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ABSTRACT
Over the last ten years XCS has become the standard for
Michigan-style learning classifier systems (LCS). Since the
initial CS-1 work conceived by Holland, classifiers (rules)
have widely used a ternary condition alphabet {0,1,#}
for binary input problems. Most of the freely available
implementations of this ternary alphabet in XCS rely on
character-based encodings—easy to implement, not mem-
ory efficient, and expensive to compute. Profiling of freely
available XCS implementations shows that most of their ex-
ecution time is spent determining whether a rule is match or
not, posing a serious threat to XCS scalability. In the last
decade, multimedia and scientific applications have pushed
CPU manufactures to include native support for vector in-
struction sets. This paper presents how to implement ef-
ficient condition encoding and fast rule matching strate-
gies using vector instructions. The paper elaborates on
Altivec (PowerPC G4, G5) and SSE2 (Intel P4/Xeon and
AMD Opteron) instruction sets producing speedups of XCS
matching process beyond ninety times. Moreover, such a
vectorized matching code will allow to easily scale beyond
tens of thousands of conditions in a reasonable time. The
proposed fast matching scheme also fits in any other LCS
other than XCS.

Categories & Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning–Concept Learning.

General Terms
Algorithms, Design, Theory.

Keywords
Learning Classifier Systems, Vector operations, Fast rule
matching, Altivec, SSE2.
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1. INTRODUCTION
Since the publication of the work by Wilson in 1995,

XCS [12] has been widely adopted by the mainstream of
researchers working on the so-call Michigan-style learning
classifier systems. XCS builds on the origination work by
Holland [7, 8] and his first learning classifier system pro-
posed (CS-1), later revised and improved (SCS) by Gold-
berg [6]. XCS, likewise CS-1 and SCS, uses a ternary al-
phabet {0,1,#} to describe conditions given a binary input.
Most of the freely available implementations of XCS, such
as xcslib1 and XCS-C2, rely on character-based encoding of
the conditions described using the ternary alphabet, moving
away from the original bit-wise encodings proposed earlier
[5, 11]. This approach to condition encoding is easy to im-
plement, but it is not memory efficient (75% of the character
allocated memory is not used), and it becomes expensive to
compute when we increase the problem size (number of con-
ditions/attributes).

The character-based encoding also poses a threat on the
scalability of XCS. When scaling beyond thousands, or tens
of thousand attributes, XCS will greatly suffer from mem-
ory wasting and inefficient rule (classifier) matching. Pro-
filing the freely available XCS implementations it becomes
clear that more than half of the time xcslib and XCS-C are
spending is in the rule matching processes. Hence, one of
the goals of this paper is to reduce the memory footprint of
the rule encoding schemes used in XCS. Reducing the mem-
ory footprint will also help the matching process thanks to a
better usage of the underlying processor caches. Moreover,
the proposed encoding will also be intended to allow fast
matching strategies using widely available hardware instruc-
tions. Recently, multimedia and scientific applications have
pushed CPU manufactures to include again in their pro-
cessors support for vector instruction sets. With a proper
rule encoding, the usage of vector instructions for paralleliz-
ing the matching process can greatly reduce the time spend
during the matching process.

This paper presents how to implement efficient condi-
tion encoding and fast rule matching strategies using vector
instructions. The paper elaborates on two widely spread
vector instruction sets: (1) Altivec (available on PowerPC
G4 and G5 processors), and (2) SSE2 (available on Intel
P4/Xeon and AMD Opteron processors). Experimental re-

1xcslibis maintained by Pier Luca Lanzi and can be down-
loaded at http://xcslib.sourceforge.net/.
2XCS-Cis maintained by Martin Butz and can be downloaded
at http://www-illigal.ge.uiuc.edu/sourcecd.html.

1513

http://xcslib.sourceforge.net/
http://www-illigal.ge.uiuc.edu/sourcecd.html


sults show the advantages of using vector instruction sets,
producing speedups of XCS matching process beyond ninety
times when compared to the traditional character-based en-
coding. Moreover, such a vectorized matching code will al-
low to easily scale beyond tens of thousands of conditions in
a reasonable time.

The rest of this paper is structured as follows. Section 2
briefly reviews the freely available implementations of XCS
focusing on the execution profiles of xcslib and XCS-C.
Then, section 3 explores how to reduce the memory footprint
of XCS rules. Given the new rule representation, section 4
elaborates on matching implementations that take advan-
tage of vector instruction sets. Time measures taken using
the proposed fast vector-based matching implementations
show the usefulness of the proposed approach, as shown in
section 5. Finally, section 6 discuses some conclusions and
further work.

2. XCS IMPLEMENTATIONS
The work presented in this section uses two of the freely

available XCS implementations: (1) xcslib by Pier Luca
Lanzi and (2) XCS-C by Martin Butz. A detailed description
of both implementation is beyond the scope of this paper
and can be found elsewhere [2, 9]. For each XCS implemen-
tations, the rule-encoding scheme is briefly reviewed. Then,
statistical execution profiles are obtained and analyzed using
four different multiplexer problems, providing interesting in-
sides about the execution behavior of both XCS implemen-
tations.

2.1 The widely used character-based encoding
One of the most widely spread XCS rule implementa-

tion encodes each condition as a character. Each condi-
tion, hence, is represented by a ’0’, ’1’, or ’#’, and the
matching of a rule consists on checking whether the char-
acter is the same or the rule contains the don’t care char-
acter. Figure 1 presents the code for rule matching using
conditions based on character-encoding, and the different
implementations provided by xcslib and XCS-C. Both im-
plementations exploit the simple optimization of stopping
the matching process once a condition is not matched. Re-
gardless of the optimization, the matching of a rule behaves
as O(�c)—being �c the number of conditions.

2.2 Rule sets as lists
xcslib and XCS-C store the rules to match in list-like

data structures. Thus, both implementations also require
linear times O(�r) to determine the match set [M] once a
new instance is provided. Hence, the overall time required
for the matching process grows as O(�r · �c). In the same
manner, the memory footprint required to store the popu-
lation of rules also grows as O(�r · �c). Recent studies have
proposed to used index structures to speedup the matching
process [4]. Tree-based indexing may reduce the required
time for matching and instance to O(�r · log(�c)). Such in-
dexing approach can reduce the amount of time required by
the matching process. However, such approaches are better
fitted when relatively small training data sets are available
because of the indexing approach greatly increase the mem-
ory footprint required. For instance, indexing a given XCS
rule set will required a memory footprint that would grow as
O(2�c ), making the approach inoperative when scaling be-
yond a few teens of conditions and add extra maintenance

Figure 1: Default character-based rule implementa-
tion and matching. The commented code is a simple
improvement to the linear exploration of conditions.
The figure also presents the matching code of the
freely available xcslib and XCS-C implementations of
XCS.

#define RULE char*

int isRuleMatched ( RULE r, INSTANCE i ) {

int iMRCL,iFlag;

for ( iMRCL=0, iFlag=1 ;

iMRCL<NUM_CONDITIONS /*&& iFlag*/ ;

iMRCL++ )

if ( i[iMRCL]!=r[iMRCL] && r[iMRCL]!=’#’ )

iFlag=0;

return iFlag;

}

XCSlib implementation

bool

ternary_condition::match(const binary_state& sens)

{

string::size_type bit;

string input;

bool result;

input = sens.string_value();

assert(input.size()==bitstring.size());

bit = 0;

result = true;

while ( (result) && (bit<bitstring.size()) ) {

result = ( (bitstring[bit]==’#’) ||

(bitstring[bit]==input[bit]) );

bit++;

}

return result;

}

XCS-C implementation

int match(char *m, char *c)

{

for( ; *c!=’\0’&&*m!=’\0’ &&

(*m==DONT_CARE||*c==DONT_CARE||*c==*m) ;

m++,c++ );

if (*m==’\0’||*c==’\0’)

return 1;

else

return 0;

}
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Figure 2: Percentage of execution time spent
by XCSlib in the rule matching process
(ternary condition::match).

cost of such an index. For this reason, the work presented
in this paper maintains the basic list based approach.

2.3 Statistical execution profiles
The matching process, despite of its importance, is still

one of the components of XCS. Although the intuition may
point it as a main bottleneck in the quest for XCS scalability,
supporting facts are still needed. Obtaining statistical exe-
cution profiles for xcslib and XCS-C provides the required
facts to prove or refute such an intuition. Table 1 presents
the summaries of the statistical execution profiles for xcslib
and XCS-C when solving the 11-input, 20-input, 37-input,
and 70-input multiplexer problems. Both implementations
were compiled using gcc compiler version 4.0.0 using the -O3
flag on. The profiling environment used was a PowerBook
G4 at 1.5GHz and 1Gb of RAM running Mac OS X 10.4.4.
The statistical execution profiles were obtained and ana-
lyzed using Shark v.4.2.0—see table 1 for further detail. No
significant differences were detected on the profile behaviors
when we used for the scalability experiments (see section 5)
porpuses a Linux box running gprof version 2.15.92.0.2 on a
dual AMD Opteron 1.3Ghz and 1Gb of RAM using a 2.6.12
kernel and a Gentoo 2005.3 relase.

The statistic profile of xcslib presents a clear trend;
ternary condition::match will eventually take over most
of the execution time as the problem size (number of con-
ditions) is increased. Figure 2 shows the increase of the
percentage of time spent in the matching process; xcslib

also presents a consistent behavior as the problem size is
increased. Another interesting property of xcslib profile is
that, when properly implemented, the a list-based storage of
the rule set does not pose a threat to XCS scalability, as the
amount of time spend on xcs classifier system::match

shows.
The behavior of XCS-C is not as clear and consistent as

xcslib. Besides the matching procedure (getMatchSet),
XCS-C has a secondary element that may govern its scal-
ability: deleteStochClassifier. When the problem size
grows beyond a certain threshold, the matching process
eventually governs the execution time—as table 1 shows.

However, it is quite unexpected that XCS-C spend roughly
the same amount of time stochastically deleting rules
(deleteStochClassifier). For this reason, the rest of the
work presented in this paper may benefit XCS-C, but not as
much as xcslib until deleteStochClassifier is revisited.

2.4 How big is big?
XCS has successfully solved large multiplexer problem up

to 70-input one [1]. However, how far can XCS be pushed?
As mentioned above, the matching process needs to be im-
proved to combine compact rule encoding with a small mem-
ory footprint and fast matching strategies. The faster XCS
computes the match set [M] can be created, the larger the
number of instances can be processed and, hence, larger the
problems that can be brought from tractability to practical-
ity. The rest of this paper focuses on this particular point,
focusing on exploring large problem sizes—thousands and
tens of thousands of attributes. If the time spent in the
matching process can be cut to reasonable amount, larger
problems may be now at reach.

3. COMPACT RULES VIA BIT ENCODING
This section focuses on reducing the memory footprint of

the population of rules used by XCS. A bit-based encoding
will provide the compaction desired for the ternary encoding.
The encoding proposed will also be a first step toward the
parallel matching using vector instruction sets proposed in
the next section.

3.1 The memory allocation
The ternary representation only requires two bits to en-

code the three different symbols. However, the character-
based encoding is using eight bits, wasting a 75% of the
memory provided. Thus, the memory required to store a
the population of rules is

M([P ]) = �r · �c · sizeof(character) (1)

Thus, for a set of 5,000 rules given a 1,000 conditions prob-
lem, the amount of memory required would be 4,882Kb.
Wasting the 75% of the memory also has another byprod-
uct. Current processors have between 1 and 2 Mb of level
two cache memory. Wasting a 75% of the memory avail-
able implies that for each instance, the matching process
will eventually require to heavily access main memory to re-
trieve all the rules due to the need to explore all the rules.
Thus, the benefits of caching will be minimized and the la-
tency of fetching rule conditions will increase because of the
inefficient encoding that requires repeated accesses to main
memory.

3.2 Compact rule encoding
As mentioned above only two bits are necessary for en-

coding a ternary-based condition. The encoding will also
need to provide the basis for allowing fast matching of the
conditions. For these reasons, we used the modified De Jong
& Spears representation [3] proposed elsewhere [10] which
presents no byproducts as the problem size increases. The
encoding mapping of the ternary alphabet is as follows

bit1 bit0 ternary value

0 0 #

0 1 0

1 0 1

1 1 #
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Table 1: Statistical execution profiles for xcslib and XCS-C using the XCS configuration parameters provided
by the XCSlib distribution. Each implementation was compiled and ran to solve the 11-input, 20-imput,
37-input, and 70-input multiplexer. Both implementations were compiled using gcc version 4.0a with the -O3

flag on. The execution environment was a PowerBook G4 at 1.5GHz and 1Gb of RAM running Mac OS X
10.4.4b. The statistical execution profiles were obtained and analyzed using Shark v.4.2.0c. Similar analysis
was performed using gprof version 2.15.92.0.2 on a dual AMD Opteron 1.3Ghz and 1Gb of RAM using a
2.6.12 kernel and a Gentoo 2005.3 relase.

XCSlib version 0.34

11-input multiplexer 20-input multiplexer
% function % function

65.4% ternary condition::match 69.6% ternary condition::match

8.4% xcs classifier system::select delete rw 10.2% xcs classifier system::select delete rw

7.5% binary state::string value 7.5% binary state::string value

5.7% experiment mgr::perform experiments 3.1% xcs classifier system::match

3.8% xcs classifier system::match 2.7% experiment mgr::perform experiments

0.9% xcs random::dice 1.0% xcs classifier system::update fitness

0.9% multiplexer env::begin problem 0.7% action base<boolean action>::operator==

0.9% xcs classifier system::update fitness 0.5% xcs random::dice

37-input multiplexer 70-input multiplexer
time function % function

78.5% ternary condition::match 85.0% ternary condition::match

6.5% xcs classifier system::select delete rw 6.3% binary state::string value

6.3% binary state::string value 3.1% xcs classifier system::match

3.2% xcs classifier system::match 1.1% experiment mgr::perform experiments

1.4% experiment mgr::perform experiments 0.8% ternary condition::∼ternary condition

0.6% xcs classifier::match 0.7% ternary condition::cover

0.6% ternary condition::∼ternary condition 0.6% xcs classifier::match

0.4% ternary condition::cover 0.5% ternary condition::string value

XCS-C version 1.1

11-input multiplexer 20-input multiplexer
% function % function

36.2% deleteStochClassifier 31.9% deleteStochClassifier

31.3% getMatchSet 26.6% getMatchSet

11.1% addClassifierToSet 9.4% freeSet

6.2% freeSet 8.1% addClassifierToSet

2.7% updateFitness 3.5% resetState

1.7% discoveryComponent 3.2% updateFitness

1.5% getPredictionArray 2.3% drand

1.3% getActionSet 2.1% getPredictionArray

37-input multiplexer 70-input multiplexer
time function % function

32.2% getMatchSet 40.0% getMatchSet

29.0% deleteStochClassifier 34.0% deleteStochClassifier

9.2% freeSet 7.5% freeSet

8.1% addClassifierToSet 5.1% addClassifierToSet

3.4% updateFitness 3.3% discoveryComponent

2.3% getPredictionArray 3.1% updateFitness

2.1% getActionSet 2.7% getPredictionArray

1.8% resetState 1.7% getActionSet
a

http://gcc.gnu.org/.
b

http://www.apple.com/macosx/.
c

http://developer.apple.com/tools/sharkoptimize.html.
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Figure 3: Default unsigned integer-based rule im-
plementation and matching. The commented code
is a simple improvement to the linear exploration
of conditions. The full code can be found at
http://gal31.ge.uiuc.edu/xllora/software.

#define RECODE_BLOCKS (2*NUM_CONDITIONS/\

(8*sizeof(unsigned int))+1)

#define RULE unsigned int*

int isRuleMatched ( RULE rule, INSTANCE ins ) {

register int i,iFlag;

for ( i=0, iFlag=1 ;

i<=RECODE_BLOCKS /*&& iFlag*/ ;

i++)

if ( (rule[i]&ins[i]) != ins[i] )

iFlag = 0;

return iFlag;

}

For efficiency purposes, as explained below, the 00 case will
never be used, and if generated it will be turned into the
11 case. Such a decision will allow the implementation of
fast matching bit-level matching strategies. An interesting
byproduct of this encoding is that a xor operation of bit1 and
bit0 will indicate if a given conditions is specific or general—
useful for some XCS behavior models. It also presents a 1:1
specific to general ratio. This rule encoding also requires
the instance attribute to be encoded in a similar manner, as
shown below

bit1 bit0 instance value

0 0 n.a.

0 1 0

1 0 1

1 1 n.a.

Only two case are required to encode the binary instances.

3.3 Bit level matching
The encoding presented above allows implementing the

condition matching using two bit-wise operations. First,
compute the logical and between the condition rule and the
instance attribute, then, compare the result with the origi-
nal instance attribute value. If both values are equal, then
the condition has been matched. However, a rule contains
multiple conditions that need to be check. Current CPUs
provide logical operations for 32-bit unsigned integers, allow-
ing packing up to 16 conditions per integer—do not wasting
any memory. Moreover, performing the matching process
described at the unsigned integer level will provide the par-
allel matching of 16 conditions at once. Figure 3 presents
a possible implementation of the bit-wise matching using
integer blocks.

4. PARALLEL MATCHING WITH
VECTOR PROCESSING

The previous section presented how up to 16 conditions
can be packed together and treated as unit to perform par-
allel matching. This raises the question of how far we can
take this approach. This section reviews widely available
vector instructions sets and how they can help packing even
more conditions into parallel matching units.

4.1 How much can we chew at once?
Recently, multimedia and scientific applications have

pushed CPU manufactures to include again support for vec-
tor instruction sets in their processors. Vector instructions
can perform parallel logical, integer, and floating point op-
erations. The size of the vector operands determines how
many conditions can be packed together in single parallel
matching unit. Common available vector instruction sets
use 128-bit operands, most often manipulated as packed six-
teen 8-bit characters, eight 16-bits integers, or four 32-bit
integers/floats—being highly dependent on the architecture
and the instruction set of the processor. However, regard-
less of how the vector is packed, it provides 128 bit registers.
This means that up to 64 conditions can be pack and pro-
cessed at once using vector instructions. Future increases
in the operand sizes will only allow us to pack even more
conditions per matching cycles and obtain better scalability
profiles.

4.2 Hardware support for vector processing
There are several 128-bit vector instruction sets depend-

ing on the CPU manufacturer. Motorola/IBM provide Al-
tivec (e.g. PowerPC G4, G5), Intel provides SSE2 (e.g. P4,
Xeons), and AMD provide 3DNow!+ (e.g. AMD Opterons).
AMD also provides support for the SSE2 instruction set in
their Opteron processors; hence, the rest of this section will
only focus on implementing fast matching strategies using
Altivec and SSE2 instruction sets.

A detailed description of both instructions sets,
and the processors architectures, are beyond the
scope of this paper. Useful architecture, instructions
sets, and programming manuals for Altivec can be
found at http://developer.apple.com/hardware/ve/

tutorial.html; detailed description of the SSE2 in-
struction set (MMX, SSE, SSE2, and SSE3 exten-
sions) can be found at http://www.amd.com/us-en

/assets/content type/white papers and tech docs/

24592.pdf, and the intrinsic C programming instructions
are defined in the emmintrin.h header. We used gcc to
generate Altivec or SSE2.

4.3 Vector-based matching implementation
The fast rule matching based on vector instructions builds

on the bit-based strategy presented before. It is a natural
extension of the integer encoding, packing four 32-bit inte-
gers together. It can be regarded as four pipelines doing the
matching at once. Vector programming has some require-
ments that need to be fulfilled. For instance, vector registers
need to be explicitly load; once loaded, vector instructions
can be executed. If any result needs to be kept, an explicitly
store to memory operation needs to be issued.

The Altivec implementation of the matching procedure
issues four vector instructions—see figure 4. For each of
128-bit block, two instructions load (vec ld) the conditions
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Figure 4: Default vector-based rule implemen-
tation and matching. The commented code is
a simple improvement to the linear exploration
of conditions. The figure presents the code
for Altivec architecture (PowerPC G4 and G5),
and its translation to SSE2 (Intel P4/Xeon and
AMD Opteron). The full code can be found at
http://gal31.ge.uiuc.edu/xllora/software. If the In-
tel compiler is used, the rule needs to be manually
aligned by adding declspeec ( align ( 16 ) ) be-
fore unsigned int.

#ifdef ARCH_SSE2

#include <emmintrin.h>

#endif

#define RECODE_BLOCKS (4*(2*NUM_CONDITIONS/\

(8*4*sizeof(unsigned int))+1))

#define RULE unsigned int*

int isRuleMatched ( RULE rule, INSTANCE ins ) {

register int iFlag = 1;

#ifdef ARCH_ALTIVEC

// Matching using Altivec instruction set

register int i,iMax,tmp;

register vector unsigned int vir,vii;

for ( i=0, iMax=RECODE_BLOCKS/4 ;

i<iMax /*&& iFlag*/ ;

i++) {

tmp = i*4;

vir = vec_ld(0, &rule[tmp]);

vii = vec_ld(0, &ins[tmp]);

vir = vec_and(vir,vii);

iFlag &= vec_all_eq(vir,vii);

}

#endif

#ifdef ARCH_SSE2

// Matching using SSE2 instruction set

register int i,iMax,tmp;

__m128i vir,vii;

for ( i=0, iMax=RECODE_BLOCKS/4 ;

i<iMax /*&& iFlag*/ ;

i++) {

tmp = i*4;

vir = _mm_load_si128((__m128i*)&rule[tmp]);

vii = _mm_load_si128((__m128i*)&ins[tmp]);

vir = _mm_and_si128(vir,vii);

vii = _mm_cmpeq_epi32(vir,vii);

iFlag &= (-1 == _mm_movemask_epi8(vii));

}

#endif

return iFlag;

}
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Figure 5: Memory required to allocate a 5,000 rule
set as a function of the number of attributes of the
problem.

and the instance values into two vector registers. Then, the
vector instruction vec and performs the logical and between
the conditions and the instance values. The last step of the
matching is to check if the entire resulting vector is equal to
the original instance (vec all eq), and update the control
flag. Figure 4 also presents the equivalent matching code us-
ing SSE2 instructions. The main difference from the Altivec
version is that instead of having a single instruction to make
the final comparison (vec all eq) two properly used intrin-
sic are needed mm cmpeq epi32 and mm movemask epi8.

5. THE TIME JURY
The ultimate jury of the usefulness of the matching strate-

gies presented above is time. This section presents the time
measures for the three strategies proposed: character-based,
bit-based, and vector-based matching. The time measures
are analyzed and speedup computed. The speedup intro-
duced by using vector-based matching reaches values up to
96, allowing reasonable times for very large problem sizes,
not approachable via the character-based strategies.

5.1 Platform and experimental design
The platform used for performing the time measures was

a dual Opteron 242 at 1.6GHz with 2Gb of RAM, the OS
install was a Gentoo Linux, and the gcc compiler version
was 3.3.3 using the -O3 flag. Time measures were taken for
the three available matching strategies. The vector-based
matching strategy used the SSE2 implementation presented
in figure 4. Given a problem size (number of conditions)
fifty experiments were averaged. Each experiment consisted
on measuring the time required to match 2,000 instances in
a 5,000 rules set. The source code of this experiments can
be found at http://gal31.ge.uiuc.edu/xllora/software.

5.2 The memory element
The Opteron processor has two level caches. The capacity

of the L1 cache is 128Kb and the L2 one is 1024Kb. Rule sets
having smaller memory footprints will take better advantage
of the caching techniques. Figure 5 presents the different
footprints of the different encoding strategies. As it will
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Figure 6: Time required to match 2,000 instances in
a 5,000 rule set as a function of the problem dimen-
sionality.

be shown below, packing more conditions into the cache can
provide extra benefits for speeding up the matching process.

5.3 Time measures
The time measures for the three encoding and matching

strategies are presented in figure 6. The measures for the
three strategies present initial changing slopes on their lin-
ear behavior mainly due the cache sizes. When the problem
size becomes large enough, such effects rapidly banish pro-
viding stable linear relations between the problem size and
the average time spend on the experiment.

5.4 Speedup
The speedup analysis conducted using the time

measures—shown in figure 6—is presented in figure 7. The
figure presents the speed up of bit-based and vector-based
matching compared to the original character-based match-
ing. It also shows the speedup between the bit-based match-
ing and the character-based one. The first interesting obser-
vation is the impact of the memory footprints of the different
encodings. The bit-based and vector-based compact encod-
ings allow them to take advantage of caching techniques for
a longer period. This is reflected in figure 7, where up to 560
conditions the vector-based encoding better exploits cache
usage.

Another interesting observation is the speedup for the bit-
based and vector-based encoding are above of what theoret-
ically was expected—16 and 64 respectively. This is the
result of the efficient implementation of the matching al-
gorithm, using less number of instructions and CPU cycles
per matching iteration than the character-based counter-
part. This is also supported by the speedup among them,
where the speedup tends to the theoretical achievable one—
four times due to the vector instructions that operated four
integers at once.

To conclude the speedup analysis we wanted to know if
the speedup provided by the vector-based implementation
was bounded. As show in figure 7 it seemed to grow as
we increased the number of conditions. As show in figure
8(a), the speedup could be approximated by s(NC) = a0 ·
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(a) Speedup of the char-based encoding
versus the bit-based one.
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(b) Speedup of the vector-based encoding
versus the char-based one.
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Figure 7: Speedup between the three different
strategies analyzed. The time measures used are
the ones presented in figure 6.
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Figure 8: Speedup growing rate analysis. Beyond 10,000 conditions per rule the approximations is not valid
any longer and the speedup ends saturating to 96 after 500,000 conditions per rule.

(1 − exp(−a1 · NC)) · log(NC). For that reason we ran
the vector-based fast matching using 5,000, 10,000, 100,000,
and 500,000 number of conditions 8(b). The new results
showed that such an approximation is accurate up to 10,000
rules, but afterwards the speedup saturates to a value of 96
and the approximation is not valid any longer. However,
the final speedup is 1.5 larger than what expected initially
due to the efficient encoding and fast matching process that
reduces the number of instructions and cycles needed.

6. CONCLUSIONS AND FURTHER WORK
This paper has profiled two freely available XCS imple-

mentations, xcslib and XCS-C. The profiling results raised
the need for (1) reducing the memory footprint of the tradi-
tional character-based rule encoding schemes used, and (2)
accelerating the faster matching algorithms. We have pro-
posed an encoding that provides a smaller memory footprint
and exploits hardware vector operations via Altivec and
SSE2 instruction sets to dramatically reduce the amount of
time spend on the matching process. Remarkable speedups
were obtained, suggesting great time benefits to any LCS
that requires intensive matching stages, as XCS requires,
making it possible to deal large number of conditions—
500,000 conditions—in a reasonable time.

Further work should focus on introducing the proposed
matching approaches to some of the freely available XCS
implementations and benefit from the reduction of the exe-
cution time. Also, the same vector approach can be easily
applied to real-valued environments, bringing the benefits
of hardware-based parallel processing based on vector oper-
ations.
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