scheme 1 and scheme 2, the dominant computations
involve equations (4) and (5). They require 1.5logp multiplications modulo p on
average. Including the 1.5log ¢ multiplications modulo ¢, the decryption of each of
the proposed schemes requires about 3 log p modular multiplications.

The block size for the RSA scheme is log n bits, and that for the proposed schemes
is 2 log n bits. The number of modular multiplications in the new schemes and
previously proposed schemes are shown in Table 1. We define “speed ratio”; the
bigger the speed ratio is, the faster the decryption speed is. Let the decryption speed
ratio of the RSA scheme be normalized to 1.0. When a K-bit long message is given,
the speed ratios for the KMOV scheme and the new schemes are determined as 0.085r
and r, respectively, where r = s/[5] and s = [K/log n]. Note that 1.0 < r < 2.0.
When integer s is even, the speed ratios for the KMOV scheme and the new schemes
are fixed as 0.17 and 2.0, respectively. If message length K is uniformly distributed,
the probability that s is even is 1/2. If message length K is predetermined such that
K = 2 log n, then integer s is always even. For the Demytko scheme based on elliptic
curves [1], its speed ratio is always fixed as 0.14 because the block size is log n. These
results are summarized in Table 1. We can observe that the decryption speed of the
proposed schemes is about 2.0 times faster than that of the RSA scheme for a K-bit
long message if [ K/log n] is even.
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Table 1: Efficiency of decryptions

Cryptosystems | Block size No. of Speed ratio
mod. multi. | ([K/log n] is even)
RSA log n 3logp 1.0
KMOV 2logn 35logp 0.17
Demytko logn 22 log p 0.14
New schemes 2logn 3logp 2.0

Nowadays, the RSA scheme with 512 bits modulus n (block size) is practically
used for key distributions and digital signatures. In this standard RSA scheme, eight
DES keys can be distributed in one block. In the new schemes with 1024 bits block
size, 16 DES keys can be distributed at the same decryption speed and the same
security level.

4.2 Encryption Efficiency of Scheme 1 and Scheme 2

Although the dominant computations involve the decryptions in scheme 1 and scheme
2, we evaluate their encryption efliciency to compare thses schemes. We focus on pure
encryption procedures excluding isomorphic mapping procedures. Let |e| be the bit-
length of encryption key e. A possible minimum value of e is 3, and |e| = 2. Tt is clear
that the encryption of scheme 2 requires 1.5e| multiplications modulo n on average.
In scheme 1, computing the multiples of a point on curve E, can be performed in
affine coordinates (2) or homogeneous coordinates. A point (z,y) on the affine plane
is equivalent to a point (X, Y, Z) on the projective plane, where z = X/Z, y = Y/Z.
When we put b = 0, the addition formula in affine coordinates can be rewritten in
homogeneous coordinates as equations (7) and (8) in the Appendix. The revised
formulae with minimum number of multiplications are equations (9) and {10) in the
Appendix. In the addition formula in homogeneous coordinates, contrary to that in
affine coordinates, the divisions in Z,, in each addition over E, can be avoided. Each
elementary addition over E, is calculated using addition, subtraction, multiplication
and division in Z,. For simplicity, addition, subtraction and special multiplication
by a small constant were neglected for the comparison. In affine coordinates, each
non-doubling addition requires three multiplications and one division in Z,, and each
doubling requires six multiplications and one division in Z,. In homogeneous coordi-
nates, each non-doubling addition requires 26 multiplications in Z,, and each doubling
requires 26 multiplications in Z,. Let £ be the ratio of the computation amount of
division in Z, to that of multiplication in Z,. Consequently, the encryption of scheme
1 based on affine coordinates requires (7.5 + 1.5¢)}e| multiplications in Z, on average.
That based on homogeneous coordinates requires 39]e| + £ multiplications in Z, on
average. Since 1.5le| < (7.5 + 1.5{)le] and 1.5]¢| < 39]e| + ¢, the encryption of scheme
2 is faster than that of scheme 1. In particular, encryption efficiency of scheme 1

differs by the implemented coordinates. For example, when e = 3 and e = 21, the
encryption in homogeneous coordinates is faster than that in affine coordinates if and
only if £ > 31.5 and £ > 24.2, respectively.
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5 Security

5.1 Security in One-to-one Communication

We show a theorem about the security relationship between the proposed schemes

and the RSA scheme.

Theorem 4 Breaking each of the proposed schemes is computationally equivalent to
breaking the RSA scheme. That is, the following senlences are equivalent.
(i) There is an efficient algorithm Al such that for all c;,c, € Z7, (cs,6y) €
E.(a,0), if (cz,¢,) = e®(mz, m,) over En(a,0), then Al(cz, ¢y, e,n) = (Mg, my).
(it) There is an efficient algorithm A2 such that for all ¢,a € Z7, (my,my) €

3 €
E.(a,0), ifc= (%‘5) mod n, then A2(c,a,e,n) = (mg,m,).
v

(1ti) There is an efficient algorithm B such that for all ¢ € Z%, if c = m® mod n,
then B{c,e,n) = m.

Proof: First, the equivalence between (i) and (iii) is shown as follows.

(i) = (iii)

Assuming algorithm Al is given, algorithm B is defined as follows.

Input: ¢,e,n

Step 1: Choose ¢ € Z randomly.

Step 2: Compute (¢.,¢,) € En{a,0) from ¢, a and n by using isomorphic mapping,
without knowing factors of n as ‘

2 3

a‘c a’c
e = 7 mod n, ¢, = ——— mod n.
-1 c=1)
Step 3: Compute (m,,my) = Al(c,, ¢y, €,n).
Step 4: Compute m =1 + %‘ mod n
v

Output: m

If algorithm Al requires O(T) bit-operations, then algorithm B requires O(T +
(log n)®) bit-operations, and is polynomially reducible from algorithm Al.

(i) = (i)

Assuming algorithm B is given, algorithm Al is defined as follows.

Input: (e,,c,),e,n
¢~
Step 1: Compute a = —%I?yl mod n.

Step 2: Compute ¢ = 1 + L=,
v
Step 3: Compute m = B{c,e,n).
Step 4: Compute (m,,m,) € E.(a,0) from m, a and n by using isomorphic mapping,
without knowing factors of n as

a’m a®*m

my = ——— modn, my = ———— mod n.

(m— 1) (m—1)

Output: (m,,m,)
If algorithm B requires O(T) bit-operations, then algorithm Al requires O(T +
(log n)?) bit-operations, and is polynomially reducible {from algorithm B.
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Next, the equivalence between (ii) and (iii) is shown as follows.
(11) = (iii)
Assuming algorithm A2 is given, algorithm B is defined as follows.
Input: c,e,n
Step 1: Choose a € Z; randomly.
Step 2: Compute (my,m,) = A2(c,a,e,n).
Step 3: Compute m =1+ gr%n_; mod n
Output: m !
If algorithm A2 requires O(T) bit-operations, then algorithm B requires O(T +
(log n)3) bit-operations, and is polynomially reducible from algorithm A2.
(iii) = (ii)
Assuming algorithm B is given, algorithm A2 is defined as follows.
Input: ¢,a,e,n
Step 1: Compute m = B(c, e,n).
Step 2: Compute (m,,m,) € E.(a,0) from m, a and n,
without knowing factors of n as

0.2 m (1,:3 m

m, = E———l)i mod n, my = '(‘-—1)3 mod n.
m - m —

Qutput: (m,,m,)
If algorithm B requires O(T) bit-operations, then algorithm A2 requires O(T +
(log n)®) bit-operations, and is polynomially reducible from algorithm B. 1

The above theorem is concerning on usual passive attacks. Consider possibility
of active known-plaintext attacks. Assume that an attacker knows a value of m, in
addition to the values of ¢,, ¢,, e and n. The attacker aims at obtaining m, by solving

c
cubic congruence m3 — m? = am,m, mod n with known m, and a = —I—C—C—l mod n.

However, it seems difficult to obtain m; if breal\mg the R,SA scheme is dlfﬁcult On
the other hand, assume that an attacker knows a value of m, in addition to the values

of ¢z, ¢,, ¢ and n. The attacker aims at obtaining m, by salving quadratic congruence
2

m3 — mz = am;m, mod n with known m, and a = S‘C—:CTCE mod n. However, it
seems difficult to obtain m, if breaking the Rabin scheme (8] is difficult. Note that
breaking the Rabin scheme (i.e., factoring n) is more difficult than the breaking the
RSA scheme in a usual sense. Thus, additive information on m, or m, seems useless
for cryptanalysis.

5.2 Security in Broadcast Applications

In broadcast applications, the original RSA scheme is not secure if encryption key
e is small. Let e and n; be public keys of the original RSA scheme for a receiver
R; (1 <i < k). The common plaintext m is encrypted as ¢; = m® mod n; (1 < i< k)
for k receivers. If k > e, then the system of congruences ¢; = m®¢(modn;) (1 <i <e)
can be transformed into the equation ¢ = m®, where ¢ is the combined ciphertext from
¢; via the Chinese Remainder Theorem. Hence, the plaintext m can be computed as
m = ¢!/¢ over the rcal field. Even if known terms like “user ID” are included in the
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plaintexts such that m; = a;m + f;, where o; and §; are publicly known, Hastad [2]
showed that similar attacks aimed at obtaining m can be successful by solving a set
of k congruences of polynomials 37_, t;;m’ = 0 mod n;. The inequality condition for
a successful attack is given by

f[ ng >t gy g ) D29t 1272 g yutd

i=1
where n; =min(n;). This condition is the most sensitive to the degree u of the
obtained set of congruences of polynomials. In the RSA scheme with the linearly
related plaintexts m; = a;m + §;, the system of congruences in m with degree e can
be obtained in broadcast applications. In the KMOV scheme over elliptic curves, the
system of congruences in m, with degree €* can be obtained in broadcast applications.
Thus, it was shown in [6] that the KMOV scheme is more secure than the original
RSA scheme against the Hastad attack.

We evaluate the security of the new schemes (i.e., scheme 1 and scheme 2) in
broadcast applications, in which the plaintext is purely common or linearly related.
First, consider scheme 1. There is a recursive formula for computing z; such that
(zi,vi) =1 ® (z1,31) over E,(a,0), where {z1,y1) € E.(a,0) is the initial point:

-2 72 72
= m mod n, Ty = ;1(1—;?:'7:5 mod n. (6)

Using Eq. (6), ciphertext ¢, in scheme 1 is expressed by

T2

€
T
€y = — mod n,

he(my)
where m, is a plaintext and A;(m,) is recursively defined as
h(m,) =1,

hoi(my) = Amihi(m,) + a*(hi(m;))? mod n (i > 1),

hois1(mz) = (hig1 (M) — mahi(mg))* mod n (i > 1).
Since the degree of h;(m,) is i—1, and m‘ and h;(m,) are relatively prime polynomials,
the system of congruences in m, with degree e can be obtained as m¢ — c he(m,) =
0 (mod n). Thus, it is shown that scheme 1 has the same security as the RSA scheme
when linearly related plaintexts are encrypted in broadcast applications. It is also
shown that scheme 2 has the same security as the RSA scheme when linearly related
plaintexts are encrypted in broadcast applications. Note that the RSA scbéme with a
purely common plaintext generates a simpler monomial m® than a set of polynomials
with degree e. Thus, the new schemes are more secure than the RSA scheme when
purely common plaintexts are encrypted in broadcast applications.

We show numerical examples. When modulus n; is 512 bits long and e = 5,
the Hastad attack is applicable if more than 16 ciphertexts are obtained for the new
schemes and the RSA scheme with linearly related plaintexts. When modulus n; is
512 bits long and e = 19, the Hastad attack is applicable if more than 282 ciphertexts
are obtained for the new schemes and the RSA scheme with linearly related plaintexts.
When modulus n; is 512 bits long and e > 21, the Hastad attack is not applicable
for the new schemes and the RSA scheme with linearly related plaintexts. Note that

when modulus n; is 512 bits long and e > 5, the Hastad attack is not applicable for
the KMQOV scheme.
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6 Conclusion

We have proposed fast RSA-type schemes over E,(a,0). For a 2 log n-bit long message,
the decryption speed of the proposed schemes is about 2.0 times faster than that of
the RSA scheme. We have proved that breaking the proposed scheme is equivalent to

breaking the RSA scheme.
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Appendix: Addition Formula for Singular Cubic Curves

For singular cubic curves y? + azy = x2, the addition: (z3,y3) = (21,11) D (x2,¥2) is
given by chord-and-tangent law. The addition formula in affine coordinates is shown
in equation (2). The addition formula in homogeneous coordinates is as follows.

Non-doubling Additien Formula for (X,Y}, Z1) # (X2, Y3, Z2)

Xo= Xp'Z 42X, X2 2,32, 4 a X2 Yo 2,0 2, + X, V0,2 2,4 2,
—a XY 2P 2 —2a X, X Yo 2,3 252 —2 X Y, Yo 2,2 2,°
X, Y222, -2 XX Z, 23+ 2a X, Xo Y 2,2 2,8
+ X, V2222 v a XY, 20 2342 X, Y, Y, 2,2 2,0
+X 12 —aX,PY, 2,2, - X, Y, 2, 2,

Ya= X 3YeZ ' —2X,3Y1232, —aX,Ye22,02,— Y3 2,4 2, (7)
F3X, X2 Y 222, —3 X2 X, Y, 2,0 2, +2a X, Y, Yy 2,8 2,°
+aX; Yol 2320 +3Y, 022,32, +2X,3Y, 2, 2,3
—aXe V2202, ~2aX, Y, Y0 2,0 2,5 -3 Y, Y, 2,2 2,8
—-X2Y, Z v a X, V22, 20 + Y22z 2,

Zy= XS Z,—3X, X223 2,2 +3X,2 X, 2,2 2,° -~ X% 2, 2!

Doubling Formula for (Xi,Y1,Z;) = (X3, Y2, 22)

Xs= 9aX,°Z, +18X,%Y,Z, +a®* X, 2, -6a* X,3 Y, Z,°
—24aX,?Y,2Z2 16X, V,% 2,2 —a* X,2 Y, 2,3
—3a%X, V;2 23 —2a2 Y, 23

Vo= —-27X,%445aX,%Y, 2, +36X°Y,22Z, +2a3X,°Y, Z,* (8)
~15a* X2 Y,2 2,2 ~24a X, Y, 22 -8Y," 2,2
‘—(14/\’1 Y]QZIS-G.B Y13Z13

Za= &SX2Z°3+6a2X,2Y, 2 +12aX, Y, 223 +8Y,%2,3

By introducing moderate intermediate variables, addition formulae (7) and (8) can
be revised to minimize the number of multiplications:

Revised Non-doubling Addition Formula

Yy= LM~ Q) — Z,2,{GT + 3H(XIV, Z, + X?Y32,)}, (9)
To= ZiZoH3,
where H = Xng fand ‘Y1223 G = )/221 iaad )/122, K = Xng -+ )(122, L = 1/2Z1 + }/122,
M=X373, Q=X323 T =G(aH +G).

{ Xs= H{Z\Zy(T + X\ XoK) - M - Q},

Revised Doubling Formula

Yo= =21VI4CVD + Z{B>+ o(X,EF — a*’CJ)}), (10)
Zy = Z}A3,
where A = o X, +2Y), B =aX, -2V, C = Y17, D = 5aX, + 4V, E = aX, —
12Y), F=aX,+3Y,, = X} —aC, J=aX, + Y, V = X}.

{ X3 = ZIA[XI{QV + 21(0,21 - SKJ)} - (1202],
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