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Fast Scene Change Detection using Direct Feature
Extraction from MPEG Compressed Videos

Seong-Whan Le&Senior Member, IEEEYoung-Min Kim, and Sung Woo Choi

Abstract—in order to process video data efficiently, a video seg- ~ Generally, video data consist of frame, shot and scene. Video
mentation technique through scene change detection must be re- segmentation is a technique that divides video data into physical
quired. This is a fundamental operation used in many digital video units, generally called shots. A shot is a video segment that con-

applications such as digital libraries, video on demand (VOD), etc. _. ts of fi tion. A shot I ists of |
Many of these advanced video applications require manipulations SISLS 0T One CONUNUOUS action. A SOt USUally CONSISIS Of Severa

of compressed video signals. So, the scene change detection proced&2mes, while a scene can consist of several shots.
is achieved by analyzing the video directly in the compressed do- For scene change detection, a matching process between
main, thereby avoiding the overhead of decompressing video into two consecutive frames is required. Many researchers have
individual frames in the pixel domain. _ .. used the luminance pixel-wise difference or luminance or color
In this paper, we propose a fast scene change detection algorithm | . . .
using direct feature extraction from MPEG compressed videos, histogram dlffer_ence to_ match two frames [S], however, lumi-
and evaluate this technique using sample video data. First, we de- hance or color is sensitive to small change, so these features
rive binary edge maps from the AC coefficients in blocks which produce false alarms. By contrast, humans can easily identify
were discrete cosine transformed. Second, we measure edge orisome objects from their edge maps and edge maps which are
entation, strength and offset using correlation between the AC co- not sensitive to luminance or color change. We have derived

efficients in the derived binary edge maps. Finally, we match two h bi d tati f kev-f
consecutive frames using these two features (edge orientation andSUc Inary edge maps as a representation ot key-irames.

strength). This process was made possible by a new mathematical TW0 frames can then be compared by calculating a correlation
formulation for deriving the edge information directly fromthe dis-  between their edge maps [6]. Therefore, in this paper, we used
crete cosine transform (DCT) coefficients. We have shown thatthe edge information for the frame matching feature.
proposed algorithm is faster_or more accurate than the previously Due to the large amount of data, video sequences are often
known scene change detection algorithms. . S .
compressed for efficient transmission or storage on-line.
Index Terms—Direct feature extraction, discrete cosine trans- However most current scene change detection algorithms
Loergétie:fe information, MPEG compressed video, scene change gnarate on uncompressed video sequences. Experiments show,
' however, that in image/video decoding, approximately 40% of
CPU time is spent in inverse discrete cosine transform (IDCT)
I. INTRODUCTION even using available fast discrete cosine transform (DCT)
Igorithms [7]. Therefore, these compressed video sequences
ve to undergo computationally intensive processing steps to
e de-compressed, prior to the application of any scene change
gﬁtection algorithms [8].

ITH rapid advances in communication and multimedi

computing technologies, accessing mass amounts
multimedia data is becoming a reality on the informatio
superhighway. Video and text data are now equally used X .
multimedia information. So the demand for various video ser- In .th's Paper, We propose a fast scene change detection
vices—such as video on demand (VOD), digital library, etc.—%Igorlthm using direct feafure extraction f“’!“ MPEG com-
rapidly increasing [1], [2]. As the amount and complexity opressed videos. Qverall, the_ proposed algorithm can be split
video information grows, the need for more intelligent videlM© three parts. First, we derive binary edge maps from the AC

manipulating techniques becomes evident. For efficient vid 8eff|c:jents in blocks Wg'Ch weret d;_scret;a cos;;:e trg\n?ffor:neq.
storage and management, video segmentation using sc fgond, we measure edge orientation, strength and ofiset using

change detection (cut detection) must be performed prior to P correlation betwe_:en the AC coefficients in th_e derived
other process [3], [4]. Inary edge maps. Finally, we match two consecutive frames

using these two features (edge orientation and strength). In
Fig. 1, the shaded blocks are the most time consuming pro-
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corresponding full images, they are less sensitive to camera and
object movements. Color statistical comparison is found to be
less sensitive to motion, but more expensive to be computed.
This approach is nonetheless very promising and produces the
i best reported results.
| Reconstructed | Kobla and Doermann [15] proposed an algorithm for

‘ detecting scene change points in MPEG compressed video
without performing expensive decoding computations. They
used the macroblocks (MB) of the P and B frames in MPEG
$ideo and used the DCT information of | frames only for cases
where the MB information proves insufficient. This method

,however, also has a motion compensation problem in that

tion IV, we propose a new scene change detection algorithm. e information tends to be unreliable and unpredictable in
Section V, experimental results with various video data are Me case of gradual transitions

alyzed to evaluate the performance of the proposed algorithmArman et al. [12] proposed segmenting JPEG video with a

Finally, conclusions and some directions for further researclmﬁerence metric based on the correlation between the DCT co-
will be given in Section VI. efficients of consecutive frames. This approach is computation-

ally efficient. However, it dose not address gradual transition
Il. RELATED WORKS and the experimental evaluation of the algorithm is not very suf-

Scene change detection is a method used to divide a videofgent.
quence into its elementary scene (generally called “shots”) andZhanget al. [11] proposed the method using the pair-wise
is a common first step in video processing. Scene change detéifierence of DCT coefficients. They have developed a novel
tion algorithm can be divided into algorithm on uncompresséyybrid approach, which exploits the advantages of simpler dif-
video and compressed video. ference metric to the comparison of DCT coefficients and mo-
Scene change detection algorithms for uncompressféﬁj’] information edcoded in MPEG data. Motion compensation
video data are further divided into pixel-based methods, lodglated information, on the other hand, tends to be unreliable
area-based methods, and frame-based methods. For exan%]éyunpredictable in the case of gradual transitions, resulting in
the method using pixel-wise difference [5], the method usirgilure.
local luminance histogram difference [9] and the method Sethi and Patel [14] used only the DC coefficients of |
using edge image difference[10], etc. Especially, Zabth frames of MPEG compressed video to detect scene changes
al. [10] proposed an edge-based method, which detects #@sed on luminance histogram. Their algorithm works as
appearance of intensity edges that are distant from edges inf@llows. First, | frames are extracted from the compressed
pre\/ious frame and appears to be more accurate at detecmﬂ@o streams. Second, the luminance histogram of | frames are
and classifying scene change detection points that are difficiinerated using the first DC coefficient. Finally, the luminance
to detect with intensity histograms. histograms of consecutive frames are compared using one of
However, Zabihet al. [10] used methods for scene changéhe three statistical testg fistogram comparison test).
detection algorithm on uncompressed video. If the input video
data are in a compressed form, then they must first be decom- ll. B ACKGROUND
pressed in their entirety and edge image information is then ex- Meaning of AC Coefficients
tracted from the Entire decompressed image. Since the algo-

rithms are already compute-intensive, additional computation'vIPEG video is specmcally desgneq for compression of
time is highly undesirable. A more effective approach is to déﬂdeo sequences. A video sequence is simply a series of pictures

velop tools that can work directly on compressed represenﬁl-(en at closely spaced intervals in time. Except for the special
tions [11] case of a scene change, these pictures tend to be quite similar

é(gr;n one to the next. Intuitively, a compression system ought

Scene change detection algorithms for compressed vicf R
data are divided into three categories; the DC image-bastg e able to take advantage of this similarity [16]. MPEG uses

method, the motion vector-based method and the DCT C%_two—dimensional eight point by eight point form of the DCT.
efficient-based method. For example, the method using tﬁge 2-D DCT becomes

MPEG Entropy
video stream decoding

v

Edge
information

— | Dequantization

Filtering for

Edge image

edge detectios

Fig. 1. Process of edge information extraction from MPEG compress
images.

luminance histogram difference of DC images[13], [14], the LG ;
method using macro block types [15], and the method using ACy, = i CuCy Y > cos W
correlations of DCT coefficients [11], [12]. =0 j=0
Yeo and Liu [13] proposed to detect scene changes on the DC (25 +Dwr .,
image of the compressed video data. The DC sequence is first By f@, 4) 1)

reconstructed using the approximation method prior to its us

in the identification of scene change detection. They discuss&d®re

successive pixel difference and color statistical comparison. The 1
successive pixels difference is sensitive to camera and object Cr=< 2’
motion. But because DC sequences are smoothed images of the 1, fora=1,2, ---,7.

forA=0
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Fig. 2. The 2-D basis functions of the>8 8 DCT.
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Fig. 3. Zigzag ordering of DC and AC coefficients.
We will use the relationship between the pixels’ DCT coef- L 7
ficients for the extraction of edge information. The coefficient +eos 7o Z f@2.7) - Z f(5,3)
in the upper left corner of a DCT encoded block is called “dc j=0 j=0
coefficient” and the others are called “ac coefficients.” The DC . 7
coefficient_ represents the average o_f the original image ar_ld the + cos % Z £(3, 5) Z f(4, 5)
AC coefficients represent variations in gray values in certain di- i= j=0
rection at a certain rate. For example, consider the coefficient 4)
ACp; andAC;g. From (1), we have . .
C
ACyo = i, 0) — i, 7
- - ‘ 10 4 { 16 <§ f(Lv ) ; f(Lv ))
AC01 1 Z Z cos ————— f(L, J) (2) 7 7
i=0 j=0 —i—cos—(Zf Zf(L,G))
7 7 =0
(2¢ —|— Dz
ACyo = cos ————— f(4, j) ©)) S5 ! ! .
ZZ R PR W
1= 1=0
which can be represented as T 7 l
+cos 7o ; £, 3) _; f,4) |-
A — NN (5)
01 = 16 Zf 71)—Zf( 7) . .
3=0 Equations (2)—(4) means thatCy; andAC,, essentially de-
7 7 pend on intensity differences in the horizontal and vertical direc-
+ cos 1_6 Z F 5= £, 5) tions, respectively. The 2-D basis functions are shown as83

j= j=0 grayscale arrays in Fig. 2.
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Fig. 5. Ideal step edge model and physical meanings of AC coefficients in a block [17].

B. Extraction of AC Coefficients TABLE |
MATRICES S;1 AND S;2

MPEG divides the pictures in a sequence into three basic cate-

gories: I-picture, P-picture, and B-picture. Intra-coded pictures Subblock | Position S Sip
or I-pictures are coded without reference to preceding or up- P | lower right (g i ) ( 0 8)
coming pictures in the sequence. Predicted pictures or P-pic- - over ot (0 T, ) (0 Ton )
tures are coded with respect to the temporally closest preceding ’ 0 0 9 0

. . . . g . . . 0 0 0 0
I-picture or P-picture in the sequence. Bidirectionally coded pic- Py | upper right <Ih3 0) (st 0)
tures or B-pictures are interspersed between the I-pictures and 5 of 0 0 0 I,

A - X 4 upper left In, 0 0 0
P-pictures in the sequence, and are coded with respect to the d

immediately adjacent I- and P-pictures either preceding, up-
coming, or both. Even though several B-pictures may occur in

immediate Succession, B_pictures may never be used to pre@ii@ﬁures. Non-intra piCtUreS are coded relative to a prediCtion
another picture [16]. from another picture, and the process of predicting strongly

1) Extraction From | Frames:Since I-pictures are codeddecorrelates the data. So we must consider nonintra blocks in
without reference to neighboring pictures in the sequence, Weand B-frames.
can get the AC coefficients without using any other processes.Yeo [18] proposed a method that extracts DC and two AC
The de-correlation provided by the DCT permits the ACoefficients AC;, ACp1) from P- or B-frames. If one restricts
coefficients to be coded independently of one another, and ttiie summations in the evaluation of (6)—(8) for P- and B-frames
greatly simplifies the extraction process. to be performed only ovel, /) such thaf +m < 1, then one

2) Extraction From P or B FramesThe decorrelation prop- is essentially lowpass-filtering the anchor frame before motion-
erty of the DCT is too colloquial applicable only to intra codedompensation is carried out. Fig. 4 represent the relationship



244 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 2, NO. 4, DECEMBER 2000

rd L rd L

d
S T 0 > T
]
~—» y =tanf(z — d)
0 i
Y?
8 8
v d~cotd
Y y
(a) case 1 (b) case 2
Fig. 6. Proposed ideal step edge model.
Gi(z), Gi(z) Ga(z), Ga(z)
r 3 1
1 _ﬁ\& 1 J 4 i4 Y Y 4 7
08 . ] 08| » Go(z) =cos Lz /
06 b N\ G1(z) = cos g 06 /
0.4} \J 4 04} GQ (CE)
G1(2) dl /
0.2} v | 02}
....... A e
0 N (1 3 SITT STITTTIT OITY TETTTTTITITTT YT ITTTITTPITTITYPIN

SN TN
s \\ .| \ / |
sl N s LN A ]

0 1 2 3 4 5 [ 7 ] 0 1 2 3 4 5 i 7 8

Fig. 7. Meaning of approximation for extracting AC coefficients (a single dimension).

between reference blodk..; and original blocks. approximate reconstruction method for the extraction of DC and
AC coefficients from P- and B-frames. Whe(&),; represent

4 707 o
DCT(P.;)oo = Z <Z Zwmz(DCT( Z))ml> 6) the (4, j) component ofP.
=1 \m=0 (=0 (DCT(-Pref))a,b
4 707 -
DCT(Pref)or = <Z > @ (DCT(P; ))mz> (7 ~
i=1 \m=0 [=0 ~ Z Z c(hi” Wi, @, M, l’ b) (DCT(R))m,l
i=1 \m4i<1
OCT(Pe o= 3 (z SENEE IR INC
=1 \m=0 (=0 where
where hz 0h, i=1
ml =DCT(S:1))om DCT(S;2)i0 7’]“ T p 1=
ml = DCT(S ))Om DCT(SZQ)ll c(hi7 wi, a, m, 1, b) = [ lw:. . (10)
azrn ; ’ t=
@', =DCT(S:1))1m DCT(Si2)0- Lo
ll}J,L rn ILU;;’ t= 4

This image reconstruction is called a “d€2AC image.” If
we use (6)—(8), each coefficient requires a maximum of 2%6r a+b < 1. Here,h; andw; are the height and width of block
multiplicatioins, but if we use (9), each coefficient requires &; in Fig. 4, respectivelyi?’ ; andr;' ; are the coefficients of
maximum of only 12 multiplications. Therefore, we used thisatricesZ,, and R,,. If we represent each block as anx88
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Fig. 8. Meaning of approximation for extracting AC coefficients (two dimensions).

matrix, then we can describe it in the spatial domain throu

. s AC, =0 (1) case2 AC, =0 (11) case2
matrix multiplication
4 Aqn >0’ Acnz = 0 (2) case 2 Aqn >0, AC,,Z = 0 (12) case2
Preg =Y SuPiSp. (11) |ag,>o0 AGy, <0
im1 AC,; =0 (3) case 1 AC, >0 (13) case 1
Here,S;;’s are matrices of the following form: AC,, <0 @) case1 AC,, <0 (14) case 1
0 O 0 O
L, = <_[n 0 ) or R, = <In 0 ) i AC, =0 (5) case2 AC, =0 (15) case 2

AC,=0 (16) case 2

Eachl,, is an identity matrix of size. There are four possible | Ac, <o,| 4¢u =0 ©) case? |y c g,

locations for the subblock of interest: upper-left, upper-righ sc, <o AC, >0
lower-right and lower-left. The actions in terms of matrices af | >? () ease L |70 1 AC, >0 (17) case1
tabulated in Table I.

AC), <0 (8) casel AC, <0 (18) case 1

IV. PROPOSEDSCENE CHANGE DETECTION ALGORITHM

AC,=0,AG, >0 ) case2 | AC,, #0,AC, >0 (19) case2

We can divide the proposed algorithm into direct edge inf
mation extraction and scene change detection by comparing { Ay =0,4G <0
consecutive frames.

(10) case2|| AC,, = 0,AC,; <0 (20) case2

el - NIV DI

0|0 ||| (A B P] | P2

Fig. 9. Proposed edge extraction rule using the correlation between AC
A. Direct Edge Information Extraction coefficients.

MPEG—an international video compression standard—is
based on 8x 8 DCT. The DCT coefficients in each 8 8§ We propose a new algorithm based on mathematical formula-
DCT-block are related to the luminance or chrominance gf 8 tion which extracts edge information directly from MPEG video
8 pixels in the spatial domain. In particular, the DC coefficierfiata. We consider orientation, strength and edge offset to be the
is the average of the luminance or chrominance signal igaportant components definining the edge shape. Fig. 6 shows
all pixels within the 8x 8 block, and the AC coefficients the proposed ideal step edge modeld, I means orientation,

essentially depend upon intensity differences in the vertical @fset and intensity value, respectively. o
horizontal direction [(5) and (4)]. 2) Approximation: We approximat& by Gy which is de-
1) Ideal Edge Model in DCT DomainUsing the DCT co- fined byGa(z) = cos(Ar/8)z, (0 < z < 8). Fig. 7 shows,,
efficients directly, Shen and Sethi [17] proposed an ideal stép @ndGy, Ga. If «w andw are small enough, we can approxi-
edge model and extracted areas and edges in a coded imagBafeAC.., by the following integralAC,,,.
the model shown in Fig. 5, they considered an ideal step edge 3 .8
cutting through a block of size 8, which is the standard size forac,,, = 1 ¢, C, / / Gu(2)Go() f(z, y) dz dy
JPEG/DCT. They are interested in relating three kinds of edge 0Jo
information: edge orientation, strength, and offset from center. 1 C.C /8/8 um v
) ¢ X =-C,C, cos —xcos — yf(x, y)drdy.
But the algorithm depends on experimental results and in- 4 0Jo 8 8
tuition rather than on mathematical formulation. In this paper, (12)
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Fig. 11. Comparison of the method for detecting of edge orientation. (a) Real edge orientation versus detected edge orientation. (b) Perfoempeaopeseit
metric (I'4) against edge strength: 50, 100, 150, 200.

Figs. 7 and 8 represent the meaning of approximatioh,, allthe cases in Fig. 9, namely case 2) and case 3). The conditions
by AC,.. We will use onlyu, v = 0, 1, 2. In these cases, thefor the discrimination of the cases in Fig. 9 will be apparent,
approximation ofAC,,, by AC,, is reasonable The calcula-after we calculate the orientation, the strength and the offset in
tions in Section IV-B enable us to compute orientatiem(@), terms of the AC coefficients out linked in Section IV-C.
strength () and offset §) from the AC coefficients, for case (2) 1) Case 1:(3)in Fig. 9: From Fig. 6(a) and (12), we have
and case (3) in Fig. 9. SinceC coefficients are approximations
to AC coefficients, we will denota C also by AC from now on.

Note that We use Onlﬁ-clo, ACy, ACll-, ACOI andAQOQ. We Cpo = ——= / / cos — .’L’f(.’L', y) dr dy
present different metrics of DCT coefficients to obtain accurate 42 Jo Jo 3

edge orientation, strength and offset information: I d —tané(z—d) wr
. :—/ / cos —zdy | dx
B. Calculation ofAC Coefficients: Approximation of AC 42 8
Coefficients
. , . — =—F <—> tan@(l—cos Ecl) (u £ 0)
We divide the cases of edge configurations as in Fig. 9. By 44/2 \ ur 8

exploiting the symmetry, it suffices to consider only two among (13)
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- 1 88 v
ACy, =——= cos —yf(z, y)dxd
0 4\/5/0/0 g yf(@ y)dedy
I od »— tan 6(z—d) v
- —uydy | d
T (T P
1

8 \? .
-3 ()
. {1 — cos (% dtan 9)} (v#0) (24)

1 88
ACy, =3 // cos %a:cos gyf(% y) dx dy
0 Jo

I d —tané(z—d) - -
=§/0 /0 €08 = T o8 gydy dz

_I/8\*1 1 1
T 8\w/) 2\1+tanf 1—tand

7 7
. {COS 3 d — cos g(dtan 9)} . (15)

From (13), we have

j— 1 8 2 m

ACqo = W5 <;) tané (1 —cos ¢ d) , (16)

G (B) o (1-cos 2a). an)
20—4\/5 5y ) tan cos — .

From (14), we have

2
1 /(8
ACq = i <—> cot 6 (1 — cos %dtan 9) (18)

™

— 1 /8)° 2
ACpp=——| — t6(1— —dtanf ). (19
02 WG <27r> co < cos —- dtan ) (29)

2) Case 2: (2) in Fig. 9: From Fig. 6(b) and (12), we have

- 1 8 8 U
AC, o =——= cos — zf(z, y)dx dy
e | eos 5 aite iy dnay

I d—8 cot. 8 8
=—— (8 / / cos aid} zdy ) dx
4v/2 0 0 3

d
—tanf / (z — d) cos u—ﬁxdx]
d 8

—8cot ¢
I (8\*
=———|— ] tané
2 <mr) "
-{COS % — cos %(d—8c0t9)} (u #£0)

(20)
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Fig. 12. Overview of the proposed frame matching.
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- 1 88 U
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=37 ) g (@ y)dzdy
I

-8
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0 8

~d—8cot ¢
T4z /0

d
+\/
d—8cot @

1
=/

—tan6(z—d)
</ cos L yd
0 8

2
<%) cot 6(1 — cot vrr) (v #0) (21)

1 848
AC == // cos = 3 cos Eyf(ﬂﬁ y)dzdy
8 Jo Jo 8 8

I d—8cot 8 8
== / cos T / Cosﬁydy dx
8 /o 8 0 8

d
+\/
d—8cot @

™
Cos — I

—tan6(z—d) -
. / cos —ydy | dx
0 8

1

1
8

8\% 1 1
w) 2\1+tanf 1—tanéd

7 7
. {COS gd—i—cos g(d—8cot9)}.

(22)
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~tan9{cos %d—cos %(d— 8C0t9)}

- 1 /8)\?
ACyp=——— [ —
T 42 <27r)

2 2
-tan@{cos gd—cos g(d— 8C0t9)}.

From (21), we have

C. Calculation of Edge Information
1) Case 1: (3) in Fig. 9:
» offset )
From (16) and (17), we have

ACs0 _1.1—COS2%CZ

AClo 4 1 _costy
8
m ACQO
—d=2 -1
cos ¢ ACmo

8 AC
d:; arccos <2FTZ — 1).

* orientation ¢an 8)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

RSV RLON

Frame number

kS P I

Frame nurmber

Examples of strength histogram.

TABLE 1l
VIDEO DATA FOR EXPERIMENTS

Type Abbr. | Duration(hh:mm:ss) | Quantity | Nitar | NReut
News New 0:15:43 173MB | 28,280 | 186
Sitcom Sit 0:15:01 165MB | 27,017 | 142
Music Video | Mus 0:05:23 69MB 9,704 189
Documentary | Doc 0:10:35 90MB 15,886 94

From (16)—(18), we have

fan 6 — ACqo; [ACo — ACy
T AL VAC, — ACy
« strength {)
From (16)—(19), we have

I _ 2\/5 (E)Q ACIOACOI )
8/ \/(AC1g — ACy) (ACo — ACq2)

2) Case 2: (2) in Fig. 9:
« offset [)
From (22)—(25), we have

_ ACy V2AC1ACy; — AC5ACy;
N AClO \/§AC()1ACH '

« orientation ¢an 6)
From (22)—(25), we have

d

V2AC1pAC
V2AC10AC 1 — AC2ACq;

tanf =

 strength {)
From (22)—(25), we have

2
1=2v2(2) Ao, V2AC10AC :
8 V2AC10AC1; — AC2ACo,

(30)

(1)

(32)

(33)

(34)
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Fig. 16. Examples of extracted edge image from MPEG video data. (a) Original images, (b) example of extracted edge image using the proposed method, and
(c) images which are filtered by the Sobel filter.

D. Symmetry Rules TABLE 1II
. . COMPARISON OF THEPROPOSEDMETHOD WITH THE OTHERS
From the results in Section IV-C, we can calculate the edge
information for the r f th in Fig. 9. This i higve method New Sit Doc Mus
0 .ato or the rest of the cases g'9 This is achieve T N e T PRT AT U
by using symmetry; for example, case 4) in Fig. 9 is obtaine=gg T 5

Nrp
8 141 1 5 90 4 12 {183 6 23
by applying the transformation (d) in Fig. 10, followed by the ;‘BBA igg ; g iﬁ (1’ i g? ; ; 12; ; g
transformation (e) in Fig. 10. So, we need only to replack,.,
by (-1)“(—1)"AC,,. Thus, for case 4), we have
. Ofi i 9 TABLE IV
orientation ﬁan ) ACCURACY COMPARISON OFSCENE CHANGE DETECTION METHODS VIA
—ACi9 [/—ACio— ACq2 THE PRECISION AND RECALL PARAMETERS
tan @ = (35)
—ACO01 —AC()l — ACOQ method New Sit Doc Mus
. strength () Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec.
DC 0.9577 | 0.9731 | 0.9658 | 0.9930 | 0.8824 | 0.9574 | 0.8883 | 0.9683
I—9/3 (7r)2 (—=ACp1)(—AC0) FB || 0.0840 | 0.0946 | 0.9930 | 1.0000 | 0.9789 | 0.9894 | 0.9689 | 0.9894
= = PM 0.9734 | 0.9839 | 0.9930 | 0.9930 | 0.9479 | 0.9680 | 0.9541 | 0.9894
8 \/(—A001 - ACO2) (_ACIO - AC20)
(36) . .
. offset () the Sobel edge operator and the proposed metric, respectively.
. AC T1 and12 are defined by
_° 02 AC
d= — arccos <2 “AC,, 1) . (37) 71— AC?; (38)
Of coursefan(é) andd here should be interpreted appropri- ;
ately. Z ACo,
E. Comparison of Methods for Extracting Edge Information T2 == : (39)
We experimented with the proposed metric for extracting ZACuo
edge orientation. The result is shown in Fig. 11. For comparison u=1

purposes, we also show the edge orientation estimaté for .

T2, T3, andT4. The proposed algorithri;4 provides the best F- Frame Matching Phase

edge orientation estimate and has little to do with edge strengthlf we use the proposed direct edge detection algorithm men-
So, we use the proposddi metric for extracting the accuratetioned in previous section, we can match two consecutive frames
edge orientation information. In Fig. 11,3 and7’4 represent independent of luminance or color changes. Fig. 12 shows the
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overview of the proposed frame matching. In this paper, we di-
rectly extract edge information (orientation and strength) from
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Fig. 17. Comparison of experimental results on sample video via the precision and recall parameters: (a) precision parameter and (b) recall paramete

TABLE V

s

SPEED COMPARISON OF THESCENE CHANGE DETECTION METHODS

MPEG video data, and perform a comparison of two frames’ ori-  Type

News

Sitcom

Documentary

Music Video

11.4 frame/sec.

10.3 frame/sec.

11.2 frame/sec.

10.8 frame/sec.

entation and strength histogram. Finally, we detect scene change gg

2.1 frame/sec.

2.7 frame/sec.

2.3 frame/sec.

2.1 frame/sec.

frames using comparison results. Fig. 13 shows the example of &m

11.4 frame/sec.

11.3 frame/sec.

10.7 frame/sec.

10.8 frame/sec.
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the edge orientation and strength features.

1) Edge Orientation Histogram ComparisorThe extracted Bz:l o (k)
edge in 8x 8 blocks have their own orientation. Therefore, we e
can use edge orientation for frame matching. We can get the DOSH(fu, fuy1) === % (43)
edge orientation histogram difference for frame matching using
(40). f,, meansnth frame, DOAH (f,,, f.+1) means the dif- 1, if Dox > Ar
ference of the angle histograms betweensttieframe and the ©On,nt1(k) { . (44)
(n+1)th frame (2 4 means the number of phases in the orienta- 0, otherwise
tion histogram, and\H,,(¢) meansith orientation histogram of whereA is the threshold.
framen. Fig. 14 shows examples of the orientation histogram. 3) Frame Matching Using Edge Orientation and

Qa—1 Strength: In this paper, we match two consecutive frames
DOAH(fy, frnt+1) = Z |AH, (i) — AH,41(¢)|. (40) using edge orientation and strength information. The offset
i=0 information is a very important component of an edge. So,

2) Edge Strength Histogram Comparisoiihe information we perform frame matching using only edge orientation and
that we can extract from MPEG video data directly is not onlstrength information which are derived in the previous section.
the edge orientation but also the edge strength. If we use oflyjuation (45) shows the weighted summation of orientation
the orientation histogram, the differences of edge orientatiand strength histogram. In (45}, meanshth frame, DOF (.,
histograms are sensitive to camera speed or camera rotatign.; ) means the difference of theth and then + 1)th frames,

To improve this situation, our algorithm uses an edge strengthda means the weight0 < « < 1).

histogram. We can get edge strength histogram using (41)—(43). DOF(fu, fat1) = (1 — &) DOAH(fy, frs1)

M and N are the numbers of the horizontal and the vertical

blocks of a frame, respectiveli is the number of groups into +aDOSHn, ft1)
which the vertical blocks are divided, afi’,, (¢, j) means the
edge strength of théi, j)th block of thenth frame. Fig. 15
shows the examples of strength histograms. DOSH/,. 1)
represents the difference of strength histogram betwéeand
n + 1th frame.

(45)

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. Experimental Environment

In order to evaluate the proposed scene change detection
algorithm using direct edge information extraction, we per-
formed our experiments using a Pentium Il 350 MHz PC, under
the Windows NT 4.0 operating system. We used various video
data—Sitcom video data, News video data, and Documentary
video data—of which the types and sizes are shown in Table II.

{(+1)(N/K)}—1 M—1

> > ST, j) (41)

j=k(N/K) i=0

Dy =|Yn(k) — Vg1 (k)|

Yn(k) =

(42)
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Fig. 18. Relationship between the precision and recall parameters. (a) News video data, (b) sitcom video data, (c) documentary video dataicaridg¢d) mus
data.

These video data were collected by the Optibase MPEG Fusid€ image in compressed domain proposed by Yeo and Liu [13],
System MPEG-1/2 Encoded,,; represents the number ofis very promising and produces the best results among the pre-
the total framesNg...; represents the number of scene changegous works.

In Table Ill, N means the number of correct scene change
B. Experimental Results detectionsNrx means the number of missed scene detections,

The experimental results demonstrate the efficiency of tﬁgd Nde means the rr:umberho(fj incprrectly Qetected scene
proposed scene change detection algorithm. Fig. 16(a) are $H8N9€ ettlactlgns. The dmetl 0 husmg bC |mag?s| IS very
original images, Fig. 16(b) are the examples of the extractgg"S!tive to luminance and color change, so many false scene

edge images directly from MPEG video data, and Fig. 16(c) a(I:Qange frames were detected when we ”Se‘?' music video
the images which are filtered by the Sobel filter. data and documentary data. But the method using edge-based

Table 11l shows the scene change detection results with exp@"—itulre anhd the proposed method are not sensitive to luminance
imental video data in Table Il using the method of feature-bas@f €0'0" change.

(FB) [10], the method of DC images (DC) [13], and the pro- Precision = Ne (46)
posed method (PM). The method using edge-based features in Nc + Nrp
the uncompressed domain proposed by Zabih, that is a very ac- N¢

Recall =

curate scene change detection algorithm, and the method using Ne + Npx© (47)
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The performance is given in terms of precision and recall [8]
parameters defined in (46) and (47). Table IV and Fig. 17
show performance comparisons of the scene change detecti
methods via the precision and recall parameter and Fig. 18
represents the correlation between these precision and tk[lleO]
recall parameters.

Table V demonstrates the speed comparisons of scene change
detection methods. The method using the DC image and the pr8-]
posed method are performed using direct feature extraction in
the compressed domain, therefore these methods are faster thaa)
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VI. CONCLUSION AND FURTHER RESEARCH (7]

In this paper, we proposed a new scene change detection "f%]
gorithm using direct edge information extraction from MPEG
video data, and evaluated this technique using sample video
data. First, we derived binary edge maps from the AC coeffi-
cients in blocks which was discrete cosine transformed. Second,
we measured edge orientation, strength and offset using the cor-
relation between the AC coefficients in the derived binary edge
maps. Finally, we matched two consecutive frames using these
two features (edge orientation and strength). The accuracy of
the proposed algorithm was shown to be comparable to the
curacy of the method using FB [10], and definitely higher th
the accuracy of the method using DC images [13]. The propo
algorithm is comparable to the DC method in speed, and
found to be five to six times faster than the FB method. Th
was made possible by a hew mathematical formulation for
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