
Fast Scans on Key-Value Stores

Markus Pilman
∗

Snowflake Computing

markus.pilman@snowflake.net

Kevin Bocksrocker
∗

Microsoft

kebocksr@microsoft.com

Lucas Braun
∗

Oracle Labs

lucas.braun@oracle.com

Renato Marroquín
Department of Computer Science, ETH Zurich

marenato@inf.ethz.ch

Donald Kossmann
∗

Microsoft Research

donaldk@microsoft.com

ABSTRACT

Key-Value Stores (KVS) are becoming increasingly popular be-

cause they scale up and down elastically, sustain high throughputs

for get/put workloads and have low latencies. KVS owe these ad-

vantages to their simplicity. This simplicity, however, comes at a

cost: It is expensive to process complex, analytical queries on top

of a KVS because today’s generation of KVS does not support an

efficient way to scan the data. The problem is that there are con-

flicting goals when designing a KVS for analytical queries and for

simple get/put workloads: Analytical queries require high locality

and a compact representation of data whereas elastic get/put work-

loads require sparse indexes. This paper shows that it is possible

to have it all, with reasonable compromises. We studied the KVS

design space and built TellStore, a distributed KVS, that performs

almost as well as state-of-the-art KVS for get/put workloads and

orders of magnitude better for analytical and mixed workloads. This

paper presents the results of comprehensive experiments with an

extended version of the YCSB benchmark and a workload from the

telecommunication industry.

1. INTRODUCTION
Key-Value Stores (KVS) are becoming increasingly popular. Un-

like traditional database systems, they promise elasticity, scalability,

and easy deployment and management. Furthermore, the perfor-

mance of a KVS is predictable: Each get/put request finishes in con-

stant time. This feature helps to support service level agreements

for applications built on top of KVS.

Recent work [14, 21, 30] has shown that KVS can run OLTP

workloads in an efficient and scalable way. All that work adopted a

“SQL-over-NoSQL” approach where the data is stored persistently

and served using a KVS (i.e., NoSQL) and the application logic

(with SQL support) is carried out in a separate processing layer. The

big question that we would like to address in this work is whether

such a “SQL-over-NoSQL” architecture can support both analytical

workloads and OLTP workloads using the same KVS.

∗Work performed while at ETH Zurich.

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by­nc­nd/4.0/. For
any use beyond those covered by this license, obtain permission by email­
ing info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 11
Copyright 2017 VLDB Endowment 2150­8097/17/07.

Key-Value Store Scan Time

Cassandra [28] 19 minutes

RAMCloud [34] 46 seconds

HBase [20] 36 seconds

RocksDB [16] 2.4 seconds

Kudu [19] 1.8 seconds

MemSQL [31] 780 milliseconds

TellStore-Row 197 milliseconds

TellStore-Log 133 milliseconds

TellStore-Column 84 milliseconds

Table 1: YCSB# Query 1, 50M Records, 4 Storage nodes

This question is relevant because the access patterns of OLTP

and analytical workloads are different. The get/put interface of

most KVS is sufficient for OLTP workloads, but it is not a viable

interface for analytical workloads because these workloads involve

reading a large portion, if not all, of the data. As a result, systems

for analytical workloads provide additional access methods: They

allow data to be fetched all at once (full table scan) and to push

down selection predicates and projections to the storage layer. Most

KVS do not have such capabilities and those that do, cannot execute

scans with acceptable performance.

To illustrate that current state-of-the-art KVS are not well suited

for analytics, Table 1 shows the running times of executing a simple

scan over 50 million key-value pairs and returning the maximum

value of a specific field (YCSB# Query 1 in Section 7.2.1). For

this experiment, we used four machines (configured as explained

in Section 7.1). Because RocksDB is an embedded storage engine

we ran it in a single process with only one quarter of the data. It

took Cassandra [28] about 19 minutes to process this simple query.

RAMCloud [34] and HBase [20] needed about half a minute. For

these three KVS, we used server-side processing of the aggregate

value because shipping all data and executing the aggregation at the

client would have made the response times even worse. Given that

the entire dataset fits into main memory, these running times are not

acceptable. The only systems that had acceptable performance in

this experiment were RocksDB [16], MemSQL [31], and Kudu [19].

RocksDB is a highly-tuned, embedded open-source database that is

popular for OLTP workloads and used, among others, by Facebook.

MemSQL is a distributed, in-memory, relational database system

that is highly optimized (among others with just-in-time compila-

tion of expressions). Kudu is a column-oriented KVS specifically

designed for mixed workloads (analytics and get/put). But, even

these systems are a far cry from good if real-time (sub-second) la-

tency is expected. The different variants of TellStore, which will be

presented in this paper, achieved much lower response times.

1526

KV

Store

KV

Store

KV

Store

KV

Store

OLTP OLTP OLTP OLAP OLAP OLAP

Storage

Layer

Processing

Layer

Commit Manager

Figure 1: SQL-over-NoSQL Architecture

The poor performance of Kudu which was specifically designed

to perform well for such queries shows that it is not easy to achieve

fast scans on KVS. The problem is that there are conflicting goals

when supporting get/put and scan operations. Efficient scans require

a high degree of spatial locality whereas get/put requires sparse

indexes. Versioning and garbage collection are additional consid-

erations whose implementation greatly impacts performance. This

paper shows that with reasonable compromises it is possible to sup-

port both workloads as well as mixed workloads in the same KVS,

without copying the data.

Specifically, this paper makes the following contributions: First,

we amend the SQL-over-NoSQL architecture and show how it can

be used to process mixed workloads (Section 2). Second, we present

the design space for developing a KVS that supports both point op-

erations (get/put) and bulk operations (scans) efficiently (Section 3).

Third, we present TellStore, a distributed, in-memory KVS, and

our implementation of two different KVS designs (Sections 4 to 6).

Finally, we give the results of performance experiments using an

extended YCSB benchmark and a workload from the telecommuni-

cations industry that study the tradeoffs of the alternative variants

to implement a KVS supporting efficient scans (Section 7). The

main result of this work is that it is indeed possible to build a KVS

that has acceptable performance for get/put workloads and is highly

competitive for analytical workloads. It is important to address all

the design questions in a holistic and integrated way as simply com-

posing concepts known from the literature does not work.

2. REQUIREMENTS

2.1 SQL­over­NoSQL Architecture
Figure 1 depicts the SQL-over-NoSQL architecture to support

mixed OLTP/OLAP workloads on top of a KVS. In this architecture,

the data is stored in a distributed KVS which features a get/put and

scan interface. Transactions and queries are processed by machines

in the processing layer. The processing layer is also responsible for

synchronizing concurrent queries and transactions. Throughout this

work, we use Snapshot Isolation [6] for synchronization which can

be implemented in a distributed setting using a Commit Manager as

shown in Figure 1 [30, 12]. Snapshot Isolation (or other forms of

Multi-Version Concurrency Control) have emerged as the defacto-

standard for synchronization, in particular in distributed systems

and for mixed database workloads because OLTP transactions never

block or interfere with OLAP queries. With Snapshot Isolation, the

commit manager simply assigns transaction timestamps and keeps

track of active, committed, and aborted transactions and, thus, rarely

becomes the bottleneck of the system [30].

The big advantage of the SQL-over-NoSQL architecture is that it

is elastic. Additional machines can be added to both layers (storage

and processing) independently. For instance, additional OLAP

nodes can be added at the processing layer to process a complex

analytical query; these nodes can be shut down or repurposed for

other tasks once the query is completed. This architecture also

enables the efficient processing of mixed transactional/analytical

workloads: Both kinds of workloads can run concurrently with

dedicated resources on a single, fresh copy of the data.

To implement this SQL-over-NoSQL architecture efficiently, the

distributed KVS must meet the following requirements:

Scans In addition to get/put requests, the KVS must support effi-

cient scan operations. In order to reduce communication costs, the

KVS should support selections, projections, and simple aggregates

so that only the relevant data for a query are shipped from the stor-

age to the processing layer. Furthermore, support for shared scans

is a big plus for many applications [38, 50, 46].

Versioning To support Multi-Version Concurrency Control, the

KVS must maintain different versions of each record and return

the right version of each record depending on the timestamp of

the transaction. Versioning involves garbage collection to reclaim

storage occupied by old versions of records.

Batching and Asynchronous Communication To achieve high

OLTP performance, it is critical that OLTP processing nodes batch

several requests to the storage layer. This way, the cost of a round-

trip message from the processing to the storage layer is amortized for

multiple concurrent transactions [30]. Furthermore, such batched

requests must be executed in an asynchronous way so that the pro-

cessing node can collect the next batch of requests while waiting for

the previous batch of requests to the KVS to complete.

2.2 Why is it Difficult?
The big problem of these three requirements is that they are in

conflict. This is why most KVS today (with the notable exception

of Kudu) have been designed to support get/put requests only (e.g.,

Cassandra and HBase), possibly with versioning (e.g., RAMCloud

and HBase) and sometimes with asynchronous communication. All

these features are best supported with sparse data structures for

get/put operations. When retrieving a specific version of a record, it

is not important whether it is clustered and stored compactly with

other records. Scans, however, require a high degree of data locality

and a compact representation of all data so that each storage access

returns as many relevant records as possible. Locality is important

for both disk-based and in-memory scans. Specifically, adding scans

to the feature list creates the following locality conflicts:

Scan vs. Get/Put Most analytical systems use a columnar storage

layout to increase locality [2]. KVS, in contrast, typically favor a

row-oriented layout in order to process get/put requests without the

need to materialize records [4].

Scan vs. Versioning Irrelevant versions of records slow down

scans as they reduce locality. Furthermore, checking the relevance

of a version of a record as part of a scan can be expensive.

Scan vs. Batching It is not advantageous to batch scans with

get/put requests. OLTP workloads require constant and predictable

response times for get/put requests. In contrast, scans can incur high

variability in latencies depending on selectivities of predicates and

the number of columns that are needed to process a complex query.

Fortunately, as we will see, these conflicts are not fundamental

and can be resolved with reasonable compromises. The goal of

this paper is to study the design space of KVS and to demonstrate

experimentally which compromises work best.

1527

3. DESIGN SPACE
This section gives an overview of the most important design

questions to build a KVS that supports bulk operations and scans.

3.1 Where to Put Updates?
There are three possible designs to implement updates (put, delete,

and insert): update-in-place, log-structured, and delta-main.

Update-in-place is the approach taken in most relational database

systems. New records (inserts) are stored in free space of existing

pages and updates to existing records (puts or deletes) are imple-

mented by overwriting the existing storage for those records. This

approach works great if records are fixed-size because there is little

or no fragmentation. However, this approach is trickier with ver-

sioning. If versions are kept in place (i.e., at the same location as

the records), versioning can result in significant fragmentation of

the storage and loss of locality. Another problem with the update-in-

place approach is that it limits concurrency: To create a new version

of a record, the whole page needs to be latched. (A latch is a short-

term lock that can be released once the page has been updated.)

Log-structured storage designs were first introduced by [40] for

file systems. This approach has been adopted by several KVS;

e.g., RAMCloud [34]. The idea is to implement all updates as

appends to a log. Log-structured storages have two important ad-

vantages: (1) there is no fragmentation; (2) there are no concurrency

issues as appends can be implemented in a non-blocking way [29].

A major drawback is that scans can become expensive in a pure

log-structured system because scans involve reading (and testing

for validity) old versions of records. Furthermore, it is difficult to

garbage collect / truncate a log if records are rarely updated. A varia-

tion, referred to as log-structured merge-trees (LSM) [35] is used in

LevelDB [23], RocksDB [16], and Kudu [19]. This variant involves

periodic reorganization of the log to improve read performance.

The third approach, delta-main, was pioneered by SAP Hana [17]

and has also been used in several research projects; e.g., AIM [10].

This approach collects all updates in a write-optimized data structure

(called delta) and keeps the bulk of the data in a read-optimized

data structure (called main). Periodically, these two data structures

are merged. This approach tries to combine the advantages of the

log-structured approach (fast get/put) with the advantages of update-

in-place (fast scans).

3.2 How to Arrange Records?
The two most popular designs are row-major and column-major.

Row-major stores a record as a contiguous sequence of bytes in

a page [24]. This layout works well for get/put operations which

usually operate on the record as a whole. Column-major vertically

partitions the data and stores a whole column of a table (or set of

records) as a contiguous sequence of bytes. Such a column-major

layout is beneficial for scans as analytical queries often involve only

a subset of the columns [25, 3, 2, 45, 9, 8]. In addition, column-

major supports vector operations (SIMD) to further speed up bulk

operations and scans on modern hardware [47, 49]. A variant of

column-major is PAX [5] which stores a set of records in every

page, but within the page, all records are stored in a column-major

representation. PAX is a good compromise between the pure column

and row-major designs.

Column-major performs best on fixed-size values. This is why

state-of-the-art systems avoid variable-size values, either by simply

disallowing them (as in AIM [10]), allocating them on a global heap

and storing pointers (as in MonetDB [8] and HyPer [33]), or using

a dictionary and store fixed-size dictionary code words (as e.g. in

SAP/HANA [18] and DB2/BLU [39]).

Dimension Approach Advantages Disadvantages

update-in-
place

storage
versioning,

concurrency

Update log-
structured

storage,
concurrency

GC

delta-main compromise

column
(PAX)

scan get/put
Layout

row get/put scan

clustered get/put GC
Versions

chained GC scan

Table 2: Design Tradeoffs

3.3 How to Handle Versions?
As described in Section 2, we need to support versioning of

records in order to implement Multi-Version Concurrency Control.

There are two predominant approaches: (a) store all versions of a

record at the same location; (b) chain the versions in a linked list.

The first variant is often used in combination with update-in-place.

It makes it cheaper to create new versions in that approach at the

expense of a more costly garbage collection to compact the pages.

The second variant is more suited for log-structured storage, as

clustering versions in an append-only data structure would require

a costly copy of all previous versions to the head. The pointers

linking records together consume space and traversing the list is

expensive as it involves multiple cache misses. On the positive side,

this second approach simplifies garbage collection because it can be

implemented as a truncation of the log of old versions. Furthermore,

it involves less fragmentation of data pages.

3.4 When to do Garbage Collection?
With versioning comes garbage collection of old versions. There

are two possible strategies: (a) do periodic garbage collection in a

separate dedicated thread/process; (b) piggy-back garbage collec-

tion with (shared) scans. Approach (b) increases scan time, but it

also trades off garbage collection investment for garbage collection

benefits: Tables which are scanned frequently and greatly benefit

from garbage collection are garbage collected more often than other

tables. Another advantage of the piggy-back approach is that it

does garbage collection while the data is processed anyway, thereby

avoiding additional cache misses to fetch the data.

3.5 Summary
Table 2 gives an overview of the tradeoffs of the alternative ap-

proaches in the first three dimensions in terms of storage efficiency

(fragmentation), concurrency (additional conflicts), cost to imple-

ment versioning and garbage collection, and efficiency for scan and

get/put operations. The fourth dimension, garbage collection, is or-

thogonal to these performance characteristics. The performance of

a KVS is determined by the combination of these techniques. Over-

all, there are a total of 24 different ways to build a KVS using this

taxonomy:

(update-in-place vs. log-structured vs. delta-main)

×(row-major vs. column-major / PAX)

×(clustered-versions vs. chained-versions)

×(periodic vs. piggy-backed garbage collection)

Furthermore, there are many hybrids; e.g., periodic and piggy-

backed garbage collection can be combined. Fortunately, only a

subset of these variants make sense: Log-structured updates and a

1528

Key
Newest

Value

Foo

Bar

Key validFrom validTo previous isValid data

Foo 128 180 ptr True

Hash Table

Log

Figure 2: Data Structures of TellStore-Log

column-major layout do not make sense because these variants are

clearly dominated by the “delta-main & column-major” variants.

Additionally, the four “log-structured & clustered-versions” variants

are dominated by the “log-structured & chained-version” variants.

The two most extreme variants are the variant based on log-

structured with chained-versions in a row-major format and the

variant using a delta-main structure with clustered-versions in a

column-major format. The next two sections describe our imple-

mentation of these variants in TellStore, called TellStore-Log and

TellStore-Col. Section 6 gives implementation details of TellStore

that are important for all TellStore variants. Section 7 contains the

results of a performance evaluation that compares the tradeoffs of

the different variants and uses the performance of existing KVS

(see introduction) as baselines. In addition to TellStore-Log and

TellStore-Col, Section 7 includes results of a third variant, TellStore-

Row, that is identical to TellStore-Col but with a row-major format

to specifically study the tradeoffs between row and column stores

for mixed OLTP/OLAP workloads.

4. TELLSTORE­LOG
The implementation of TellStore-Log was inspired by RAMCloud

[34] with important amendments to support efficient scans.

4.1 Where to Put Updates?
Figure 2 gives an overview of the most important data structures

of TellStore-Log: It details the layout of a record (key-value pair)

and the hash table used to index records in the log. The log itself is

segmented into a linked-list of pages storing all key-value pairs.

The log is an append-only data structure: Memory in the log

can be allocated in a lock-free way by atomically incrementing the

page head pointer. Once a record is appended to the log, it becomes

immutable. This property makes it easy to replicate and restore the

log, as the replication process only needs to monitor the head [41].

Because of its lock-free nature, conflicting entries with the same key

can be appended to the log concurrently. The hash table is always

the point of synchronization. A record is only considered to be valid

after the pointer to the record is successfully inserted or updated

in the hash table. In case of conflict, the record in the log will be

invalidated before the data becomes immutable. Deletes are written

as specially marked updates with no data.

The hash table can become a point of contention when imple-

mented with locks. Current lock-free hash table designs are often

optimized for a specific access pattern. Specifically, implementing

the resize operation involves a trade-off in lookup and update perfor-

mance. TellStore pre-allocates a fixed-size hash table shared among

all tables in the storage node. The implementation uses an open-

addressing algorithm with linear probing to exploit spacial locality

in case of collisions [37]. On the downside, open addressing tends

to perform badly under high load. To keep memory usage small

while allowing for a sufficiently sized table, the hash buckets only

store the table ID, record key and pointer to the record (24 bytes).

4.2 How to Arrange Records?
The log-structured approach is inherently tied to a row-major

data layout. To support efficient scans, records in the log must be

completely self-contained. We especially want to avoid lookups in

the hash table to determine if a record is still valid (i.e. not deleted or

overwritten). This constraint has some implications for versioning,

as we will see in Section 4.3.

TellStore-Log allocates a separate log for every table in the stor-

age node. This allows scans to only process relevant pages, further

improving data locality. Furthermore, a scan over the log is sensible

to the amount of invalid records in the log, impacting the locality

requirement, as we will see in Section 4.4.

4.3 How to Handle Versions?
Immutability of the log forces us to append new versions of a

record at the log head. To locate an older version of the key, we

form a version-chain by storing a previous pointer to the preceding

element alongside every record in the log. Additionally, the time-

stamp of the transaction creating the record is stored in a valid-from

field in the metadata. This version chain is always strictly ordered

from newest to oldest according to the snapshot timestamp, with the

hash table pointing to the newest element. Given a snapshot time-

stamp, a get operation can follow the chain until it reaches the first

element qualifying for the snapshot. Following the chain involves

costly cache misses as a tradeoff for a fast put.

This design seems to be in conflict with the requirement that all

records have to be self-contained: When scanning over a record

in the log only the creation timestamp is present, leaving the scan

unable to determine if the record has expired. To avoid hash table

lookups, we add the expiration timestamp (valid-to) as an additional

mutable field to the metadata of each record. After successfully

writing a record, the valid-to field of the previous element (if any) is

lazily updated with the valid-from field of the new element. Given a

snapshot timestamp, the scan can decide if an element qualifies for

inclusion in the snapshot only by comparing the two timestamps.

The hash table remains the sole point of synchronization and

always points to the newest element. There is no race-condition

between updating the hash table and setting the valid-to field, as

Snapshot Isolation in TellStore does not guarantee visibility for in-

progress transactions.

4.4 When to do Garbage Collection?
The performance of scanning the log is impacted by the number of

outdated elements that are no longer visible to any active transaction.

In order to compact frequently scanned tables more often, garbage

collection is performed as part of a regular scan. While scanning

a page, its health is calculated as the ratio of the total size of valid

elements to the total page size. Once this value drops below a certain

threshold, the page will be marked for garbage collection. Marked

pages will be rewritten on the next scan by copying the remaining

active elements to the head of the log and returning the garbage

collected page to the pool of free pages. After copying an element

to the log head, the pointer in the version chain for that key must be

adjusted. To this end, we need to lookup the key in the hash table

and follow the version chain to the right place. This operation is

expensive because it has poor cache locality. To reclaim space from

non-frequently scanned tables, a background agent schedules scans

for tables that have not been garbage-collected in a certain period.

1529

Update Log

Main

Page

Main

Page
Insert Log

Hash

Table

Figure 3: Delta-Main Approach

4.5 Summary
Even though RAMCloud, the poster child of a log-structured

KVS, has poor scan performance (Table 1), it is possible to build a

log-structured KVS that supports fast get/put requests, versioning,

and scans at the same time. The main ingredients are a careful

organization of versions in the log, effective garbage collection

policies, a lazy implementation of metadata / timestamps to make

records self-contained, lock-free algorithms and good engineering.

5. TELLSTORE­COL
The main idea of the delta-main approach, as implemented by

TellStore-Col, is to keep two data structures: main for reads, and

delta for updates. As shown in Figure 3, our implementation actually

involves four data structures: A list of pages that hold the data of

the main, two logs that store the delta (one for inserts and one for

updates), and a hash table to index the data.

5.1 Where to Put Updates?
Except for select metadata fields, data in the main is kept read

only and all updates are written to an append-only log-structured

storage. Unlike TellStore-Log, this delta is split into two separate

logs: Updates to records with existing keys are written to the update-

log, while updates to non-existing keys are written to the insert-log.

This separation makes it easier to construct the main from the delta,

as shown in Section 5.4. The index stores a bit flag that indicates

whether a pointer points into the delta or the main. Apart from this

flag, the index uses the same hash table as TellStore-Log.

Before writing a record, the index has to be queried for the

record’s key. In case the key does not exist, the record is appended

to the insert-log. As in the log-structured approach, conflicting en-

tries with the same key can be written concurrently to the log. For

inserts, the index serves as the point of synchronization. Only after

successfully inserting a pointer to the record in the index, the insert

becomes valid.

In case the key exists, the record is appended to the update-log.

Records in the main and insert-log both contain a mutable newest

field containing a pointer to the most-recently written element with

the same key. Again, conflicting records can be written concurrently

to the log. The newest pointer constitutes the point of synchroniza-

tion for updates.

5.2 How to Arrange Records?
While for both delta-logs a row-major format is the only reason-

able choice (as discussed in Section 4.2), the main allows us to store

records either in row-major or column-major format.

TellStore-Col is the delta-main implementation that stores its

main pages in a column-major format called ColumnMap [10] as

depicted in Figure 4. The idea, following the Partition Attributes

Across Paradigm [5] (PAX), is to first group records into pages and

within such a page organize them in column-major format.

Fixed-Size

Var-Size

Heap

Meta Data

Columns

Var-Size

Meta Columns

Figure 4: ColumnMap

In case every field of a table is

of fixed size, it is sufficient to know

the location of the first attribute of a

record. The location of its other at-

tributes can be computed from the

number of records in the page and

the data type size of each attribute.

However, if fields can have arbi-

trary sizes (as for example variable-

length strings), this simple compu-

tation falls apart.

To this end, we allocate a heap

at the end of every page storing

all variable-size fields. This heap

is indexed by fixed-size metadata

storing the 4-byte offset into the

heap and its 4-byte prefix. While

the metadata fields are stored in

column-major format, the contents

of the fields are stored in row-major

format in the heap.

This has two advantages: First, when materializing records, the

variable-size fields are already in row-major format and can simply

be copied to the output buffer. Second, by storing the prefix in a

fixed-size column-major format, we get a speedup on the commonly

used prefix scan queries as we can narrow down the set of candidate

tuples without having to look at the heap.

5.3 How to Handle Versions?
Similar to how versioning is implemented in the log-structured

approach (see Section 4.3), TellStore-Col stores the creation time-

stamp in a valid-from field as part of the records metadata. Records

in the update-log are chained together from newest to oldest using

a previous pointer. The newest pointer stored alongside records in

the main and insert-log always points to the newest element in the

update-log. To avoid loops, there is no back pointer from the update-

log to the main.

Inside a main page, different versions of the same key are stored

consecutively from newest to oldest in a column-major format. The

valid-from timestamp and newest pointers are also converted to

column-major format and stored as normal attributes in the meta-

data section. The index always points to the metadata field of the

newest element in the ColumnMap or the insert log. Given a snap-

shot timestamp, the valid-from fields are scanned from the newest

element until a timestamp is found that is contained in the snapshot.

Storing the newest pointer alongside the records instead of in the

hash table is required to make records self-contained. Otherwise

a scan would be required to perform a lookup in the hash table to

determine if a new record was written. Records in both delta-logs

only store the timestamp of the transaction that created them and

as such are not self-contained. This is a trade-off between scan and

garbage collection performance, as discussed in Section 5.4.

5.4 When to do Garbage Collection?
The garbage collection is responsible for regularly merging up-

dates from the two delta-logs back to the compacted and read-

optimized main. As such it plays a critical part in guaranteeing

the locality requirement for good scan performance. All main pages

are immutable and rewritten using a copy-on-write approach. This

is necessary in order to not interfere with concurrent access from

1530

get/put and scans, as update-in-place would require a latch on the

page (see Section 3.1).

Compared to TellStore-Log, compacting a page is more expensive

as it involves converting updates from the row-major format to

the column-major format. To this end, the garbage collector runs

in a separate thread and not as part of the scan. The dedicated

thread periodically scans over the metadata section of every page in

the main. As soon as it encounters a page containing records that

were either updated (by checking the newest field) or are no longer

contained in any active snapshot (by checking the valid-from field),

the page is rewritten.

All versions of the same key are gathered from the main and

update-log by following the version chain. Elements with timestamp

that are not contained in any active snapshot are discarded, while

elements gathered from the update-log are converted to column-

major format. The elements are then sorted from newest to oldest

and appended to a new main page. After relocating a record, the

newest field is updated to point to the new record, in order to make

concurrent updates aware of the relocation. Finally, the garbage

collector scans over all records in the insert-log, gathers all versions

of the same key from the update-log and writes them in column-

major format to the main page. Afterwards, both delta-logs can be

truncated and old main pages are released to the pool of free pages.

By splitting insert from update-log, the collector only has to scan

over the insert-log to gather all records with keys not already part of

the main. On the downside, this reduces data locality for scans, as

updates force the scan to perform random lookups into the update-

log when following the version chain. The premise here is that

by making garbage collection more efficient, it can run at higher

frequency, thus keeping the size of the update-log to a minimum.

Pages are compacted aggressively: A whole page gets rewritten as

soon as a single element in it becomes invalid. This can lead to high

write-amplification especially under heavy load, which will have

a strong impact on disk-based systems but less so on in-memory

based systems. An extension to this approach would be to compact

pages based on dirtiness, similar to TellStore-Log. Delaying the

compaction, on the other hand, will keep a higher portion of the data

in the delta-log which, in turn, will impact scan performance.

5.5 Summary
Similar to TellStore-Log, carefully balancing the different re-

quirements for get/put, scan and versioning allows us to design a

data structure supporting both transactional and analytical access

patterns. While scans profit from the fact that the bulk of the data

resides in a compact column-major format, updates benefit from

the write-optimized log implementation of the delta. Versioning

can be achieved by clustering records of the same key together and

treating their timestamp as a regular field in a column-major for-

mat. Garbage collection is expensive in the delta-main approach

and is, thus, executed in a dedicated thread that periodically garbage

collects stale records.

6. IMPLEMENTATION
TellStore is a distributed, in-memory KVS. Clients, such as nodes

of a SQL-over-NoSQL system’s processing layer, connect to Tell-

Store using Infiniband. Each TellStore instance stores a different

subset of the database and supports a get/put, scan, and versioning

interface as described in Section 2.

While Sections 4 and 5 covered the overall design of the storage

engine, this section describes TellStore as a distributed KVS that can

use any of the storage engines described above. More details and a

complete description can be found in [36]. Furthermore, TellStore

is open source [1].

Core 1 Core 2 Core 3 Core 4

Get / Put
Scan

Thread

Scan

Thread

Garbage

Collection

Thread

Get / Put,

Scan Requests
Scan Results

Figure 5: TellStore Thread Model

6.1 Asynchronous Communication
In order to make best use of the available CPU time and network

bandwidth, a processing instance should not be idle while waiting

for a storage request to complete. This is why TellStore uses an asyn-

chronous communication library, called InfinIO, for its communica-

tion with the processing layer. InfinIO, which was built specifically

to run on top of Infiniband, employs user-level threads and callback

functions through an API similar to the one provided by Boost.Asio

for Ethernet communication. All requests to TellStore immediately

return a future object on which the calling user-level thread can wait.

InfinIO then transparently batches all requests at the network layer

before actually sending them to TellStore. Likewise, responses from

the storage are batched together before sending them back to the

processing nodes. This batching greatly improves the overall per-

formance as it cuts down the message rate on the Infiniband link,

which would otherwise become the performance bottleneck (see

Section 7.2.3).

6.2 Thread Model
TellStore runs three different kinds of threads as depicted in

Figure 5: get/put threads, scan threads and a garbage collection

thread. Whenever a client opens a connection, one of the get/put

threads accepts it and takes on the sole responsibility for processing

incoming request issued by that particular client. Whenever the

client issues a scan request, the get/put thread places the request on

a queue to be processed by the dedicated scan threads. To guarantee

a consistent throughput for scans and get/put operations, TellStore

only uses lock-free data structures.

One of the scan threads has the role of the scan coordinator. The

scan coordinator consumes all queued scan requests and bundles

them into a single, shared scan. The coordinator partitions the

storage engine’s set of pages and distributes them equally among

the scan threads. All the scan threads (including the coordinator)

then process their partition in parallel independently. (Partial) scan

results are directly written into the client’s memory using RDMA.

With this threading model, TellStore can flexibly provision resources

for get/put and scan requests depending on the expected workload.

6.3 Data Indexing
Sections 4 and 5 describe how TellStore organizes and processes

records. Both approaches use a lock-free hash table to index records

stored inside a single node. To locate keys across nodes, TellStore

implements a distributed hash table similar to Chord [44]. The

choice of using a hash table, however, is orthogonal to the question

on how to implement fast scans on a KVS, as is the decision to use

a DHT. The same techniques can be used for range partitioning.

For range partitioning, one would typically use a clustered index

like a B-tree or a LSM to index data within pages. However, this

typically makes get/put operations more expensive. To support

range queries, Tell uses a lock-free B-tree that is solely implemented

in the processing layer as described in [30].

1531

q1: a < 4 ∧ 𝑎 > 0 ∨ 𝑏 > 20 q2: a < 4 ∧ 𝑏 > 10

r0 0 0 0

r1 0 0 0

r2 0 0 0

… … … …

Initial Matrix B

𝐚 𝐛 …
r0 0 11 …
r1 5 0 …
r2 1 0 …
… ... … …

r0 1 0 1

r1 0 1 0

r2 1 1 0

… … … …

Result Matrix B’Data
m

a
te

ri
a

li
ze

 f
o

r
q

1

m
a

te
ri

a
li

ze
 f

o
r

q
2

1 1 0 1 0 1
v1 v2

Figure 6: Predicate Evaluation and Result Materialization

6.4 Predicate Pushdown
In order to speed up analytical queries, TellStore allows the client

to define selections, projections and simple aggregations (i.e. min,

max, sum and count) on individual columns. When transforming

a batch of scan requests into a single shared scan, TellStore uses

just-in-time compilation with LLVM to get highly-tuned machine

code. In essence, TellStore combines the batch-oriented shared scan

technique of [22] with LLVM code generation described in [33, 27].

We carefully considered which part of the scan logic to delegate

to the LLVM compiler. To this end, TellStore generates optimal

LLVM-IR to evaluate the shared selection, projection and aggre-

gation predicates. We made this decision, rather than generating

C++ code or simple LLVM-IR and letting LLVM optimize the query

code, as LLVM’s optimization passes tend to be costly and ended up

dominating overall execution time. By generating optimal LLVM-

IR upfront, we were able to reduce compilation times from 100ms

to less than 20ms for a batch of queries.

The generated code is highly efficient for a number of reasons:

First, if queries share a common sub-expression (e.g. x < 4),

this expression is evaluated only once. Second, for TellStore-Col,

vector instructions are generated to evaluate an expression on several

records in parallel. Third, the code generation takes the table schema

into account and performs memory operations with static offsets,

thereby facilitating prefetching and increasing CPU utilization.

TellStore requires all selection predicates of scans to be in con-

junctive normal form (CNF). As shown in Figure 6, scanning a page

proceeds in two steps: First, a (zero-initialized) bit matrix B is al-

located, whose columns represent the unique OR-predicates and

whose rows represent the records of the page. The thread then scans

the page and evaluates all predicates, thereby setting the bits in the

matrix. In the second step, a bit vector vq is created for every query

q involved in the shared scan. Bit i is set if the query involves the

i-th predicate. This way, the records that match a particular query

q can be computed as the bit-wise expression r|∼vq with r the row

that represents the record in B. When all matching records are iden-

tified, they are materialized and written into a local buffer. As soon

as this buffer is full, it is copied back into the client’s memory using

a RDMA write.

Snapshot Isolation can be implemented in a straight-forward way:

For each query a predicate is added, matching the valid-from and

valid-to fields associated with each record against the timestamp of

the query. These predicates are then processed as part of the normal

query expression.

7. RESULTS
This section presents the results of performance experiments

conducted with an extension of the YCSB benchmark [11] and

an industrial workload from the telecommunications industry. The

experiments studied the tradeoffs of the three TellStore variants and

several popular KVS.

7.1 Experimental Setup and Methodology
We ran all experiments on a small cluster of 12 machines. Each

machine is equipped with two quad core Intel Xeon E5-2609 2.4

GHz processors (two NUMA units), 128 GB DDR3-RAM and a

256 GB Samsung Pro SSD. Each NUMA unit has direct connec-

tivity to half of the main memory. Furthermore the machines are

equipped with a 10 GbE Ethernet adapter and a Mellanox Connect

X-3 Infiniband card, installed at NUMA region 0.

All the KVS we benchmarked are NUMA-unaware. In order

to get best results, we ran every process on only one NUMA unit.

Therefore, throughout this section, the term node refers to a NUMA

unit which can use half of a machine’s resources. Storage nodes

always ran on NUMA region 0 so that they had fast access to the

Infiniband card, while processing nodes ran on both regions.

The system under test for all experiments is a KVS. Whenever

we compare TellStore to other popular KVS, we use the TellStore-

Col variant for TellStore. In all experiments, we also use Kudu as

a baseline. We chose Kudu because it is the only KVS that can

provide a reasonable scan performance (Table 1 in the Introduction).

To make sure that the load generation does not become a bot-

tleneck, we used three times as many processing nodes as storage

nodes. For all our measurements, we first populated the data and

then ran the experiment for seven minutes. We ignored the results

from the first and the last minute to factor out warm-up and cool-

down effects.

We did a considerable effort to benchmark all KVS at their best

configuration. In order to achieve a fair comparison between disk-

based and in-memory systems, we used RAM disks and configured

the buffer pool so that all data was resident in main-memory for all

systems. For Kudu, we collaborated closely with the developers in

order to make sure that we had the best possible Kudu configuration.

The benchmarks for HBase and Cassandra were implemented in Java

using the corresponding client libraries. For RAMCloud and Kudu,

we implemented the benchmarks in C++ using the systems’ native

libraries. We used multi-put and multi-get operations in RAMCloud

whenever possible and projection and selection push-down in Kudu.

TellStore was benchmarked with a shared library that incorporates

the native TellStore client library and allowed to execute get, put,

and scan requests in a transactional context as well as manage

secondary indexes (see [36] for details). For TellStore and Kudu,

we batched several get/put request into one single transaction. Kudu

does not support ACID transactions but supports sessions which

have weaker properties. For TellStore, a batch size of 200 proved

to be useful, while a good batch size for Kudu sessions was 50. We

turned off replication for all KVS, except for HBase where this is

not possible, which is why we used three storage nodes (HDFS data

nodes) instead of only one for that particular case.

The main result of our experiments is that TellStore is a competi-

tive KVS in delivering a high throughput for get/put requests. It also

provides an order of magnitude better scan performance than all

other KVS we tested against. Furthermore, TellStore’s scan perfor-

mance does not deteriorate when a moderately-sized get/put work-

load is executed in parallel. It is not surprising that TellStore-Col

provides the lowest scan latencies. It is also able to sustain a high

get/put load with a moderate number of update requests. Only for

workloads with high update rates, TellStore-Log wins.

1532

7.2 YCSB# Results

7.2.1 Benchmark Description

The Yahoo! Cloud Serving Benchmark (YCSB) [11] is a popular

benchmark for KVS and cloud service providers. YCSB, however,

does not include analytical queries or any kind of bulk operations.

This is why we extended the benchmark in order to test these addi-

tional capabilities of a KVS. This new benchmark, called YCSB#,

makes the following modifications: First, it extends the schema to

include variable-size columns, and second, it introduces three new

queries that involve scans of the data.

The new schema consists of an 8-byte key, named P , and tuples

that consist of eight fixed-size values, named A to H . We used the

following data types: 2-byte, 4-byte, and 8-byte integers as well as

8-byte double-precision float. Each of these types appears twice.

The two variable-size fields, I and J , are short strings of a variable

length between 12 and 16 characters. The three queries are:

• Query 1: A simple aggregation on the first floating point

column to calculate the maximum value:

SELECT max(B) FROM main_table

• Query 2: The same aggregation as Query 1, but with an

additional selection on a second floating point column and

selectivity of about 50%:

SELECT max(B) FROM main_table

WHERE H > 0 and H < 0.5

• Query 3: A selection with approximately 10% selectivity:

SELECT * FROM main_table

WHERE F > 0 and F < 26

The benchmark also defines a scaling factor that dictates the

number of tuples in the database. Throughout our experiments, we

used a scaling factor of 50, which corresponds to a test set of 50

million tuples. With larger databases, the running times of some

KVS (e.g., Cassandra and HBase) for the three queries became

prohibitively long.

7.2.2 Exp 1: Get/Put Workload

In the first experiment, we ran two workloads of the traditional

YCSB benchmark (no bulk queries). We tested two different work-

loads: get/put and get-only. While the get-only workload solely

consists of get requests, the get/put workload has 50% update re-

quests, of which one third are inserts, one third updates (puts), and

one third deletes. Balancing the number of inserts and deletes en-

sures that the size of the database stays constant, which is important

for experiments that involve scans.

Figure 7 shows the throughput results (number of requests per

second) of TellStore-Col and all other KVS. It becomes clear that

TellStore is competitive for these traditional KVS workloads. Only

RAMCloud outperforms TellStore in this experiment. RAMCloud is

a distributed in-memory KVS that was highly tuned and specifically

designed for exactly these workloads and can be seen as an upper

bound for the best possible performance that can be achieved for

these workloads. TellStore is within 50% throughput while all

other KVS are far behind. The reason is that these systems do not

take advantage of the latest, best of breed techniques such as lock-

free data structures, batching, and asynchronous communication as

described in Section 2.

One interesting result of Figure 7 is that all KVS scale linearly

with the number of machines (storage and processing nodes). Only

RAMCloud has slight scalability issues in the get/put workload. We

believe that this flaw might be caused by a sub-optimal implementa-

tion of garbage collection in RAMCloud. Even though we could not

measure it, we believe that TellStore would easily scale way beyond

12 machines (24 nodes). In our experience, however, databases

that require more than 24 nodes are rare; beyond that point most

databases can be sharded to achieve further scalability if the scala-

bility of the KVS system becomes problematic.

Figure 8 shows the performance of the three TellStore variants

for this experiment, using Kudu as a baseline. While the two row-

based storage engines (TellStore-Log and TellStore-Row) outper-

form TellStore-Col, the difference is smaller than expected. For

update operations, the write-optimized (row-oriented) log in the

delta helps TellStore-Col. For get operations, TellStore-Col has

higher cost to materialize records from columns, but this extra cost

is comparably small to the cost of all other tasks. Thus, TellStore-

Col’s performance is within 10-20% compared to TellStore-Row

and TellStore-Log, even in this worst case for TellStore-Col.

7.2.3 Exp 2: Batching

As explained in Section 6.1, the processing layer uses batching

to improve throughput at the cost of increased latency. Whenever a

transaction issues a request, this request is buffered within InfinIO

and sent to TellStore whenever the buffer is full. While a transaction

is waiting for a result, InfinIO schedules other transactions to fill up

the buffer. Batching is important, as get/put messages are small and

the message rate is limited on any network.

Figure 9 shows the sensitivity of the throughput depending on the

batch size (which is determined by the size of the batch buffer) and

for the same workload as shown in Figures 7a and 8a. Obviously,

the bigger the batch size, the better the throughput for all three

variants. However, the effects are not significant which is good

news and shows that it is not critical to get this setting right. We

used a batch size of 16 in all other experiments because it is a good

compromise. The latency for transactions of 200 operations varied

from 11.1 msecs (batch size of 1) to 9.29 msecs (batch size of 64

operations) for TellStore-Col.

7.2.4 Exp 3: Scans

In order to demonstrate the raw scan performance, we ran the

YCSB# queries in isolation without a concurrent get/put load. Fig-

ure 10 shows the results for Kudu and the three TellStore variants.

We do not show the response times for Query 2 as they are nearly

identical to Query 1. As shown in the introduction (Table 1), all

other KVS (RAMCloud, HBase, Cassandra) are not competitive for

queries involving scan operations.

As one would expect, TellStore-Col has the lowest response time

for Query 1. For Query 3, however, TellStore-Log is slightly faster.

Query 3 has no projections, thereby eliminating the advantages of a

columnar layout. Furthermore, this read-only workload is the best

case for scans in TellStore-Log as the scan does not have to perform

garbage collection and is not affected by data fragmentation.

7.2.5 Exp 4: Mixed Workload

To see how well a scan performs while the system handles get/put

requests in parallel, we ran the YCSB# queries concurrently to the

get/put workload studied in Section 7.2.2. Figure 11a shows the

average response time of Query 1 of the extended YCSB benchmark

for a fixed get/put workload of 35,000 operations per second; this

is the maximum workload that Kudu could sustain. Figure 11b

and 11c show the response times of Query 1 for the three TellStore

approaches if we scale the get/put workload beyond these 35,000

operations per second. For brevity, we only show the results for

Query 1 as the effects are the same for the other two queries.

Focusing on Figure 11a, all three TellStore variants perform much

better than Kudu. Even though Kudu is a column store which

1533

0

500 000

1 000 000

1 500 000

2 000 000

2 500 000

1 2 3 4

O
p

e
ra

ti
o

n
s

p
e

r
se

co
n

d

Storage Nodes

TellStore

Kudu

RAMCloud

Cassandra

HBase

(a) Get/Put Workload

0

1 000 000

2 000 000

3 000 000

4 000 000

5 000 000

6 000 000

7 000 000

8 000 000

1 2 3 4

O
p

e
ra

ti
o

n
s

p
e

r
se

co
n

d

Storage Nodes

TellStore

Kudu

RAMCloud

Cassandra

HBase

(b) Get-only workload

Figure 7: Exp 1, Throughput: YCSB, Various KVS, Vary Storage Nodes

0

500 000

1 000 000

1 500 000

2 000 000

2 500 000

3 000 000

1 2 3 4

O
p

e
ra

ti
o

n
s

p
e

r
se

o
cn

d

Storage Nodes

TellStore-Col

TellStore-Row

TellStore-Log

Kudu

(a) Get/Put Workload

0

500 000

1 000 000

1 500 000

2 000 000

2 500 000

3 000 000

3 500 000

4 000 000

4 500 000

1 2 3 4

O
p

e
ra

ti
o

n
s

p
e

r
se

co
n

d

Storage Nodes

TellStore-Col

TellStore-Row

TellStore-Log

Kudu

(b) Get-only workload

Figure 8: Exp 1, Throughput: YCSB, TellStore Variants and Kudu, Vary Storage Nodes

0

200 000

400 000

600 000

800 000

1 000 000

1 200 000

1 400 000

1 600 000

1 2 4 8 16 32 64

O
p

e
ra

ti
o

n
s

p
e

r
se

co
n

d

Batch Size [Operations]

TellStore-Col

TellStore-Row

TellStore-Log

Figure 9: Exp 2, Throughput: YCSB, Vary Batch, 2 Storage

Nodes

is particularly favorable for Query 1, its overall performance is

not competitive as it makes the wrong compromises to trade off

good get/put and scan performance. Of the three TellStore vari-

ants, TellStore-Col wins whereas TellStore-Row performs worst.

TellStore-Log does fairly well because the update workload is still

moderate which allows it to keep locality in the log fairly high.

Figure 11b shows the response times for Query 1, thereby scaling

the number of concurrent get requests without any updates. In the

absence of updates, the response time of Query 1 is constant and

independent of the concurrent get workload. Scans and get requests

are scheduled on different cores in a storage node. Furthermore, the

scan performance is not impacted by garbage collection, data stored

in the delta, or stale versions of records.

Figure 11c shows the response times for Query 1 with varying

get/put workload that involves 50% updates as in Experiment 1.

TellStore-Log and TellStore-Row can sustain a load of up to 2.5 Mio.

concurrent get/put requests; TellStore-Col of about 2 Mio. get/put

requests. In all three approaches, the performance of the scans is af-

fected by a raising get/put workload. TellStore-Log, however, is the

most robust approach. In TellStore-Log, the average response time

of a scan increases sharply at 500,000 concurrent get/put requests

per second. At this point, garbage collection rewrites essentially

the entire log with every scan as every page is affected by an up-

date. Note that the updates are distributed uniformly over the entire

database in YCSB; with skew, less pages of the log may be affected.

The scan performance of TellStore-Col and TellStore-Row is heav-

ily impacted by concurrent updates: With an increasing update load,

there is more expensive pointer-chasing to the delta to look up the

latest version of a record. With very high update workloads, almost

all records are fetched from the row-store delta, so that TellStore-Col

has no advantage anymore and is outperformed by TellStore-Log.

Figure 12 contains a box plot that shows the 1%, 25%, 50%

(median), 75%, and 99% percentile response times of Query 1 with

a concurrent get/put workload of 1 Mio. requests per second. At

1 Mio. get/put requests, TellStore-Col still outperforms TellStore-

Log, but Figure 12 confirms that TellStore-Log is more robust. The

scan performance of TellStore-Col depends on the size of the delta;

shortly after garbage collection, the delta is small and the scan is

fast. Accordingly, the scan in TellStore-Col is slow shortly before

garbage collection when the delta is large. The effects were similar

for TellStore-Row. For TellStore-Log, the scan with piggy-backed

garbage collection always has roughly the same response time.

1534

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

1 2 3 4

R
e

sp
o

n
se

 T
im

e
 [

m
se

cs
]

Storage Nodes

TellStore-Col

TellStore-Row

TellStore-Log

Kudu

(a) YCSB# Query 1

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

1 2 3 4

R
e

sp
o

n
se

 T
im

e
 [

m
se

cs
]

Storage Nodes

TellStore-Col

TellStore-Row

TellStore-Log

Kudu

(b) YCSB# Query 3

Figure 10: Exp 3, Response Time: YCSB#, Vary Storage Nodes

0

1 000

2 000

3 000

4 000

5 000

6 000

No Get/Put 35 000 Gets 35 000 Get/Puts

R
e

sp
o

n
se

 T
im

e
 [

m
se

cs
]

TellStore-Col

TellStore-Row

TellStore-Log

Kudu

(a) TellStore vs Kudu

0

100

200

300

400

500

600

0 35k 500k 1M 1.5M 2M 2.5M

R
e

sp
o

n
se

 T
im

e
 [

m
se

cs
]

TellStore-Col

TellStore-Row

TellStore-Log

(b) TellStore, Scale Get Requests

0

100

200

300

400

500

600

0 35k 500k 1M 1.5M 2M 2.5M

R
e

sp
o

n
se

 T
im

e
 [

m
se

cs
]

TellStore-Col

TellStore-Row

TellStore-Log

(c) TellStore, Scale Get/Put Requests

Figure 11: Exp 4, Response Time: YCSB# Query 1, 4 Storage Nodes

0

50

100

150

200

250

300

350

400

TellStore-Col TellStore-Log

R
e

sp
o

n
se

 T
im

e
 [

m
se

cs
]

Figure 12: Exp 4, Response Time: YCSB# Query 1

4 Storage Nodes with 1 Mio. concurrent get/put requests

7.3 Exp 5: Huawei­AIM Benchmark Results
To show that TellStore is able to perform more complex, interac-

tive workloads, we also executed the Huawei-AIM benchmark [10].

This workload defines seven analytical queries with a concurrent

get/put workload. In our implementation of this benchmark, we

generated a get/put workload of 40,000 operations per second. As

this is a low load for TellStore to handle, we did not observe any

differences between the query response times in isolation and with

concurrent get/put operations. Therefore, we simply show the re-

sponse times for the workload with concurrent get/put in Figure 13.

For this workload, TellStore-Col outperforms all other implemen-

tations significantly. Furthermore, the difference between TellStore-

Log and TellStore-Col is larger than in the experiments shown be-

fore. There are two reasons for that: First, this workload runs on a

table with more than 500 columns. Therefore, the columnar layout

0

200

400

600

800

1,000

1,200

1,400

Q1 Q2 Q3 Q4 Q5 Q6 Q7

R
e

sp
o

n
se

 T
im

e
 [

m
se

cs
]

TellStore-Col

TellStore-Row

TellStore-Log

Kudu

Figure 13: Exp 5, Resp. Time: Huawei-AIM Workload

has a much larger benefit on query performance if the query involves

only a subset of the columns. Second, the queries are much more

complex. As mentioned in Section 2, TellStore supports aggregation

in the storage node, which turns out to be particularly important

for this benchmark. The columnar format enables TellStore-Col

to make use of vector instructions to efficiently filter out irrelevant

records (Section 6.4). Kudu performs roughly as well as TellStore-

Row and TellStore-Log: Kudu is also a column store and, thus, has

the same advantage as TellStore-Col for this experiment. However,

Kudu has other inefficiencies as shown in the experiments before.

8. RELATED WORK
This section re-iterates the most important lines of work relevant

to this paper. Most techniques used in the various TellStore variants

are known (Section 3) and the art is to combine them in the best

possible way.

1535

There are several systems that adopted the SQL-over-NoSQL

architecture. Among them are FoundationDB [21], Hyder [7],

Tell [30], and AIM [10]. While the first three were not built with

analytics in mind, AIM supports read-only analytics and high up-

date rates, but for a very specific use-case that does not require

transactions, joins, or variable-size data fields. On the other side

of the spectrum, there are the large-scale analytical systems like

Hadoop [43], Spark [48], and DB2/BLU [39]. All of these systems

have significant trouble with or no support for querying live data

that is subject to frequent and fine-grained updates.

There exist systems with good support for mixed workloads on

live data, e.g. HyPer [26], HANA [18], and Hekaton / Apollo [13].

What distinguishes TellStore from these systems is its ability to

scale out in a distributed system whereas these systems can only

scale up on a single machine.

As pointed out already, there exist a number of KVS (e.g. RAM-

Cloud [41], FaRM-KV [14], HBase [20], Cassandra [28], Lev-

elDB [23], and RocksDB [16]) all of which show good get/put per-

formance, but have difficulties to process scans with a competitive

performance. Another interesting line of related work are document

stores, like DocumentDB [42] or MongoDB [32]. Like Cassandra,

they offer some scans with secondary indexes, specifically tuned to

the document-related use-cases. We expect that our work on Tell-

Store is relevant to those systems, too.

9. CONCLUSION
This paper has shown that it is possible to build a KVS that sup-

ports efficient scans for analytics and a high get/put throughput for

OLTP workloads. Our system, TellStore, has an integrated design

that addresses the most important design questions in a holistic way.

Furthermore, TellStore makes use of best practices (e.g., lock-free

data structures) and makes careful compromises with regard to la-

tency vs. throughput tradeoffs (e.g., batching) and time vs. space

tradeoffs (e.g., the TellStore hash table implementation). TellStore

uses a number of advanced implementation techniques to help rem-

edy the effects of concurrent updates on scans; e.g., piggy-backing

garbage collection on scans or copying old versions to the head of

the log in order to improve locality of scans.

This paper studied three particularly promising design variants of

TellStore and KVS in general. Of these three designs, TellStore-Col

with a columnar layout and a delta-main approach delivered the over-

all best and most robust performance. However, TellStore-Log with

a row-oriented layout and a log-structure approach showed competi-

tive performance, too; in particular, for OLTP workloads. TellStore-

Log has more predictable update performance, but it shows lower

performance for analytical queries in which a columnar layout is

particularly important.

There are several avenues for future work. TellStore currently

does not feature high availability with replication. In order to ad-

dress this requirement, we recently started building a replication

feature into TellStore. Our first experiences make us confident that

replication is orthogonal to all other aspects of a KVS and that

adding replication does not change the main results and observa-

tions made in this paper. This observation has been confirmed by

other, related work on replication for KVS; e.g., [20, 28, 41].

Running analytical workloads efficiently is a hard problem and

having a fast scan in the storage only solves it half-way. In this

work, we focused on queries that can efficiently be processed on

a single processing instance, taking full advantage of TellStore’s

scan capacity. However, there exist other analytical queries that

can only be efficiently executed in a distributed way. Examples

of such distributed query processing systems include Spark [48]

and Presto [15]. We implemented TellStore adapters for both of

these systems [1] and ran the TPC-H benchmark queries. We found

query response times with TellStore to be on par with other storage

layer back-ends (Parquet and ORC). Extensive profiling on these

platforms revealed that TellStore does not have an advantage because

neither Spark nor Presto can make efficient use of TellStore’s scan

feature (shared scans and pushing down selections, projections, and

aggregation into the storage layer). To take advantage of these

features requires refactoring these systems. Conceptually, this work

is straight-forward, but it involves a great deal of engineering effort.

Another avenue for future work is to study less aggressive variants

to carry out garbage collection in TellStore-Col and TellStore-Row.

In the current implementation, garbage collection can result in high

contention of the memory bus and in write amplification if the

data does not fit into main memory. So, the performance of these

approaches can be even further improved.

10. REFERENCES
[1] Tellstore open-source project. https://github.com/

tellproject/tellstore.

[2] D. J. Abadi, P. A. Boncz, and S. Harizopoulos.

Column-oriented database systems. PVLDB, 2(2):1664–1665,

2009.

[3] D. J. Abadi, S. R. Madden, and N. Hachem. Column-stores vs.

row-stores: how different are they really? In Proceedings of

the 2008 ACM SIGMOD international conference on

Management of data, pages 967–980. ACM, 2008.

[4] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. R. Madden.

Materialization strategies in a column-oriented DBMS. In

Proceedings of the 23rd International Conference on Data

Engineering, pages 466–475, 2007.

[5] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis.

Weaving Relations for Cache Performance. In VLDB, pages

169–180, 2001.

[6] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and

P. O’Neil. A critique of ansi sql isolation levels. In ACM

SIGMOD Record, volume 24, pages 1–10. ACM, 1995.

[7] P. Bernstein, C. Reid, and S. Das. Hyder - a transactional

record manager for shared flash. CIDR’11, pages 9–20, 2011.

[8] P. Boncz, T. Grust, M. Van Keulen, S. Manegold, J. Rittinger,

and J. Teubner. MonetDB/XQuery: a fast XQuery processor

powered by a relational engine. In Proceedings of the 2006

ACM SIGMOD international conference on Management of

data, pages 479–490, 2006.

[9] P. A. Boncz, S. Manegold, and M. L. Kersten. Database

architecture optimized for the new bottleneck: Memory

access. In VLDB, volume 99, pages 54–65, 1999.

[10] L. Braun, T. Etter, G. Gasparis, M. Kaufmann, D. Kossmann,

D. Widmer, A. Avitzur, A. Iliopoulos, E. Levy, and N. Liang.

Analytics in motion: High performance event-processing and

real-time analytics in the same database. In Proceedings of the

2015 ACM SIGMOD International Conference on

Management of Data, pages 251–264, 2015.

[11] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and

R. Sears. Benchmarking cloud serving systems with YCSB. In

Proceedings of the 1st ACM Symposium on Cloud Computing,

pages 143–154, 2010.

[12] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov,

A. Avanes, J. Bock, J. Claybaugh, D. Engovatov,

M. Hentschel, J. Huang, et al. The snowflake elastic data

warehouse. In Proceedings of the 2016 ACM SIGMOD

International Conference on Management of Data, pages

215–226, 2016.

1536

[13] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal,

R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: SQL

Server’s memory-optimized OLTP engine. In Proceedings of

the 2013 ACM SIGMOD International Conference on

Management of Data, pages 1243–1254, 2013.

[14] A. Dragojević, D. Narayanan, E. B. Nightingale,

M. Renzelmann, A. Shamis, A. Badam, and M. Castro. No

compromises: Distributed transactions with consistency,

availability, and performance. In Proceedings of the 25th

Symposium on Operating Systems Principles, pages 54–70,

2015.

[15] Facebook. Presto. http://prestodb.io. May. 02, 2016.

[16] Facebook. RocksDB. http://rocksdb.org. May. 02, 2016.

[17] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and

W. Lehner. SAP HANA database: Data management for

modern business applications. SIGMOD Rec., 40(4):45–51,

Jan. 2012.

[18] F. Färber et al. The SAP HANA Database – An Architecture

Overview. IEEE Data Eng. Bull., 35(1), 2012.

[19] A. Foundation. Kudu. http://getkudu.io. May. 02, 2016.

[20] A. Foundation. HBase. http://hbase.apache.org/. May. 27,

2017.

[21] FoundationDB. https://foundationdb.com/. Feb. 07, 2015.

[22] G. Giannikis, G. Alonso, and D. Kossmann. SharedDB:

Killing one thousand queries with one stone. PVLDB,

5(6):526–537, Feb. 2012.

[23] Google. LevelDB. http://leveldb.org. May. 02, 2016.

[24] J. Gray and A. Reuter. Transaction processing. Morgan

Kaufíann Publishers, 1993.

[25] A. Halverson, J. L. Beckmann, J. F. Naughton, and D. J.

Dewitt. A comparison of c-store and row-store in a common

framework. University of Wisconsin-Madison, Tech. Rep.

TR1570, 2006.

[26] A. Kemper and T. Neumann. HyPer: A hybrid OLTP &

OLAP main memory database system based on virtual

memory snapshots. In ICDE, pages 195–206, 2011.

[27] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi. Building

efficient query engines in a high-level language. PVLDB,

7(10):853–864, June 2014.

[28] A. Lakshman and P. Malik. Cassandra: a decentralized

structured storage system. ACM SIGOPS Operating Systems

Review, 44(2):35–40, 2010.

[29] J. J. Levandoski, D. B. Lomet, S. Sengupta, R. Stutsman, and

R. Wang. High performance transactions in deuteronomy. In

CIDR, 2015.

[30] S. Loesing, M. Pilman, T. Etter, and D. Kossmann. On the

design and scalability of distributed shared-data databases. In

Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, pages 663–676, 2015.

[31] MemSQL. http://www.memsql.com/. May. 02, 2016.

[32] MongoDB. http://mongodb.com/. May. 27, 2017.

[33] T. Neumann. Efficiently compiling efficient query plans for

modern hardware. PVLDB, 4(9):539–550, June 2011.

[34] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,

J. Leverich, D. Mazières, S. Mitra, A. Narayanan, D. Ongaro,

G. Parulkar, M. Rosenblum, S. M. Rumble, E. Stratmann, and

R. Stutsman. The case for ramcloud. Commun. ACM,

54(7):121–130, July 2011.

[35] P. ONeil, E. Cheng, D. Gawlick, and E. ONeil. The

log-structured merge-tree (lsm-tree). Acta Informatica,

33(4):351–385, 1996.
[36] M. Pilman. Tell: An Elastic Database System for mixed

Workloads. PhD thesis, ETH Zürich, Under Submission, 2017.

[37] C. Purcell and T. Harris. Non-blocking hashtables with open

addressing. In Proceedings of the 19th International

Conference on Distributed Computing, pages 108–121, 2005.

[38] L. Qiao, V. Raman, F. Reiss, P. J. Haas, and G. M. Lohman.

Main-memory scan sharing for multi-core cpus. PVLDB,

1(1):610–621, 2008.

[39] V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk,

V. KulandaiSamy, J. Leenstra, S. Lightstone, S. Liu, G. M.

Lohman, et al. DB2 with BLU acceleration: So much more

than just a column store. PVLDB, 6(11):1080–1091, 2013.

[40] M. Rosenblum and J. K. Ousterhout. The design and

implementation of a log-structured file system. ACM Trans.

Comput. Syst., 10(1):26–52, Feb. 1992.

[41] S. M. Rumble, A. Kejriwal, and J. Ousterhout. Log-structured

memory for DRAM-based storage. In Proceedings of the 12th

USENIX Conference on File and Storage Technologies, pages

1–16, 2014.

[42] D. Shukla, S. Thota, K. Raman, M. Gajendran, A. Shah,

S. Ziuzin, K. Sundaram, M. G. Guajardo, A. Wawrzyniak,

S. Boshra, et al. Schema-agnostic indexing with Azure

DocumentDB. PVLDB, 8(12):1668–1679, 2015.

[43] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The

Hadoop distributed file system. In Proceedings of the 2010

IEEE 26th Symposium on Mass Storage Systems and

Technologies, pages 1–10, 2010.

[44] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and

H. Balakrishnan. Chord: A scalable peer-to-peer lookup

service for internet applications. In Proceedings of the 2001

Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communications, pages 149–160,

2001.

[45] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,

M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,

E. O’Neil, et al. C-store: a column-oriented dbms. In

Proceedings of the 31st international conference on Very large

data bases, pages 553–564, 2005.

[46] P. Unterbrunner, G. Giannikis, G. Alonso, D. Fauser, and

D. Kossmann. Predictable performance for unpredictable

workloads. PVLDB, 2(1):706–717, 2009.

[47] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier,

and J. Schaffner. SIMD-Scan: ultra fast in-memory table scan

using on-chip vector processing units. PVLDB, 2(1):385–394,

2009.

[48] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and

I. Stoica. Spark: Cluster computing with working sets. In

Proceedings of the 2nd USENIX Conference on Hot Topics in

Cloud Computing, pages 10–17, 2010.

[49] J. Zhou and K. A. Ross. Implementing database operations

using SIMD instructions. In Proceedings of the 2002 ACM

SIGMOD International Conference on Management of Data,

pages 145–156, 2002.

[50] M. Zukowski, S. Héman, N. Nes, and P. Boncz. Cooperative

scans: Dynamic bandwidth sharing in a DBMS. In

Proceedings of the 33rd International Conference on Very

Large Data Bases, pages 723–734, 2007.

1537

