
 Open access Journal Article DOI:10.1109/TVLSI.2008.2004550

Fast Scaling in the Residue Number System — Source link

Yinan Kong, Braden J. Phillips

Institutions: University of Adelaide

Published on: 01 Mar 2009 - IEEE Transactions on Very Large Scale Integration Systems (IEEE)

Topics: Residue number system, Time complexity, Scaling, Scale factor (computer science) and Coprime integers

Related papers:

 A 2 n scaling scheme for signed RNS integers and its VLSI implementation

 Fast base extension and precise scaling in RNS for look-up table implementations

 Diminished-one modulo 2/sup n/+1 adder design

 Simple, Fast, and Exact RNS Scaler for the Three-Moduli Set $\{2^{n} - 1, 2^{n}, 2^{n} + 1\}$

 A look-up scheme for scaling in the RNS

Share this paper:

View more about this paper here: https://typeset.io/papers/fast-scaling-in-the-residue-number-system-
3bmz3661mp

https://typeset.io/
https://www.doi.org/10.1109/TVLSI.2008.2004550
https://typeset.io/papers/fast-scaling-in-the-residue-number-system-3bmz3661mp
https://typeset.io/authors/yinan-kong-5d0rhyg55q
https://typeset.io/authors/braden-j-phillips-33q3nny9b9
https://typeset.io/institutions/university-of-adelaide-3p19hv6c
https://typeset.io/journals/ieee-transactions-on-very-large-scale-integration-systems-23miu8e8
https://typeset.io/topics/residue-number-system-2lq71dqj
https://typeset.io/topics/time-complexity-2n3x3lor
https://typeset.io/topics/scaling-6kbpenxb
https://typeset.io/topics/scale-factor-computer-science-1ysdz6x2
https://typeset.io/topics/coprime-integers-1kwiekwc
https://typeset.io/papers/a-2-n-scaling-scheme-for-signed-rns-integers-and-its-vlsi-1ycchcsvk6
https://typeset.io/papers/fast-base-extension-and-precise-scaling-in-rns-for-look-up-3uvswf3rhm
https://typeset.io/papers/diminished-one-modulo-2-sup-n-1-adder-design-1mb2awxtev
https://typeset.io/papers/simple-fast-and-exact-rns-scaler-for-the-three-moduli-set-2-3rkwkkz86i
https://typeset.io/papers/a-look-up-scheme-for-scaling-in-the-rns-52jpw55lte
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/fast-scaling-in-the-residue-number-system-3bmz3661mp
https://twitter.com/intent/tweet?text=Fast%20Scaling%20in%20the%20Residue%20Number%20System&url=https://typeset.io/papers/fast-scaling-in-the-residue-number-system-3bmz3661mp
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/fast-scaling-in-the-residue-number-system-3bmz3661mp
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/fast-scaling-in-the-residue-number-system-3bmz3661mp
https://typeset.io/papers/fast-scaling-in-the-residue-number-system-3bmz3661mp

 Copyright © 2009 IEEE.

Reprinted from IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 2009; 17 (3):443-447

This material is posted here with permission of the IEEE. Such

permission of the IEEE does not in any way imply IEEE endorsement of

any of the University of Adelaide's products or services. Internal or

personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution must be

obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the

copyright laws protecting it.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009 443

importance measurement and a method to embed the importance mea-

surement into computation datapath in order to realize unequal error

tolerance. Under this unequal error tolerance framework, we further

developed approaches to use voltage overscaling in memory systems

of trellis decoders. Effectiveness of such an unequal error tolerance

framework and the developed techniques have been successfully

demonstrated using computer simulations.

REFERENCES

[1] A. P. Chandrakasan and R. W. Brodersen, “Minimizing power con-
sumption in digital CMOS circuits,” Proc. IEEE, vol. 83, no. 4, pp.
498–523, Apr. 1995.

[2] R. Gonzalez, B. M. Gordon, and M. A. Horowitz, “Supply and
threshold voltage scaling for low power CMOS,” IEEE J. Solid-State

Circuits, vol. 32, no. 8, pp. 1210–1216, Aug. 1997.
[3] G. Karakonstantis, N. Banerjee, K. Roy, and C. Chakrabarti, “Design

methodology to trade off power, output quality and error resiliency:
Application to color interpolation filtering,” in Proc. IEEE/ACM Int.

Conf. Comput.-Aided Des., Nov. 2007, pp. 199–204.
[4] N. R. Shanbhag, “Reliable and energy-efficient digital signal pro-

cessing,” in Proc. Des. Autom. Conf., Jun. 2002, pp. 830–835.
[5] S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin, K. Flautner,

and T. Mudge, “A self-tuning DVS processor using delay-error detec-
tion and correction,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp.
792–804, Apr. 2006.

[6] J. P. Fishburn, “Clock skew optimization,” IEEE Trans. Computers,
vol. 39, no. 7, pp. 945–951, Jul. 1990.

[7] R. B. Deokar and S. S. Sapatnekar, “A graph-theoretic approach to
clock skew optimization,” in Proc. IEEE Int. Symp. Circuits Syst., Jun.
1994, pp. 407–410.

[8] J. L. Neves and E. G. Friedman, “Optimal clock skew scheduling tol-
erant to process variations,” in Proc. Des. Autom. Conf. (DAC), Jun.
1996, pp. 623–628.

[9] Y. Liu, T. Zhang, and J. Hu, “Low power trellis decoder with over-
scaled supply voltage,” in Proc. IEEE Workshop Signal Process. Syst.

(SiPS): Des. Implementation, 2006, pp. 205–208.
[10] A. Agarwal, V. Zolotov, and D. T. Blaauw, “Statistical timing analysis

using bounds and selective enumeration,” IEEE Trans. Comput.-Aided

Des. Integr. Circuits Syst., vol. 22, no. 9, pp. 1243–1260, Sep. 2003.
[11] H. Chang and S. S. Sapatnekar, “Statistical timing analysis under

spatial correlations,” IEEE Trans. Comput.-Aided Des. Integr. Circuits

Syst., vol. 24, no. 9, pp. 1467–1482, Sep. 2005.
[12] Y. Lu, C. N. Sze, X. Hong, Q. Zhou, Y. Cai, L. Huang, and J. Hu,

“Register placement for low power clock network,” in Proc. Asia South

Pacific Des. Autom. Conf. (ASP-DAC), Jan. 2005, pp. 588–593.
[13] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary

block and convolutional codes,” IEEE Trans. Inform. Theory, vol. 42,
no. 3, pp. 429–445, Mar. 1996.

[14] J. H. Han, A. T. Erdogan, and T. Arslan, “High speed Max-Log-Map
turbo SISO decoder implementation using branch metric normaliza-
tion,” in Proc. IEEE Comput. Soc. Annu.Symp. VLSI, May 2005, pp.
173–178.

[15] R. Hegde and N. R. Shanbhag, “Soft digital signal processing,” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 9, no. 6, pp. 813–823,
Dec. 2001.

[16] Y.-N. Chang, H. Suzuki, and K. K. Parhi, “A 2-Mb/s 256-state 10-mW
rate-1/3 Viterbi decoder,” IEEE J. Solid-State Circuits, vol. 35, no. 6,
pp. 826–834, Jun. 2000.

[17] G. Feygin and P. Gulak, “Architectural tradeoffs for survivor sequence
memory management in Viterbi decoders,” IEEE Trans. Commun., vol.
41, no. 3, pp. 425–429, Mar. 1993.

[18] Li H.-L and C. Chakrabarti, “A new architecture for the Viterbi decoder
for code rate k/n,” IEEE Trans. Commun., vol. 44, no. 2, pp. 158–164,
Feb. 1996.

[19] C.-C. Lin, Y.-H. Shih, H.-C. Chang, and C.-Y. Lee, “Design of a
power-reduction Viterbi decoder for WLAN applications,” IEEE

Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 6, pp. 1148–1156, Jun.
2005.

[20] F. J. Kurdahi, A. M. Eltawil, Y.-H. Park, R. N. Kanj, and S. R. Nassif,
“System-level sram yield enhancement,” in Proc. Int. Symp. Quality

Electron. Des., Mar. 2006, p. 6.

Fast Scaling in the Residue Number System

Yinan Kong and Braden Phillips

Abstract—A new scheme for precisely scaling numbers in the residue
number system (RNS) is presented. The scale factor can be any number

coprime to the RNS moduli. Lookup table implementations are used as a
basis for comparisons between the new scheme and scaling schemes from

the literature. It is shown that new scheme decreases hardware complexity
compared to previous schemes without affecting time complexity.

Index Terms—Computational complexity, digital arithmetic, table
lookup, residue arithmetic.

I. INTRODUCTION

A. Residue Number System and Scaling

The residue number system (RNS) provides a means for efficient

multiplication and addition of integers; however, scaling within RNS

is less efficient and this problem has long prevented wider adoption of

RNS. In this context, scaling an integer � means reducing its word

length by dividing by a constant �

� �
�

�
� (1)

In binary arithmetic, � is usually chosen to be a power of 2 such that

word length reduction is achieved by simply truncating a number’s bi-

nary representation. There is no equivalent operation in RNS with the

consequence that a result accumulated through a sequence of multi-

plications [as is often the case in digital filters or multiple-point fast

Fourier transfers (FFTs)] can grow in word length until it overflows

the dynamic range of the RNS.

An RNS [1] is characterized by a set of � coprime moduli

������� � � � ����. In the RNS, a number � is represented in �
channels: � � ���� ��� � � � � ���, where �� is the residue of �
with respect to ��, i.e., �� � ���� � ������. Within the

RNS there is a unique representation of all integers in the range

� � � 	
 , where
 � ����� � � � ��� .
 is therefore known as

the dynamic range of the RNS. Two other values,
� and
��

� �

are commonly used in RNS computations and are worth defining

here.
� � �
���� and
��

� �
is its multiplicative inverse with

respect to �� such that
� �
��

� �
� 	.

If � , � , and � have RNS representations given by

� � ���� ��� � � � � ���, � � ��� �� � � � � ��, and

� � ���� ��� � � � � ���, then denoting * to represent the operations +,

-, or �, the RNS version of � � � � � satisfies

� � �������� � ������� � � � � � ������� ��

Thus addition, subtraction, and multiplication can be concurrently per-

formed on the� residues within� parallel channels, and it is this high

Manuscript received June 21, 2007; revised January 15, 2008. First published
January 13, 2009; current version published February 19, 2009.. This work
was supported by the Australian Research Council’s Discovery Project Scheme
(DP0559582).

The authors are with the Centre for High Performance Integrated Tech-
nologies and Systems (CHiPTec), the School of Electrical and Electronic
Engineering, the University of Adelaide, Adelaide, SA 5005, Australia (e-mail:
ykong@eleceng.adelaide.edu.au; phillips@eleceng.adelaide.edu.au).

Digital Object Identifier 10.1109/TVLSI.2008.2004550

1063-8210/$25.00 © 2009 IEEE

Authorized licensed use limited to: University of Adelaide Library. Downloaded on December 2, 2009 at 00:19 from IEEE Xplore. Restrictions apply.

444 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009

Fig. 1. Scaling using LUTs.

speed parallel operation that makes the RNS attractive. There is, how-

ever, no such parallel form of scaling or division.

B. Scale Factor �

From (1), we have

� �
�

�
�

� � ����
�

such that in an RNS

�� � �� �� �
� � ����

�
�

� (2)

Many scaling algorithms [2]–[4] take the scale factor� to be a product

of a subset of the moduli, � �
�

���

��, because this permits the rapid

evaluation of ���� from

���� �

�

���

�� ���� �� �

�

�

If � is relatively prime to ��, the multiplicative inverse of � modulo

�� exists. If we denote this as ������ , then (2) becomes

�� � �� � ������ � ������
�

(3)

which is an equation to quickly generate scaled residues ��. However,

the evaluation of �� for � � 	 �
 is much more difficult. In these

channels ������ does not exist as � �
�

���

�� is not relatively

prime to ��. This step always consumes more time and hardware than

the evaluation of �� for
�� � 	 � � [5]. In [6], � is fixed to 2. The

current paper extends this idea, allowing � to be any number coprime

with the RNS moduli.

II. SPACE AND TIME COMPLEXITY

A. Lookup Table Implementation

It has been common for RNS scaling schemes to operate using

lookup tables (LUTs) [2], [3], [5], [7]–[10]. Scaled results are precom-

puted and stored in a network of LUTs as shown in Fig. 1. In practice

these LUTs may be implemented using devices such as ROMs, RAMs,

PLAs, or combinatorial logic according to whichever is most appro-

priate for the target hardware platform. The various scaling schemes

lead to different structures in the LUT network and, in general, trade

reduced latency (achieved through exploiting parallelism within the

network) against hardware cost.

In this paper, we will use LUT implementations to provide a fair

basis for comparisons between scaling schemes. We assume that all

LUTs in an implementation have the same size and then compare time

complexity counted in lookup cycles (LUCs) and space complexity

measured in the total number of LUTs.

Note that both the time and space complexity are heavily dependent

on the width of each modulus and the size of the LUTs selected. We

use � to denote the number of residue inputs addressing each LUT and

assume that � remains the same for all of the LUTs within an imple-

mentation. For example, if we use the 5-bit moduli ��� �� �� ���

and use ROMs with an address space of 32 K � 4 K � 8 bits, then

� � ���	

�
����	 � � because each memory can accommodate two

residue inputs at most.

LUT implementations are appropriate for field-programmable gate

array (FPGA) implementations which are typically rich in memory re-

sources. For other platforms, alternatives to LUT implementations do

exist. Instead of precomputing values and storing them in tables, they

can be evaluated dynamically as the operation proceeds. This is the case

for the RNS systems of [11]–[13].

B. Scaling Complexity

Early attempts at scaling were performed by converting from RNS

to a positional (binary) representation where scaling can be trivially

performed before the result is converted back to the RNS [1]. Such

schemes incurred a time complexity of ��� LUCs. An improved

form used in [2] and [4] decreased the number of LUCs to ���	
��
by expressing the scaled integer � as a sum of terms that can be eval-

uated in parallel

� �
�

�

�

���

����� (4)

The exact time complexity of residue arithmetic structures following

this form is derived in the Appendix to be ��	
� ��. The exact space

complexity is also shown to be ��� � ��� � ��. Subsequent scaling

schemes (e.g., [3], [8], [9], [14]) have not reduced time complexity

below ���	
��. The space complexity of scaling has remained at

����LUTs [7] with little improvement over the development of RNS

scaling algorithms [2], [3], [8], [9], [14].

The scaling scheme in this paper decreases the space complexity to

��� while maintaining ���	
�� time complexity.

III. NEW SCALING SCHEME

A. Base Extension Step

The new scaling scheme assumes the scaling factor � is a positive

integer coprime to any of the moduli ��. For comparison with other

scaling schemes using a LUT implementation, we require that � is a

constant with word length at most ��� � times the word length of the

channel moduli. The first step in the new scaling scheme is to evaluate

���� from the RNS representation of � , i.e., ��� �� � � � ���. This

is a typical base extension problem.

Efficient algorithms for base extension are presented in [1], [8], [15]

and [16]. The scheme in [1] uses mixed radix conversion (MRC) which

is relatively slow and costly; [15] employs an extra RNS channel with

modulus greater than � ; [16] performs an approximate extension; and

[8] achieves exact scaling without an extra RNS channel. Any exact

base extension is appropriate for our purposes. The algorithms [15]

and [8] are the most time and space efficient, generating ���� in

���	
�� LUCs using ��� LUTs. This efficiency does come at a

cost: [15] requires extra hardware to maintain the extra channel; and

[8] can be as slow as the MRC in some rare cases.

B. New Scaling Step

From (3), we can write

�� � ��� � ������ � ������
�

� (5)

Because� is coprime with all ��, ��
���� always exists and (5) can

be used to evaluate �� in every channel. For a constant � , ������
can be precomputed and stored in a LUT.

Given ���� (5) can be implemented directly in each channel using

subtraction and multiplication modulo ��; however, to compare this

scheme with those surveyed in the previous section, we will consider

Authorized licensed use limited to: University of Adelaide Library. Downloaded on December 2, 2009 at 00:19 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009 445

Fig. 2. Architecture to perform RNS scaling by� .

an implementation using LUTs. As there are only two inputs to (5), ��
and ���� , (5) can be implemented using a single LUT for each output

residue �� provided the word length of � is at most �� � �� times the

word length of the moduli. In this case the scaling step only uses one

LUC and � LUTs.

For example, if � � � and the channel width is 5 bits, the addressing

capacity of each LUT is ���� � � � 32 K � 5 bits. In this case �
can be as large as �� � �� � � � 10 bits. � can be made larger if

we use a larger LUT or concatenate LUTs to allow more addressing

capacity. In the example above, if the largest available LUT is 512 K

� 64 K��, i.e., ���� � 64 K, then the scale factor� can be as large

as 	
�� � � �� � � � 11 bits.

C. Whole Scaling Process

The scaling scheme is illustrated in Fig. 2. The base extension block

in Fig. 2 costs��	
�� �� LUCs and���� LUTs, and the scaling step

consumes one LUC and � LUTs. Thus, the time complexity of this

new scaling process is ��	
���� � � � ��	
���� and the space

complexity is ���� � � � ����. The latter is an improvement for

the scaling problem in RNS since all other methods known to the au-

thors incur����� hardware cost. The main reason is they need����
LUTs to scale in one channel. When scaling over � channels, their

space complexities become �����.
More specifically, suppose the base extension block in [8] is

used, which has an exact time complexity of ����� � � and an

exact space complexity of �	���� � , where ����� � �	
�� ��
and 	���� � ��� � �
� � ���. The exact time complexity of

this new scaling process is ����� � � and the exact space com-

plexity is �	���� � � � , where ����� � �	
�� �� and

	���� � ��� � �
� � ���.

D. Example

As an example, consider the RNS moduli �� � ��, �� � ��,

�� � ��, �� � ��, and �� � ��, and suppose the integer � �
������ � ��� ��� �� �� ��	 is to be scaled by � � ����. ������
has been precomputed as ��� �� ��� ��� �	 for � � � �. We base

extend � to � to compute ���� � ���. Then, according to (5),

the scaled residues are computed as �� � ���� ������ � ���� � ,

�� � ����� ������ � ���� � �, �� � ���� ������ � ����� � ��,

�� � ���� ������ � ����� � �, and �� � ����� ������ � ���� �
��. Thus, � � �� �� ��� �� ��	 � ��� �
�������
������. Note

that in this example all operations can be performed using 64 K � 8 bit

LUTs.

E. Evaluation

Though base extension has long been used in RNS scaling, the way

that it has been applied has remained the same since it was proposed

Fig. 3. Conventional scaling using BE blocks [8].

in [5] in 1978. Since this time, scaling algorithms using base extension

have always chosen � to be a product of a subset of the moduli: � �
�

�	�

��. As the scaled integer

� �
� � ����

�

�
� � ����

�
����

� ����
���� � ������
�������
���
����

����

can be represented in the range ��� ��
�� � ��, a base extension of

���� � ���� ��� � � � � ��	 to the moduli ����� ����� � � � ��� is

first performed. Then, the resulting residues ������ ����� � � � � ��	
are involved in a simple table lookup step to compute the representation

of � in the range ��� ��
�����, i.e., ������ ����� � � � � ��	. Finally,

these residues are base extended back to moduli ������ � � � ���

to obtain the representation of � over the whole RNS range, i.e.,

���� ��� � � � � ��	 [5], [8], [9]. The schemes [8] and [9] are similar but

the latter replaces the base extension blocks with large LUTs with up

to 	 � � inputs. For an RNS with more than about 3 5-bit channels,

such large LUTs are not available and hence the scheme is only viable

in some specific cases as stated in [9].

As shown in Fig. 3, this process involves exactly � base exten-

sion (BE) blocks no matter what kind of base extension algorithms

are used. Since the space complexity of each base extension is already

no less than ����, the whole scaling space complexity amounts to

���� � � � �� � 	� � �����. This can be compared with the

new scaling architecture in Fig. 2 which has only 1 base extension

block and space complexity ����. In Fig. 3, the time complexity is

��	
�� 	� 	
���� �	�� � ��	
����. This is the same as the new

scheme.

Table I provides results comparing the new scaling process with

those described in [2], [8], [9], and [14]. Assume the new scaling uses

the base extension technique given in [8] and EPROMs of 256 K �
32 K � � are used as LUTs. Therefore, the number of residue inputs

addressing each memory is � �
�	
�� �� � ��
Channel Width���

���
������	 �������. The scale factor � should be no larger than

	
�� �� � �� � ������	 ����� � ��� Channel Width bits long.

Because the scaling schemes in [8] and [9] only support even values

of � , � is always chosen to be even here, although there is no such

restriction in the new scaling algorithm.

As can be seen from the Table I, the larger the dynamic range, the

more obvious the advantage of the new scaling algorithm in terms of

hardware.

Authorized licensed use limited to: University of Adelaide Library. Downloaded on December 2, 2009 at 00:19 from IEEE Xplore. Restrictions apply.

446 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009

TABLE I
COMPARISON BETWEEN NEW SCALING AND CONVENTIONAL SCALING SCHEMES USING 32 K � 8 LUTS

Fig. 4. Parallel architecture to perform (4).

Fig. 5. One channel of parallel residue arithmetic process using memories with addressing capacity � �.

IV. CONCLUSION

A low latency scaling scheme is illustrated in Fig. 2 that reduces

hardware cost to ���� down from ����� required for previous solu-

tions. The scheme imposes no restrictions on the scale factor � other

than it must not be too large and be coprime with the RNS moduli. Base

extension algorithms are applied in a simple way to achieve scaling

with only 1 base extension step. Most of the time and hardware re-

sources consumed in the scaling are required by the base extension

step. This means that there is a tight connection between base exten-

sion and scaling in that any improvement in base extension algorithms

will immediately lead to more efficient scaling.

APPENDIX

In this appendix, the time and space complexities of residue arith-

metic structures following (4) are derived. This equation is typical of

residue arithmetic processes that achieve �����
�
�� time complexity.

A ROM network to perform (4) was shown in Fig. 1. A more detailed

diagram appears in Fig. 4. The two base extension structures ([8] and

[15]) used in this paper can be implemented with this structure.

Suppose each available LUT can accept only � inputs at most while

generating only one output as discussed in Section II above. Then, each

channel of the parallel scaling structure in Fig. 4 can be drawn as a tree

as in Fig. 5, where it is assumed that there are � input residues and �
LUCs are consumed to accomplish the scaling in channel �.

In the first cycle, the number of LUTs is �����. Thus, there are

����� input residues to the LUTs in the second cycle, where the

number of LUTs will be ���������. This proceeds recursively

until only one LUT is needed, i.e., �� � � ��������� � � � ��� � �
as illustrated in Fig. 5. Using the result from Number Theory,

������ � ���������, gives the number of LUTs as �����
in the first cycle, ������ in the second and so on, until the last

Authorized licensed use limited to: University of Adelaide Library. Downloaded on December 2, 2009 at 00:19 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009 447

cycle, where �� � � ��������� � � � ��� � ������ � �. Then from

���� � ������ � �, we have ���� � �� � � ���
�
� .

If � � ������ � �, then �������� � �. This means only � � �
cycles are needed and this contradicts our original assumption that �
cycles are required. Therefore, ������ � �� � � ���

�
� � � and

���
�
� � � � ���

�
� � �, so that

� � ����
�
��� (6)

This represents the exact time complexity of the �th channel of the

residue arithmetic process shown in Fig. 5. Because all the � chan-

nels run in parallel, ����
�
�� is also the exact time complexity of the

scaling scheme constructed on �-input LUTs.

It can also be proven that the exact space complexity of each channel

is �	� � ��� � �
� such that the exact space complexity of the whole

arithmetic process is � �	� � ��� � �
�, which is at the level of

		��
.

REFERENCES

[1] N. S. Szabo and R. H. Tanaka, Residue Arithmetic and its Applications

to Computer Technology. New York: McGraw Hill, 1967.
[2] A. Shenoy and R. Kumaseran, “A fast and accurate rns scaling tech-

nique for high speed signal processing,” IEEE Trans. Acoust., Speech,

Signal Process., vol. 37, no. 6, pp. 929–937, Jun. 1989.
[3] M. Griffin, M. Sousa, and F. Taylor, “Efficient scaling in the residue

number system,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal

Process., 1989, pp. 1075–1078.
[4] O. Aichholzer and H. Hassler, “A fast method for modulus reduction

in residue number system,” in Economical Parallel Process., Vienna,
Austria, 1993, pp. 41–54.

[5] G. A. Jullien, “Residue number scaling and other operations using rom
arrays,” IEEE Trans. Comput., vol. 27, no. 2, pp. 325–336, Apr. 1978.

[6] U. Meyer-Bäse and T. Stouraitis, “New power-of-2 RNS scaling
scheme for cell-based ic design,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 11, 4, no. , pp. 280–283, Apr. 2003.
[7] Y. Kong and B. Phillips, “Residue number system scaling schemes,” in

Proc. SPIE, Smart Structures, Devices, and Systems II, S. F. Al-Sarawi,
Ed., Feb. 2005, vol. 5649, pp. 525–536.

[8] F. Barsi and M. C. Pinotti, “Fast base extension and precise scaling in
RNS for look-up table implementations,” IEEE Trans. Signal Process.,
vol. 43, no. 10, pp. 2427–2430, Oct. 1995.

[9] A. Garcia and A. Lloris, “A look-up scheme for scaling in the RNS,”
IEEE Trans. Comput., vol. 48, no. 7, pp. 748–751, Jul. 1999.

[10] J. Ramirez, U. Meyer-Bäse, A. García, and A. Lloris, “Design and
implementation of rns-based adaptive filters,” in Proc. 13th Int. Conf.

(FPL), 2003, vol. 2778, pp. 1135–1138.
[11] E. D. D. Claudio, F. Piazza, and G. Orlandi, “Fast combinatorial RNS

processors for DSP applications,” IEEE Trans. Comput., vol. 44, no. 5,
pp. 624–633, May 1995.

[12] J. Vaccaro, B. Johnson, and C. Nowacki, “A systolic discrete Fourier
transform using residue number systems over the ring of Gaussian in-
tegers,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Apr.
1986, vol. 11, pp. 1157–1160.

[13] S. J. Meehan, S. D. O’Neil, and J. J. Vaccaro, “A universal input and
output RNS converter,” IEEE Trans. Circuits Syst., vol. 37, no. 6, pp.
799–803, Jun. 1990.

[14] N. Burgess, “Scaling an RNS number using the core function,” in Proc.

16th IEEE Symp. Comput. Arithmetic, 2003, pp. 262–269.
[15] A. Shenoy and R. Kumaseran, “Fast base extension using a redundant

modulus in rns,” IEEE Trans. Comput., vol. 38, no. 2, pp. 292–297,
Feb. 1989.

[16] K. C. Posch and R. Posch, “Modulo reduction in residue number sys-
tems,” IEEE Trans. Parallel Distrib. Syst., vol. 6, no. 5, pp. 449–454,
May 1995.

Fully Monolithic Cellular Buck Converter Design

for 3-D Power Delivery

Jian Sun, David Giuliano, Siddharth Devarajan, Jian-Qiang Lu,

T. Paul Chow, and Ronald J. Gutmann

Abstract—A fully monolithic interleaved buck dc-dc point-of-load (PoL)
converter has been designed and fabricated in a 0.18-mm SiGe BiCMOS
process. Target application of the design is 3-D power delivery for future

microprocessors, in which the PoL converter will be vertically integrated
with the processor using wafer-level 3-D interconnect technologies. Advan-

tages of 3-D power delivery over conventional discrete voltage regulator
modules (VRMs) are discussed. The prototype design, using two interleaved

buck converter cells each operating at 200 MHz switching frequency and
delivering 500 mA output current, is discussed with a focus on the con-

verter power stage and control loop to highlight the tradeoffs unique to
such high-frequency, monolithic designs. Measured steady-state and dy-
namic responses of the fabricated prototype are presented to demonstrate

the ability of such monolithic converters to meet the power delivery require-
ments of future processors.

Index Terms—3-D integration, dc-to-dc converters, monolithic power
conversion, power delivery, power management, voltage regulator.

I. INTRODUCTION

Future microprocessors and high-performance integrated circuits

(ICs) will require multiple, dynamically scalable, sub-1-V supply

voltages with total current exceeding 100 A/chip [1]. Conventional

power delivery methods employing a voltage regulator module (VRM)

mounted on the motherboard have several limitations in meeting

future IC technology needs. One critical problem of this 2-D power

delivery architecture is the long interconnect between the VRM and

the processor, which creates an impedance bottleneck for dynamic

power delivery and forces the use of decoupling capacitors at various

locations along the power delivery path. Another problem of 2-D

power delivery is the large number of power and ground pins required

by the processor, which consumes expensive board area around the

processor and/or increases packaging complexity. Meeting the power

delivery requirements of future microprocessors and high-performance

ICs requires a paradigm shift in power delivery system design and

integration.

3-D power delivery [2]–[5], in which the power supply is vertically

integrated with the processor in a 3-D stack, offers a possible solution to

the problems of 2-D power delivery by dramatically reducing the inter-

connect parasitics. In addition, this ultimate point-of-load (PoL) con-

verter configuration reduces the number of power pins and facilitates

the delivery of multiple supply voltages. Of the different 3-D architec-

tures discussed in the literature, the wafer-level 3-D approach proposed

Manuscript received September 01, 2007; revised February 19, 2008. First
published February 03, 2009; current version published February 19, 2009. This
work was supported in part by the Interconnect Focus Center sponsored by
MARCO, DARPA, and NYSTAR, by the NSF under ERC Award EEC-9731677
(for the Center for Power Electronics Systems), and by the IBM-sponsored RPI
Broadband Center.

The authors are with Rensselaer Polytechnic Institute, Troy, NY 12180 USA
(e-mail: jsun@rpi.edu).

S. Devarajan was with Rensselaer Polytechnic Institute, Troy, NY 12180
USA. He is now with Linear Technology, Inc.

D. Giuliano was with Rensselaer Polytechnic Institute, Troy, NY 12180
USA. He is now with Massachusetts Institute of Technology (MIT), Boston,
MA 02139 USA.

Digital Object Identifier 10.1109/TVLSI.2008.2005312

1063-8210/$25.00 © 2009 IEEE

Authorized licensed use limited to: University of Adelaide Library. Downloaded on December 2, 2009 at 00:19 from IEEE Xplore. Restrictions apply.

