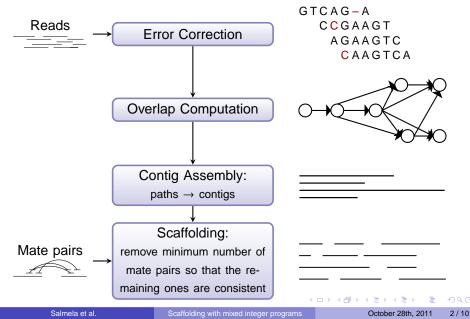
Fast scaffolding with small independent mixed integer programs

Leena Salmela, Veli Mäkinen, Niko Välimäki, Johannes Ylinen, and Esko Ukkonen

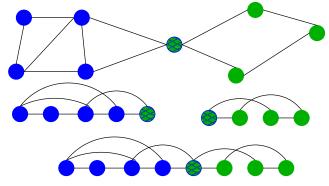
October 28th, 2011

DNA fragment assembly workflow



Previous work

- Even determining the orientation of contigs is NP-complete:
 All approaches use heuristics
- Biconnected components of the scaffolding graph can be solved independently (Dayarian et al. 2010)



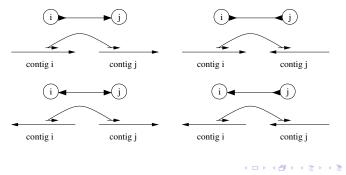
Several tools developed: SOPRA, Bambus, SSPACE, OPERA...

Overview of our work

- Cleaning input:
 - Keeping only more reliable mate pairs
 - Bundling mate pairs that connect the same contigs together
 - Estimating the distance between contigs based on the mate pairs
- Partitioning the problem into smaller subproblems of restricted size
- Solving each subproblem as a mixed integer program (MIP)

Scaffolding graph

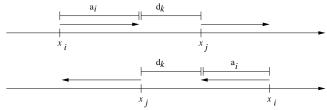
- Nodes: contigs
- Edges: mate pairs connecting contigs
 - Support is the number of mate pairs connecting the contigs
 - Distance is the estimated distance of the contigs based on the mate pairs linking the contigs directly
 - Orientation of the contigs



Partitioning the problem

- Initially: Nodes=contigs, no edges
- Sort the edge candidates according to their support
- Add edges to the graph in descending order of their support but only if the edge does not create a too large biconnected component in the graph.
- Biconnected components of the graph can be maintained under updates efficiently using a data structure by Westbrook and Tarjan (1992)

MIP formulation



- $x_i \in \{1...N\}$: location of contig *i*
- o_i ∈ {0 = reverse, 1 = forward}: orientation of contig i
- I_k ∈ [0, 1]: smoothed indicator of edge k
- a_i: length of contig i
- s_k: support of edge k
- d_k: distance of edge k
- C: large constant

 $\begin{array}{l} \underset{i}{\text{maximize } \sum_{k} s_{k} I_{k} \\ \text{such that} \\ o_{i} - o_{j} - (1 - I_{k}) \leq 0 \\ o_{i} - o_{j} + (1 - I_{k}) \geq 0 \\ x_{i} + a_{i} + d_{k} - C(1 - I_{k}) - C(1 - o_{i}) \leq x_{j} \\ x_{i} + a_{i} + d_{k} + C(1 - I_{k}) + C(1 - o_{i}) \geq x_{j} \\ x_{j} + d_{k} + a_{i} - C(1 - I_{k}) - Co_{i} \leq x_{j} \\ x_{j} + d_{k} + a_{i} + C(1 - I_{k}) + Co_{i} \geq x_{j} \end{array}$

Validation

- Align the scaffolds to the reference genome:
 - Find local maximal approximate matches (swift by Rasmussen et al. 2006)

- Produce maximal colinear chains of the above matches (colinear chaining algorithm by Abouelhoda 2007)
- N50: "length-weighted median", sequences longer than the N50 value cover half of the combined length of a sequence set
- Normalized N50: we computed the N50 statistic for the aligned parts of the scaffolds

Experimental results: Normalized N50 values

Scaffolder	E.Coli	C.Elegans	P.Syringae	Human
SOPRA	185,227	130,346	72,714	-
SSPACE	-	-	93,850	179,418
MIP Scaffolder	170,796	183,891	84,779	190,008

A ≥ ▶

Thanks!

Acknowledgements:

Rainer Lehtonen, Virpi Ahola, Ilkka Hanski, Panu Somervuo, Lars Paulin, Petri Auvinen, Liisa Holm, Patrik Koskinen, and Pasi Rastas.

More information:

L. Salmela, V. Mäkinen, E. Ukkonen, N. Välimäki, and J. Ylinen: Fast scaffolding with small independent mixed integer programs. To appear in *Bioinformatics*.