
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

12-1-2004

Fast Search for Best Representations in Multitree
Dictionaries
Yan Huang

Ilya Pollak

Minh N. Do

Charles A. Bouman

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Huang, Yan ; Pollak, Ilya ; Do, Minh N. ; and Bouman, Charles A. , "Fast Search for Best Representations in Multitree Dictionaries"
(2004). ECE Technical Reports. Paper 129.
http://docs.lib.purdue.edu/ecetr/129

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages

FAST SEARCH FOR BEST
REPRESENTATIONS IN MULTITREE
DICTIONARIES

YAN HUANG
ILYA POLLAK
CHARLES A. BOUMAN
MINH N. DO

TR-ECE 04-09
DECEMBER 2004

SCHOOL OF ELECTRICAL
 AND COMPUTER ENGINEERING
PURDUE UNIVERSITY
WEST LAFAYETTE, IN 47907-2035

i

Fast Search for Best Representations in Multitree

Dictionaries.

Yan Huang Ilya Pollak* Minh N. Do Charles A. Bouman

This work was supported in part by a National Science Foundation (NSF) CAREER award CCR-0093105, an NSF grant IIS-0329156, a

Purdue Research Foundation grant, and an NSF CAREER award CCR-0237633.

Y. Huang, I. Pollak*, and C.A. Bouman are with the School of Electrical and Computer Engineering, Purdue University, 1285 EE

Building, West Lafayette, IN 47907, phone 765-494-3465, 5916, and 0340, fax 765-494-3358, e-mail yanh,ipollak,bouman@ecn.purdue.edu.

M.N. Do is with the Department of Electrical and Computer Engineering and Beckman Institute, University of Illinois at Urbana-Champaign,

1406 West Green St., Urbana, IL 61801, phone 217-244-4782, fax 217-244-1642, e-mail minhdo@uiuc.edu. Corresponding author’s e-mail:

ipollak@ecn.purdue.edu .

ii

Abstract

We develop a new framework of multitree dictionaries which includes some previously proposed dictionaries as

special cases. We show how to efficiently find the best object in a multitree dictionary using a recursive tree pruning

algorithm. We illustrate our framework through several examples, including a novel block image coder which

significantly outperforms both the standard JPEG and quadtree-based methods, and is comparable to embedded

coders such as JPEG2000 and SPIHT.

1

I. I NTRODUCTION.

A number of research efforts have recently concentrated on developing adaptive algorithms for representing

and approximating signals in overcomplete dictionaries. This paper addresses thebest basis problem—or, more

generally, thebest representation problem: given a signal, a dictionary of representations, and an additive cost

function, the aim is to select the representation from the dictionary which minimizes the cost for the given signal.

This paradigm has been successfully used for problems in compression [24], [25], [40], [49], estimation [11]–[13],

[19], [20], [26], [30], [33], [51], and time-frequency (or space-frequency) analysis [10], [15]–[18], [46], [48], [52].

The original papers on best basis search [8], [9] considered the wavelet packet bases [8] and bases of local

cosines [7], [27], [28], [41] on dyadic intervals. In each of these two cases, all the bases in the dictionary can be

organized using a single tree: a binary tree in 1-D and a quadtree in 2-D. This organization was exploited in [8],

[9] to devise a fast recursive tree pruning algorithm to find the best basis for any additive cost function.

Since then, a number of efforts have sought to lift the restrictions that a fixed binary/quadtree structure imposes on

the underlying dictionary. Search methods for various dictionaries that correspond to different sets of possible time-

frequency or space-frequency tilings have been proposed, such as the double-tree algorithm [15], time-frequency

trees [46], [52], space-frequency trees [16], adaptive Haar-Walsh tilings [25], anisotropic wavelet packets [2], [12],

anisotropic cosine packets [2], and mixed isotropic/anisotropic packets [2].

The main contributions of the present paper are:

• a new framework of multitree dictionaries which includes some previously proposed dictionaries as special

cases;

• a fast recursive algorithm to find the best representation of data in a multitree dictionary;

• several application examples, including a novel image coder, which typically reduces the bit rate by about 25-

40% compared to JPEG and by about 10-20% compared to the quadtree-based approach of [40], and whose

rate-distortion performance is comparable to that of embedded wavelet coders such as JPEG2000 and SPIHT.

We start our discussion in Section II with a simple example of an optimal rectangular tiling algorithm. A

simple modification of this algorithm leads to a best wedgelet algorithm for arbitrary rectangular tilings which we

present in Section III. Two further extensions of our basic tiling algorithm are described in Section IV. Section V

2

(a) An admissible tiling. (b) An inadmissible tiling.

(c) A sequence of splits. (d) Another sequence of splits.

Fig. 1. An illustration of tilings and sequences of splits. (a) An admissible tiling—i.e., a tiling that can be obtained via a sequence of

binary splits. (b) An inadmissible tiling. (c) A sequence of splits that leads to the tiling in (a). (d) Another sequence of splits that leads to

the tiling in (a).

applies our algorithm to the problem of image compression. In Section VI, we introduce the general framework

of multitree dictionaries, and argue that the algorithms of Sections II, III, and IV are special cases of a general

recursive algorithm for finding the best object in a multitree dictionary. In Section VII, we then discuss relationships

of our framework and algorithms to previously proposed best basis algorithms, and to other application areas.

II. EXAMPLE 1: OPTIMAL RECTANGULAR TILINGS.

A. A Fast Recursive Tiling Algorithm.

We consider all images supported on a discrete rectangular domainQ ⊂ Z
2. Suppose we are given an imagef

and would like to segment it into rectangular tilesP1, P2, . . . , Pd so as to minimize a cost which is equal to the

sum of the costs of the individual tiles:
d∑

i=1

e(Pi), (1)

wheree is a cost function which is application specific and which depends on the imagef .

We restrict our choice of tilings, and only consider those tilings that can be obtained through the following

recursive binary splitting process:

3

• start with a tiling which consists of a single tile—namely, the whole image domain;

• for every tile in the tiling which consists of more than one pixel,

either keep it and do not split it ever again,

or split it into two smaller rectangular tiles;

• continue until all the tiles in the tiling either consist of one pixel or are labeled “never split again”.

A rectangular tiling which can be obtained through this procedure is called anadmissible tiling. An admissible

tiling is illustrated in Fig. 1(a). The rectangular tiling depicted in Fig. 1(b) cannot be obtained through the binary

splitting process described above, even though every tile in the tiling is a rectangle. This tiling is therefore not an

admissible tiling.

The binary splitting process is conveniently visualized as a tree, with every node of the tree corresponding to a

unique rectangular region of the image, as shown in Fig. 1(c).1 We therefore use the termsnodeand rectangular

region interchangeably. In particular, the entire image domain corresponds to the root of the tree. The yield of the

binary tree—i.e., the set of all leaves—is then a tiling of the image. We therefore use the termsleaf nodeand tile

interchangeably. The set of all such trees will give us the set of all admissible tilings (however, several different

trees may correspond to the same tiling, as shown in Fig. 1(c,d)).

To efficiently solve our optimal tiling problem, we assign the cost given in Eq. (1) to every treet whose yield

is an admissible tiling{P1, . . . , Pd}:

COST0(t) =
∑

P∈yield(t)

e(P). (2)

We then search over all trees to find one of the trees with the smallest cost. The optimal tiling is then the yield

of this tree. Since our search space consists of multiple trees, we call it amultitree dictionary. Our efficient search

algorithm exploits the fact that although the number of possible trees is very large [26], [53], the number of

rectangular tiles is much smaller and manageable.

To describe our search algorithm, letC∗
P be the cost of the optimal tiling for a rectangleP . In particular,

C∗
Q = min

t
COST0(t) is the optimal cost for the entire image domainQ. Our algorithm makes the following

1In the figure, a short vertical (horizontal) line through a node signifies a vertical (horizontal) split.

4

recursive call, starting withP = Q:

C∗
P = min{e(P), min(C∗

P ′ + C∗
P ′′)}, (3)

where the inner minimization is done over all ordered pairs of rectangles(P ′, P ′′) which partition the rectangleP :

P = P ′ ∪ P ′′ andP ′ ∩ P ′′ = ∅.

We always assume that, if the split is horizontal, thenP ′ is on top ofP ′′, and if the split is vertical, thenP ′ is to

the left of P ′′.

The recursive call (3) terminates at the pixels:

if P is a pixel, thenC∗
P = e(P). (4)

To avoid repetitive calculation, we store the optimal cost and the optimal split for each rectangle in a table. Before

making a recursive call for any rectangleP , the table is consulted to make sure thatP has not been visited before.

If the original image domain isN1 ×N2, it hasO(N2
1 N2

2) different subrectangles, and therefore maintaining the

table requiresO(N2
1 N2

2) memory. With this table, we only need to make one recursive call per rectangle. Since each

recursive call involvesO(N1 + N2) comparisons to calculateC∗
P via Eq. (3)—corresponding toN1 − 1 horizontal

splits andN2 − 1 vertical splits—the computational complexity of the search algorithm isO(N2
1 N2

2 (N1 + N2))

which is O(N2.5) for a square image withN pixels, N1 = N2 =
√

N .

The pseudocode for the search algorithm is shown in Fig. 2. The optimal left child ofP is denoted bys∗P ,

and the optimal overall tiling byB∗P . Fig. 2(a) shows the pseudocode for the recursive calculation of the optimal

splits and corresponding costs which are stored in a global data structure TABLE. Once this piece of pseudocode

is executed, the optimal tiling is constructed using the routine in Fig. 2(b) which is assumed to have access to the

same global data structure TABLE. Specifically, the optimal tilingB∗Q of an image domainQ is obtained with the

following two commands:

(C∗
Q, s∗Q) ← bestsplit v0(Q),

B∗Q ← besttiling v0(Q),

which call the two routines in Fig. 2.

5

(C∗
P , s∗P)← bestsplit v0(P) {

if C∗
P has been computed

get C∗
P ands∗P from the global data structure TABLE;

else{
s∗P ← ∅; //Initialize best left childs∗P
C∗

P ← e(P); //Initialize best costC∗
P

for (P ′, P ′′) = a partition ofP into two rectangles{
(C∗

P ′ , s∗P ′)← bestsplit v0(P ′);

(C∗
P ′′ , s∗P ′′)← bestsplit v0(P ′′);

if C∗
P ′ + C∗

P ′′ < C∗
P {

s∗P ← P ′; //Updates∗P
C∗

P ← C∗
P ′ + C∗

P ′′ ; //UpdateC∗
P

}
}
recordC∗

P ands∗P in the global data structure TABLE;

}
returnC∗

P ands∗P ;

}

(a) Recursive calculation of the optimal splits and corresponding costs.

B∗
P ← besttiling v0(P) {

get s∗P from the global data structure TABLE;

if s∗P is the empty set

B∗
P ← {P};

else

B∗
P ← besttiling v0(s∗P) ∪ besttiling v0(P\s∗P);

returnB∗
P ;

}

(b) Recursive generation of the best tiling.

Fig. 2. Pseudocode specification of a fast recursive search for the best rectangular tiling: (a) the recursive calculation of the optimal left

children s∗P and the corresponding costsC∗
P ; (b) the recursive generation of the best tiling. It is assumed that both routines have access

to the same global data structure TABLE. The optimal tilingB∗
Q of an image domainQ is obtained with(C∗

Q, s∗Q) ← bestsplit v0(Q),

followed byB∗
Q ← besttiling v0(Q).

B. A Simple Cost Function.

The preceding discussion supposes that the individual costse(P) have been precomputed for every rectangle

P . We analyze this computation using the following simple cost:

e(P) =
∑

(n1,n2)∈P

(f(n1, n2)− fP)2 + w, (5)

6

which results in the following overall cost of a tiling{P1, . . . , Pd}:
d∑

i=1

∑
(n1,n2)∈Pi

(f(n1, n2)− fPi
)2 + wd, (6)

where

f(n1, n2) is the pixel value at the location(n1, n2);

fPi
is the average of the imagef over the rectanglePi;

d is the number of tiles in the tiling;

w is an application-specific penalty on the number of tiles (such as, e.g., the average coding complexity in

a compression application).

For this particular cost function (5), computinge(P) for every rectangleP can be done very efficiently by

defining the following two statistics:

ρ1(f, P) =
∑

(n1,n2)∈P

f(n1, n2) = |P |fP

ρ2(f, P) =
∑

(n1,n2)∈P

f(n1, n2)2,

and noticing that, if we know these two statistics for a pair of rectangles(P ′, P ′′) which partition a rectangleP ,

we can calculatee(P) in O(1) time as follows:

ρ1(f, P) = ρ1(f, P ′) + ρ1(f, P ′′)

ρ2(f, P) = ρ2(f, P ′) + ρ2(f, P ′′)

e(P) = ρ2(f, P)− ρ2
1(f, P)/|P |+ w.

This is used to compute all the costs in a bottom-up fashion, with both time and space complexityO(N2
1 N2

2).

C. Reducing the Computational Complexity.

The overall time complexity of the optimal tiling algorithm with the cost (5)—i.e., the computation of the costs

and the recursive search combined—isO(N2
1 N2

2 (N1 + N2)). The overall space complexity isO(N2
1 N2

2).

Note that reducing the number of admissible rectangular tilings may result in a lower computational complexity

of the algorithm. For example, we can restrict the search space if we only allow a rectangle to be split into two

7

congruent rectangles, as was done in, e.g., [12]. In other words, we can impose that during our recursive binary

splitting process, ann1×n2 rectangle may only be split either into twon1/2×n2 rectangles, or into twon1×n2/2

rectangles. This “dyadic tiling” scenario is called “dyadic CART” in [12] and is similar to the anisotropic wavelet

packets [2], [12].2 It can be shown that in this case, the total number of possible rectangular tiles isO(N1N2), and

therefore the computation of the costs has time and space complexityO(N1N2). The minimization in Eq. (3) is

O(1) since it now involves choosing one of no more than three options: horizontal split or vertical split or no split.

Therefore, both the time and space complexity of the search isO(N1N2), which is also the overall complexity of

the algorithm—i.e., the computation of the costs and the recursive search combined. In this case, the complexity

is linear in the number of pixels.

Another way of reducing the computation time and memory requirements is restricting the split locations to

only occur at multiples of some integerM > 1. In this case, the elementary cells in the resulting tilings will be

M ×M rectangles rather than single pixels. Our rectangular tiling algorithms, withM = 16, are illustrated in

Fig. 3: Fig. 3(b) shows the result of the dyadic search, and Fig. 3(c) shows the result of the full search.

We also note that for any set of admissible tilings, a further reduction in computational complexity can be

achieved by sacrificing optimality and using a suboptimal, greedy search method proposed in, e.g., [31], [32].

The problems addressed in the remainder of the paper exemplify many situations where the computation of the

costs may be more complex than O(1) per pixel and in fact may dominate the computational complexity of the

overall algorithm.

III. E XAMPLE 2: OPTIMAL WEDGELET TILINGS.

A. Algorithm Extension 1: State Variables.

In the best wedgelet algorithm [13], each tile can be represented using one of several wedgelets. In our image

coding algorithm in Section V, we will allow the choice of several quantizers for encoding each tile. To model

these choices, we introduce the concept of astate variable. To every tileP , we associate a state variablexP taking

2The scenario which is similar to the classical wavelet packets results from imposing that, furthermore, any horizontal split must be

followed by a vertical one, and vice versa. In other words, if ann1 × n2 rectangle resulted from a horizontal split, it is only allowed to be

split into two n1 × n2/2 rectangles; and if it resulted from a vertical split, it is only allowed to be split into twon1/2× n2 rectangles.

8

(a) Cameraman image. (b) Best dyadic tiling, cost 0.57 (c) Best arbitrary tiling, cost 0.44

Fig. 3. A 256× 256 cameraman image and its best rectangular tilings with the smallest cell size16× 16: (b) best dyadic tiling, cost 0.57;

(c) best arbitrary tiling, cost 0.44.

region P’
intensity

intensity
region P’’

µ’

µ’’

∆

Fig. 4. A wedgelet.

values in some finite set which, without loss of generality, we assume to be{1, 2, . . . , X} whereX is some fixed

integer. Each term of the cost function is now allowed to depend on the corresponding state variable—in other

words, we replace the cost given in Eq. (2) with the following:

COST1(t) =
∑

P∈yield(t)

c(P, xP). (7)

Note that if we lete(P) = min
xP

c(P, xP), this cost becomes the same asCOST0 in Eq. (2). Therefore, the search

for the best tree and the best tiling now consists of two steps: finding the best state for each tileP via minimizing

c(P, xP) with respect toxP , and then applying our recursive algorithm of Fig. 2(a).

B. Wedgelet Experiments.

A wedgelet [13] is an image defined on a rectangular domain and consisting of two constant pieces which are

joined together along a straight line, as illustrated in Fig. 4. We can represent a wedgelet on a domainP as a

quadruplexP = (P ′, P ′′, µ′, µ′′) whereP ′ andP ′′ are the two regions that the straight line partitionsP into, and

9

10 12 14 16 18 20 22 24
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

PSNR IN DB

R
A

T
E

 IN
 B

IT
S

/P
IX

E
L

Best Quadtree Wedgelets

Best Dyadic Wedgelets

(a) Quadtree wedgelets. (b) Dyadic wedgelets. (c) Rate-distortion curves.

Fig. 5. Two best wedgelet tiling examples for an128 × 128 binary image: (a) Quadtree wedgelets, SNR=17.1 dB, rate = 0.0062 bits

per pixel; (b) Dyadic wedgelets, SNR = 17.8 dB at 0.0055 bits per pixel. Panel (c) shows the rate-distortion curves for this image, for the

quadtree wedgelets (dashed) and the dyadic wedgelets (solid).

µ′ andµ′′ are the respective image intensities. Alternatively,P ′ andP ′′ can be specified by the two endpoints of

the line. It is typically assumed that the endpoints are restricted to a grid with some small step∆, as shown in

Fig. 4.

Given an imagef , we can approximate the image values over a rectangular domainP with a wedgeletxP =

(P ′, P ′′, fP ′ , fP ′′) wherefP ′ andfP ′′ are the average intensities off over the regionsP ′ andP ′′, respectively. We

penalize any such approximation using the following simple cost function which is similar to Eq. (5):

c(P, xP) =
∑

(n1,n2)∈P ′

(f(n1, n2)− fP ′)2 +
∑

(n1,n2)∈P ′′

(f(n1, n2)− fP ′′)2 + 2w.

In addition, we still allow approximating an image tile with a constant, and still use the cost in Eq. (5) in this case.

Our fast search algorithm can then find the optimal wedgelet tiling. Fig. 5 depicts some examples for a binary

image. Fig. 5(a) shows the best quadtree wedgelet tiling. This strategy was proposed in the original wedgelet paper

[13]. Allowing more possibilities for split locations leads to more compact and more precise wedgelet tilings. The

best dyadic wedgelet tiling is shown in Fig. 5(b) and allows each rectangle to be split into two congruent rectangles

either horizontally or vertically.

We assumed the following simple approximation for the number of bits required to encode our wedgelet tilings:

• one bit per node to encode whether it is an internal node or a leaf;

10

• one bit per leaf node to encode whether it is a constant tile or a wedgelet;

• one bit per leaf node to encode the intensity (this is a reasonable approximation, since our input image is

binary);

• log2(((M + N)/∆)2) bits per wedgelet leaf node of sizeM × N , to encode the position of the wedgelet

partition;

• in addition, for dyadic wedgelet tilings, we spend one bit per internal node to encode whether it is split

horizontally or vertically.

With these assumptions, the quadtree tiling of Fig. 5(a) produces SNR of 17.1 dB and rate 0.0062 bits per pixel,

whereas Fig. 5(b) has both a higher SNR of 17.8 dB and a lower rate of 0.0055 bits per pixel. Note also that the

quadtree tiling has 16 tiles whereas the dyadic tiling has only eight tiles. Dyadic tilings outperform quadtree tilings,

achieving lower rates at the same SNR’s and higher SNR’s at the same rates for this image, as shown in Fig. 5(c).

The curves in Fig. 5(c) were obtained by varying the split penaltyw.

IV. FURTHER EXTENSIONS OF THEOPTIMAL TILING ALGORITHM.

A. Algorithm Extension 2: Incorporating Internal Nodes into the Cost.

Recall that in previous sections, the trees played an auxiliary role since the cost only depended on the yield of

the tree—i.e., the leaf nodes—but was independent of the internal nodes of the tree. However, in some applications

the internal structure of the tree matters. For example, in the wedgelet experiments of the previous section as well

as in the compression experiments which will be discussed in Section V, the structure of the tree must be encoded,

and the encoding costs may be different for two different trees which correspond to the same tiling. We would like

to be able to include these costs in the cost function optimized by our algorithm. To model this and a variety of

other such situations where the internal structure of the tree is important, we now equip every nodeP with a state

xP , and use a cost function̄c to penalize the split of a nodeP with a statexP into nodesP ′ andP ′′ with states

11

xP ′ andxP ′′ , respectively. Our new cost for any treet is:

COST2(t) =
∑

P∈internal-nodes(t)

c̄

 (P ′, xP ′) (P ′′, xP ′′)

(P, xP)

+
∑

P∈yield(t)

c(P, xP), (8)

where

in the first summation, the nodesP ′ andP ′′ are the children of the nodeP on the treet;

xP , xP ′ , andxP ′′ are the state variables associated with the nodesP , P ′, andP ′′, respectively;

c and c̄ are application-specific cost functions.

Note that this cost is a generalization ofCOST1(t) in Eq. (7). Indeed, if we set̄c ≡ 0, thenCOST2(t) = COST1(t).

Note also that, in the cost (5,6) which we used in our tiling experiments, the penaltyw can be interpreted as a

split cost functionc̄ which assigns a constant penaltyw to each split.

We let C̄∗
P,x be the cost of the optimal tree for a rectangleP , givenxP = x, and we letC̄∗

P be the cost of the

overall optimal tree forP , i.e., C̄∗
P = min

x
C̄∗

P,x. The optimal tree is found using the following recursion:

C̄∗
P,x =

c(P, x), if P is an elementary cell,

min

c(P, x), min
P ′,P ′′,x′,x′′

c̄

(P ′, x′) (P ′′, x′′)

(P, x)

 + C̄∗

P ′,x′ + C̄∗
P ′′,x′′

, otherwise.
(9)

This recursion is similar to Eqs. (3,4) and can therefore be implemented using the pseudocode in Figs. 6 and 7

which are extensions of Figs. 2(a) and 2(b), respectively.

B. Algorithm Extension 3: Dynamic Programming Over a Sequence of Blocks.

If an image is partitioned intoK blocksQ1, Q2, . . . , QK—as in, for example, JPEG and [40]—our algorithm

can be used to find the optimal tiling within each block. In [40], it was assumed that each block is handled

independently. However, as argued in [5], [43], it is sometimes advantageous to assume that pairs of consecutive

blocks are interdependent. In order to model this new assumption, we lett1, . . . , tK be the trees corresponding to

the blocksQ1, . . . , QK , respectively, and assign the following cost to this collection of trees{t1, . . . , tK}:

COST-BLOCKS(t1, . . . , tK) =
K∑

k=2

¯̄c(Qk, xQk
, Qk−1, xQk−1) +

K∑
k=1

COST2(tk). (10)

12

(C̄∗
P,x, s̄∗P,x)← bestsplit v2(P, x) {

if C̄∗
P,x has been computed

get C̄∗
P,x and s̄∗P,x from the global data structure TABLE;

else{
// Initialize

s̄∗P,x ← ((∅, 0), (∅, 0));

C̄∗
P,x ← c(P, x);

for x′ = 1 : X, x′′ = 1 : X, (P ′, P ′′) = a partition ofP into two rectangles{
(C̄∗

P ′,x′ , s̄∗P ′,x′)← bestsplit v2(P ′, x′);

(C̄∗
P ′′,x′′ , s̄∗P ′′,x′′)← bestsplit v2(P ′′, x′′);

if C̄∗
P ′,x′ + C̄∗

P ′′,x′′ + c̄

0
BBBB@ (P ′, x′) (P ′′, x′′)

(P, x)

1
CCCCA

< C̄∗
P,x {

// Update

s̄∗P,x ← ((P ′, x′), (P ′′, x′′));

C̄∗
P,x ← C̄∗

P ′,x′ + C̄∗
P ′′,x′′ + c̄

0
BBBB@ (P ′, x′) (P ′′, x′′)

(P, x)

1
CCCCA

;

}
}
recordC̄∗

P,x and s̄∗P,x in the global data structure TABLE;

}
return C̄∗

P,x and s̄∗P,x;

}
Fig. 6. Pseudocode for the recursive calculation of the optimal splits and states and the corresponding costs forCOST2 of Section IV-A.

t∗P,x ← besttreev2(P, x) {

get s̄∗P,x ≡ ((P ′, x′), (P ′′, x′′)) from the global data structure TABLE;

if P ′ is the empty set

t∗P,x ← [(P, x)];

else

t∗P,x ←

2
66666664

besttreev2(P ′, x′) besttreev2(P ′′, x′′)

(P, x)

3
77777775

;

return t∗P,x;

}
Fig. 7. Pseudocode for the recursive generation of the best tree for Section IV-A.

13

(t∗1, . . . , t
∗
K)← besttreesequence(Q1, . . . , QK) {

// Initialization

for x = 1 : X, P = Q1 : QK

(C̄∗
P,x, s̄∗P,x)← bestsplit v2(P, x);

for x = 1 : X {
¯̄C∗
1:1,x ← C̄∗

Q1,x;

optimal previousstate1:1,x ← 0;

}
// Forward sweep

for i = 2 : K, x = 1 : X {
¯̄C∗
1:i,x ← min

x′ (¯̄c(Qi, x, Qi−1, x
′) + C̄∗

Qi,x + ¯̄C∗
1:i−1,x′);

optimal previousstate1:i,x ← arg min
x′ (¯̄c(Qi, x, Qi−1, x

′) + C̄∗
Qi,x + ¯̄C∗

1:i−1,x′);

}
//Backtracking

x∗ = arg min
x

¯̄C∗
1:K,x;

for i = K : −1 : 1 {
t∗i ← besttreev2(Qi, x

∗);

x∗ ← optimal previousstate1:i,x∗ ;

}
return t∗1, . . . , t

∗
K ;

}
Fig. 8. Pseudocode for the dynamic programming over blocks, Section IV-B.

Let ¯̄C∗
1:i,x be the optimal cost fori blocks, given thatxQi

= x. In other words,¯̄C∗
1:i,x is defined as the result of

minimizing COST-BLOCKS(t1, . . . , ti) subject toxQi
= x. Then we have the following recursion for̄̄C∗

1:i,x:

¯̄C∗
1:i,x =

C̄∗
Q1,x

for i = 1,

min
x′

(¯̄c(Qi, x, Qi−1, x
′) + C̄∗

Qi,x
+ ¯̄C∗

1:i−1,x′), for i = 2, . . . , K,

(11)

whereC̄∗
Qi,x

is computed through the recursion (9), using the pseudocode in Fig. 6. The overall optimal cost, which

we denote¯̄C∗
1:K , is found from:

¯̄C∗
1:K = min

x

¯̄C∗
1:K,x.

This recursive calculation is performed using the dynamic programming algorithm of Fig. 8, similar to those used

in [5], [43].

V. EXAMPLE 3: MULTITREE IMAGE CODING ALGORITHM.

We fuse our rectangular tiling algorithm with several aspects of the compression strategy in [40], to obtain an

image coder which finds the optimal tiling, and encodes every tile. The input is partitioned into blocksQ1, . . . , QK ,

in the raster order. Within each block, we find the optimal treet∗k and encode it as follows:

14

• one bit per node is used to indicate whether the node is an internal node or a leaf;

• for each node with a statex ∈ {1, . . . , X}, we usedlog2 Xe bits to encode the statex;

• dlog2 SPLITSP e bits are used to encode the split location for every internal nodeP , whereSPLITSP is the total

number of possible split locations for the nodeP .

To find the optimal tree, we optimize with respect to the rate-distortion cost [40]D+λR, whereR is the number

of bits it takes to encode the image,D is the total distortion, andλ is a parameter. We assume that the distortion

D is additive over the tiles and over the blocks. In our experiments, we use the sum of squared differences as our

distortion criterion. For each tile, we follow a JPEG-like procedure which finds the DCT coefficients, quantizes

them, and entropy-codes the AC coefficients and differential DC coefficients. The DC coefficients are differentially

coded in the following manner:

• the root DC coefficient for the first blockQ1 is encoded;

• the difference between the root DC coefficients for thek-th block and the(k − 1)-st block is encoded, for

k = 2, . . . , K;

• for every leaf nodeP of every treet∗k, the difference between the DC coefficient forP and the root DC

coefficient is encoded.

Following [40], we assume that one of several quantizers can be used for each tile, and optimize our choice of the

quantizer for each tile concurrently with the search for the optimal tiling. The statexP corresponds to the quantizer

used for the tileP . In addition, we allow the choice of the same set of quantizers to encode the root DC coefficient.

Because of the differential coding of the DC coefficients, the bit rate within each block can be shown to have the

form of Eq. (8), and the overall bit rate is additive over pairs of consecutive blocks and is therefore of the form (10).

This, combined with the additivity of the distortion, means that the overall costD + λR is of the form (10). This

means that, in order to optimize it, we can use the algorithm of Section IV-B and Fig. 8.

In order to minimize the distortion subject to a fixed rate, or to minimize the rate subject to a fixed distortion,

our optimization algorithm can be used within an iterative procedure similar to that of [40].

15

26 28 30 32 34 36 38 40 42 44
0

0.5

1

1.5

2

2.5

3

3.5

4

PSNR IN DB

R
A

T
E

 IN
 B

IT
S

/P
IX

E
L

JPEG CODER
QUADTREE CODER
MULTITREE CODER

25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

PSNR IN DB

R
A

T
E

 IN
 B

IT
S

/P
IX

E
L

JPEG CODER
QUADTREE CODER
MULTITREE CODER

28 30 32 34 36 38 40 42 44 46
0

0.5

1

1.5

2

2.5

3

PSNR IN DB

R
A

T
E

 IN
 B

IT
S

/P
IX

E
L

JPEG CODER
QUADTREE CODER
MULTITREE CODER

26 28 30 32 34 36 38 40 42 44 46
0

0.5

1

1.5

2

2.5

3

3.5

PSNR IN DB

R
A

T
E

 IN
 B

IT
S

/P
IX

E
L

JPEG CODER
QUADTREE CODER
MULTITREE CODER

Fig. 9. Rate-Distortion curves for “goldhill”(top left), “barbara” (top right), “lenna” (bottom left), and “cameraman” (bottom right).

A. Compression Experiments.

We compare our multitree-JPEG compression algorithm with standard JPEG and with the quadtree-based

algorithm of [40].3 We test the algorithms on four images: a512 × 512 image “barbara”, and three256 × 256

images “goldhill,” “lenna,” and “cameraman”. The corresponding sets of rate-distortion curves are shown in Fig. 9.

In each figure, the rate in bits per pixel is plotted against the peak signal-to-noise ratio (PSNR). For each quadtree

and multitree experiment, a target distortion was fixed, and the rate was minimized. Note that our multitree algorithm

3The rate-distortion curves we obtain for the JPEG and quadtree algorithms are different from those given in [40] since we use a somewhat

different implementation—for example, we use a different set of quantization matrices. However, the relative improvement of the quadtree

algorithm over JPEG that we observe is similar to what is reported in [40].

16

(solid) outperforms the standard JPEG (dash) by about 2-4 dB and the quadtree algorithm (dashdot) by about 1-2

dB at a fixed bit rate. Equivalently, the multitree algorithm represents compression savings of about 25-40% over

the standard JPEG and 10-20% over the quadtree algorithm, for a fixed PSNR.

In these experiments, we take the block size to be16×16 and we take the smallest cell size to be4×4—i.e., we

allow rectangular tiles with sides 4, 8, 12, and 16. This means that, for each16× 16 block, we search over 68480

distinct tilings—this is in contrast to the quadtree method which only allows 17 distinct tilings, and the standard

JPEG which only considers one tiling. While the number of possible tilings for our method is drastically larger,

the number of distinct subrectangles of each block—which is what determines the computational complexity of

our algorithm—is only 100, compared to 21 for the quadtree method and 4 for the standard JPEG. Thus, we are

able to search over a much larger set with only a modest increase in the computational burden. It can be shown

that the increase in the allowed number of tilings is exponential as compared to the quadtree algorithm whereas

the increase in the computational burden is only polynomial.

The results for the “barbara” image at PSNR = 36.4 dB are given in Fig. 10: the JPEG, quadtree, and multitree

compression algorithms achieve 1.31, 1.00, and 0.83 bits per pixel, respectively. Note that the images look basically

the same; however, the multitree algorithm gives compression savings of 37% over JPEG and 17% over the quadtree

algorithm.

Fig. 11 illustrates the results for the same image at the bit rate 0.49 bits per pixel. (In this experiment, the bit

rate was fixed at 0.49, and the distortions for the quadtree and multitree methods were minimized.) At this bit

rate, the JPEG, quadtree, and multitree algorithms achieve PSNR’s for the overall image of 28.3 dB, 30.5 dB, and

31.9 dB, respectively. A patch from the image and its three compressed versions is shown in Fig. 11. In addition

to a higher signal-to-noise ratio, it is clear from the figure that the multitree algorithm results in both less blocky

renditions of homogeneous areas of the image, sharper edges, and less ringing and blockiness in the textured areas

and around the edges.

In these experiments, our implementation of JPEG is a baseline implementation which uses Huffman coding

of the coefficients. To make the comparisons fair, we use similar Huffman coding strategies for the quadtree and

multitree algorithms.

17

(a) Original image (b) JPEG, 1.31 bpp

(c) Quadtree compression, 1.00 bpp (d) Multitree compression, 0.83 bpp

Fig. 10. Results for the “barbara” image at PSNR = 36.4 dB: (a) original image, (b) JPEG (rate = 1.31 bits per pixel), (c) quadtree

compression (rate = 1.00 bits per pixel), and (d) multitree compression (rate = 0.83 bits per pixel).

Further experiments show that, if we replace Huffman coding with arithmetic coding, then our multitree coder

becomes competitive when compared to the state-of-the-art embedded wavelet coders such as JPEG2000 [45] and

SPIHT [42] which both employ arithmetic coding. Fig. 12 shows the rate-distortion curves for JPEG2000, SPIHT,

and our multitree coder with arithmetic coding. The right column of the figure displays the bit rates as percentages

of the multitree bit rate. For “goldhill” (top row) and “cameraman” (bottom row), our algorithm clearly outperforms

both JPEG2000 and SPIHT. It also does better than SPIHT for “barbara” (second row) and better than JPEG2000

18

(a) A patch of “barbara” (b) JPEG

(c) Quadtree (d) Multitree

Fig. 11. Results for the “barbara” image at the bit rate of 0.49 bits per pixel: (a) a patch of the original image, (b) JPEG (PSNR for the

overall image = 28.3 dB), (c) quadtree compression (PSNR = 30.5 dB), and (d) multitree compression (PSNR = 31.9 dB).

for “lenna” (third row).

VI. M ULTITREE DICTIONARIES.

We now generalize our algorithms of Sections II, III, and IV-A and show that they are all instances of one

general algorithm which is applicable to a wide variety of scenarios.

Tree models such as those of Sections II, III, and IV-A are conveniently described using the formalism of

grammars. We define agrammarG = (A, S) to be a pair of the following sets:

19

26 28 30 32 34 36 38 40 42 44
0

0.5

1

1.5

2

2.5

3

PSNR IN DB

R
A

T
E

 IN
 B

IT
S

/P
IX

E
L

MULTITREE (ARITHMETIC)
SPIHT
JPEG2000

26 28 30 32 34 36 38 40 42 44

100

102

104

106

108

110

112

114

R
A

T
E

 A
S

 A
 P

E
R

C
E

N
T

A
G

E
 O

F
 T

H
E

 M
U

LT
IT

R
E

E
 R

A
T

E

PSNR IN DB

MULTITREE (ARITHMETIC)=100%
SPIHT
JPEG2000

25 30 35 40 45
0

0.5

1

1.5

2

2.5

PSNR IN DB

R
A

T
E

 IN
 B

IT
S

/P
IX

E
L

MULTITREE (ARITHMETIC)
SPIHT
JPEG2000

25 30 35 40 45

94

96

98

100

102

104

106

108

110

112

114

R
A

T
E

 A
S

 A
 P

E
R

C
E

N
T

A
G

E
 O

F
 T

H
E

 M
U

LT
IT

R
E

E
 R

A
T

E

PSNR IN DB

MULTITREE (ARITHMETIC)=100%
SPIHT
JPEG2000

28 30 32 34 36 38 40 42 44 46 48
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

PSNR IN DB

R
A

T
E

 IN
 B

IT
S

/P
IX

E
L

MULTITREE (ARITHMETIC)
SPIHT
JPEG2000

28 30 32 34 36 38 40 42 44 46

96

98

100

102

104

106

108

R
A

T
E

 A
S

 A
 P

E
R

C
E

N
T

A
G

E
 O

F
 T

H
E

 M
U

LT
IT

R
E

E
 R

A
T

E

PSNR IN DB

MULTITREE (ARITHMETIC)=100%
SPIHT
JPEG2000

26 28 30 32 34 36 38 40 42 44 46
0

0.5

1

1.5

2

2.5

PSNR IN DB

R
A

T
E

 IN
 B

IT
S

/P
IX

E
L

MULTITREE (ARITHMETIC)
SPIHT
JPEG2000

26 28 30 32 34 36 38 40 42 44 46

100

105

110

115

120

125

130

R
A

T
E

 A
S

 A
 P

E
R

C
E

N
T

A
G

E
 O

F
 T

H
E

 M
U

LT
IT

R
E

E
 R

A
T

E

PSNR IN DB

MULTITREE (ARITHMETIC)=100%
SPIHT
JPEG2000

Fig. 12. Rate-Distortion curves for “goldhill”(top row), “barbara” (second row), “lenna” (third row), and “cameraman” (bottom row). The

right column shows bit rates as percentages of the bit rate for the multitree algorithm with arithmetic coding of the coefficients.

20

• a setA of symbols,4 and

• a setS of allowed splits, also calledproductions, of the forma→ α wherea ∈ A, andα is a finite sequence

of elements ofA.

For example, in Section IV-A, the symbols are pairs(P, x) whereP is a rectangular region andx ∈ {1, . . . , X},

and the productions are all of the form(P, x) → (P ′, x′) (P ′′, x′′) whereP ′ and P ′′ are two rectangles which

partition P .

By starting with a single element ofA, we can generate various sequences of elements ofA via recursive

splitting—i.e., recursive application of productions. This process can be visualized as a tree where each production

a → α is depicted as a node labeleda whose children are labeled with the elements ofα, left to right. We let

T (G) be the set of all trees that can be produced5 by the grammarG.

Note that in the previous sections, the splitting process was binary and led to binary trees. Here, we allow splits

into an arbitrary finite number of symbols.

We let a multitree dictionaryTa(G) be the set of all trees inT (G) whose root is labeleda. We say that a

grammarG = (A, S) is finite-depthif, for every a ∈ A, Ta(G) is a finite set. This can be insured by only allowing

a finite set of symbols to be descendants ofa, and not allowinga to be its own descendant.

Suppose that each symbolu ∈ A is assigned a costc(u), and that each productionu → α ∈ S is assigned a

cost c̄(u→ α). Suppose further that the costCOST(t) of any treet ∈ Ta(G) is the sum of the individual costs of

all the productions comprisingt, plus the sum of the costs of all its leaves:

COST(t) =
∑

u→α∈t

c̄(u→ α) +
∑

u∈yield(t)

c(u). (12)

We would like to find the best tree in the dictionaryTa(G) i.e., the treet∗a whose cost is the smallest:

t∗a = arg min
t∈Ta(G)

COST(t).

4This is somewhat different from standard treatments of grammars [29] which distinguish between thestart symbolwhich can only appear

at the root, thenonterminal symbolswhich can only appear at the nonroot internal nodes, andterminal symbolswhich can only appear at

the leaves. We, on the other hand, assume that any symbol inA can appear at the root or any internal nodes or leaf nodes.
5We assume that each branch of our recursive tree generation process can stop after any number of recursions. This is different from

standard treatments of grammars [29] where the stopping is handled via distinguishing between nonterminal symbols which must have

children, and terminal symbols which never have children.

21

We denote the corresponding cost byC∗
a , i.e., C∗

a = C(t∗a). We let Sa be the set of all allowed splits of a fixed

symbola. To illustrate our fast recursive algorithm for best tree search, we first suppose thatSa = {a → b1 b2}.

Then there is a single tree inTa(G) which consists of one node labeleda with COST([a]) = c(a). For any other

treet ∈ Ta(G), its left subtreetleft is in Tb1(G), and its right subtreetright is in Tb2(G). Therefore, since the cost

is additive,

COST(t) = c̄(a→ b1 b2) + COST(tleft) + COST(tright).

Consequently, the optimal tree is:

t∗a =

t∗b1
t∗b2

a

 if c̄(a→ b1 b2) + C∗

b1
+ C∗

b2
< c(a)

[a] otherwise.

In other words, we find the best treest∗b1
andt∗b2

in the dictionariesTb1(G) andTb2(G), respectively, and compare

their total cost plus the cost of the root productiona→ b1 b2, with the cost of the tree[a].

We have a similar recursion in the general case. We letR(a) be the set of the right-hand sides of all the elements

of Sa. Then the possible candidates fort∗a are
 t∗b1

. . . t∗b|α|

a

with cost c̄(a→ α) +
|α|∑
i=1

C∗
bi

, for any α = (b1 b2 . . . b|α|) ∈ R(a), and

[a], with cost c(a).

To find the globally optimalt∗a, we recursively search over these possibilities. The recursion terminates when

Sa = ∅: in this case,t∗a = [a]. The termination is guaranteed to happen in a finite number of steps for a finite-depth

grammar. To avoid repetitive calculation, we store the optimal costs and corresponding productions in a global data

structure called TABLE, as illustrated in the pseudocode of Fig. 13(a). Once this recursive call is done, the best

tree can be generated from TABLE using the pseudocode in Fig. 13(b).

The most significant computational burden is in computing and storing the best costs and productions. To analyze

this procedure, we letA(a) be the union of{a} and the set of all symbols which can be descendants ofa. We let

SA(a) be the set of all allowed splits of elements ofA(a). For each symbolb ∈ A(a), there is exactly one recursive

call to the subroutine bestsplit of Fig. 13(a). During this call, the costs of all possible splits ofb are compared.

22

(C∗
a , s∗a)← bestsplit(a) {

if C∗
a has been computed

get C∗
a ands∗a from the global data structure TABLE;

else{

s∗a ← ∅; //Initialize s∗a

C∗
a ← c(a); //Initialize C∗

a

for α ∈ R(a) {

for b ∈ α

(C∗
b , s∗b)← bestsplit(b);

if c̄(a→ α) +
X
b∈α

C∗
b < C∗

a {

s∗a ← α;

C∗
a ← c̄(a→ α) +

X
b∈α

C∗
b ;

}

}

recordC∗
a ands∗a in the global data structure TABLE;

}

returnC∗
a ands∗a;

}

t∗a ← besttree(a) {

get s∗a from the global data structure TABLE;

if s∗a is the empty set

t∗a ← [a];

else{

i← 0;

for b ∈ s∗a {

i← i + 1;

bi ← b;

t∗bi
← besttree(bi);

}

t∗a ←

2
6666664 t∗b1 . . . t∗bi

a

3
7777775

;

}

return t∗a;

}

(a) Recursive caclulation of best splits and costs. (b) Recursive generation of best tree.

Fig. 13. Pseudocode for the recursive calculation of the best splits and best costs, and for the recursive generation of the globally optimal

tree.

The number of such comparisons is|Sb|. Therefore, the overall time complexity of the algorithm isO(|SA(a)|). In

applications where only the yield of a tree is of interest, such as our rectangular tiling example of Section II, there

is some redundancy associated with searching over multiple trees which have the same yield. In some instances,

such as in [17], [18], this redundancy is very significant and may be eliminated, leading to a lower time complexity.

The overall space complexity isO(|A(a)|) since we need to store two numbers—the best cost and the best

split—for each symbol inA(a). The key to controlling the time and space complexity is therefore keeping the sizes

of the setsSA(a) andA(a) low. In addition, as we have remarked before, the computation of the costsc̄(a → α)

and c(a) could actually dominate the time complexity of the overall algorithm, and therefore another important

guideline to a successful application of our algorithm is to use tractable cost functions.

23

We note that the dynamic programming algorithm of Section IV-B is easily generalized to the problem of finding

the optimal tree in each of a sequence of multitree dictionaries, provided that the overall cost has additive structure,

as in Eq. (10).

VII. R ELATIONSHIPS WITH PRIOR WORK.

It can be easily shown that standard wavelet packet and dyadic local cosine dictionaries [8], [9], as well as

anisotropic 2-D wavelet packet dictionaries [2], [12], are all multitree dictionaries. It is also easy to see that a

specialization of our algorithm of Fig. 13 to the wavelet packets and dyadic local cosines is essentially a restatement

of the best basis algorithm of [8], [9], its specialization to anisotropic wavelet and cosine packets is a restatement

as the anisotropic best basis algorithm of [2], [12], and its specialization to dyadic tiling is a restatement of the

dyadic CART algorithm of [12].

Our algorithm can also be used for a variety of other dictionaries, such as, for example, any dictionary of

block or lapped bases in two or more dimensions. It is interesting to point out that arbitrary block and lapped

dictionaries in 1-D can be efficiently searched without exploiting their tree structure, but rather using standard

dynamic programming techniques, as was shown in [17], [18].

It was pointed out in [12] that there is a close relationship between the best basis algorithm of [8], [9] and

pruning methods used in the design of classification and regression trees [4]. These methods have also been used for

vector quantization and other applications [6]. These and other methods such as, for example, [3], [14], [22], [23],

[37], [38], [44], [47], [49]–[51], seek to optimally tile a multidimensional domain with dyadic hyperrectangles. Our

multitree algorithm can be applied to these problems, allowing one to lift the requirement that the split locations

be dyadic, and to optimally tile a domain with arbitrary hyperrectangles.

We now point out a close relationship between our algorithm and procedures for estimating the maximum a

posteriori probability parse of a string [1], [21], [29] or an image [34]–[36], [39]. In these problems,−c̄(u → α)

of Eq. (12) stands for the log-probability of the productionu→ α, and the probability of a treet is defined as the

product of the probabilities of all the productions int. The objective of these estimation tasks is to find the most

probable tree, i.e., to minimize with respect tot the negative-log-probability of the treet,
∑

u→α∈t

c̄(u→ α). But

24

this is exactly what our algorithm of Figs. 13 does. Thus, the estimation algorithms of [1], [21], [29], [34]–[36],

[39] represent special cases of our search algorithm for the best tree in a multitree dictionary.

VIII. C ONCLUSIONS.

We presented a general framework of multitree dictionaries and provided a recursive algorithm for finding the

best representation in a multitree dictionary. We illustrated our framework and algorithm within the contexts of

optimal rectangular and wedgelet tilings and image compression, and designed a new block image coder. The key

property that enables our algorithm to be fast for any additive or multiplicative cost is the fact that, while the

number of possible trees can be enormous, the number of possible symbols at tree nodes is typically manageable.

By storing the optimal cost and the optimal set of children for each symbol in a global data structure, the algorithm

only needs to make one recursive call per symbol.

In the future we plan to further explore the flexibility of our framework and design various other multitree

dictionaries which allow a fast selection of the best representation in applications such as time-frequency analysis,

approximation, embedded image compression, video compression, vector quantization, and classification.

REFERENCES

[1] J. Baker. Trainable grammars for speech recognition. InSpeech Communications Papers for the 97th Meeting of the Acoustical Society

of America, D. Klatt and J. Wolf, Eds., pp. 557-550, 1979.

[2] N.N. Bennett. Fast algorithm for best anisotropic Walsh bases and relatives.J. of Appl. and Comput. Harmonic Analysis, 8:86-103,

2000.

[3] G. Blanchard, C. Scḧafer, and Y. Rozenholc. Oracle bounds and exact algorithm for dyadic classification trees. InProc. 17th. Conf. on

Learning Theory. Springer Lecture Notes in Artificial Intelligence vol. 3120, pp. 378-392, 2004.

[4] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone.Classification and Regression Trees.Chapman & Hall, New York, 1984.

[5] H. Cheng and C.A. Bouman. Document compression using rate-distortion optimized segmentation.Journal of Electronic Imaging,

10(2):460-474, April 2001.

[6] P.A. Chou, T. Lookabaugh, and R.M. Gray. Optimal pruning with applications to tree-structured source coding and modeling.IEEE

Trans. Inf. Th., 35(2):299-315, March 1989.

[7] R.R. Coifman and Y. Meyer. Remarques sur l’analyse de Fourier a fenêtre. C.R. Acad. Sci., pp. 259-261, 1991.

[8] R.R. Coifman, Y. Meyer, and M.V. Wickerhauser. Wavelet analysis and signal processing. InWavelets and Their Applications, M.B. Ruskai

et al., Eds., pp. 153-178. Jones and Bartlett, Boston, 1992.

25

[9] R.R. Coifman and M.V. Wickerhauser. Entropy based algorithms for best basis selection.IEEE Trans. Inf. Th., 38(2):713-718, March

1992.

[10] I. Cohen, S. Raz, and D. Malah. Orthonormal shift-invariant adaptive local trigonometric decomposition.Sig. Proc., 57(1):43-64,

Feb. 1997.

[11] D.L. Donoho and I.M. Johnstone. Ideal denoising in an orthonormal basis chosen from a library of bases.Comptes Rendus Acad. Sci.,

Ser. I 319:1317-1322, 1994.

[12] D.L. Donoho. CART and best-ortho-basis: A connection.Ann. Stat., 25:1870-1911, 1997.

[13] D.L. Donoho. Wedgelets: Nearly minimax estimation of edges.Ann. Statist., 27:859-897, 1999.

[14] R. M. Figueras i Ventura, L. Granai, and P. Vendergheynst. R-D analysis of adaptive edge representations. InProc. IEEE Workshop

MMSP, pp. 130-133, Dec. 2002.

[15] C. Herley, J. Kovăcevíc, K. Ramchandran, and M. Vetterli. Tilings of the time-frequency plane: construction of arbitrary orthogonal

bases and fast tiling algorithms.IEEE Trans. Sig. Proc., 41(12):3341-3359, Dec. 1993.

[16] C. Herley, Z. Xiong, K. Ramchandran, and M.T. Orchard. Joint space-frequency segmentation using balanced wavelet packet tree for

least-cost image representation.IEEE Trans. Im. Proc., 6(9):1213-1230, Sep. 1997.

[17] Y. Huang, I. Pollak, C.A. Bouman, and M.N. Do. New algorithms for best local cosine basis search. InProceedingsof ICASSP, May

17-21, 2004, Montreal, Quebec.www.ece.purdue.edu/˜ipollak/icassp04.pdf

[18] Y. Huang, I. Pollak, C.A. Bouman, and M.N. Do. Best basis search in lapped dictionaries. Submitted toIEEE Trans. Sig. Proc..

[19] H. Krim and J.-C. Pesquet. On the statistics of best bases criteria. InWavelets and Statistics, Lecture Notes in Statistics, A. Antoniadis,

Ed., pp. 193-207. Springer-Verlag, 1995.

[20] H. Krim, D. Tucker, S. Mallat, D. Donoho. On denoising and best signal representation.IEEE Trans. Inf. Th., 45(7):2225-2238,

Nov. 1999.

[21] K. Lari and S. Young. The estimation of stochastic context-free grammars using the inside-outside algorithm.Computer Speech and

Language, 4:35-56, 1990.

[22] E. Le Pennec, S.G. Mallat. Sparse geometric image representations with bandelets. Preprint, 2003,

www.cmap.polytechnique.fr/˜mallat/biblio.html

[23] R. Leonardi and M. Kunt. Adaptive split-and-merge for image analysis and coding. InProc. SPIE, vol. 594, pp. 2-9, 1985.

[24] M. Lindberg. Two-Dimensional Adaptive Haar-Walsh Tilings.Licentiat Thesis in Applied Mathematics,Åbo Akademi University,Åbo,

Finland, October 1999.

[25] M. Lindberg and L.F. Villemoes. Image compression with adaptive Haar-Walsh tilings. InWavelet Applications in Signal and Image

Processing VIII, Proc. SPIE 4119, 2000.

[26] S.G. Mallat. A Wavelet Tour of Signal Processing,Second Edition. Academic Press, 1999.

[27] H. Malvar. Lapped transforms for efficient transform subband coding.IEEE Trans. ASSP, 38(6):969-978, June 1990.

[28] H. Malvar. Signal Processing with Lapped Transforms.Artech House, 1992.

26

[29] C. Manning and H. Scḧutze. Foundations of Statistical Natural Language Processing.MIT Press, 1999.

[30] P. Moulin. Signal estimation using adapted tree-structured bases and the MDL principle. InProc. IEEE-SP Int. Symp. TFTS, pp. 141-143,

Paris, June 1996.

[31] U. Ndili. A Coding Theoretic Approach to Image Segmentation.Master’s Thesis, Rice University, Houston, Texas, April 2001.

[32] U. Ndili, R.D. Nowak, and M.A.T. Figueiredo. Coding theoretic approach to image segmentation. InProc. ICIP-2001.

[33] J.-C. Pesquet, H. Krim, D. Leporini, and E. Hamman. Bayesian approach to best basis selection. InProc. ICASSP-96pp. 2634-2638,

Atlanta, USA, May 1996.

[34] I. Pollak, J. M. Siskind, M. Harper, and C. A. Bouman, Modeling and estimation of spatial random trees with application to image

classification. InProc. ICASSP, Hong Kong, 2003.www.ece.purdue.edu/˜ipollak/icassp03.pdf

[35] I. Pollak, J. M. Siskind, M. Harper, and C. A. Bouman, Parameter estimation for spatial random trees using the EM algorithm. In

Proc. ICIP, Barcelona, 2003.www.ece.purdue.edu/˜ipollak/icip03.pdf

[36] I. Pollak, J. M. Siskind, M. Harper, and C. A. Bouman. Spatial random trees and the center-surround algorithm. Technical Report

TR-ECE-03-03, Purdue University, School of ECE, January 2003.www.ece.purdue.edu/˜ipollak/it03.pdf

[37] C. Scott and R.D. Nowak. Minimax-optimal classification with dyadic decision trees. Preprint, 2004,

www.stat.rice.edu/˜cscott/pubs.html

[38] R. Shukla, P. L. Dragotti, M.N. Do, and M. Vetterli. Rate-distortion optimized tree structured compression algorithms for piecewise

smooth images.IEEE Trans. Im. Proc., to appear.

[39] J.M. Siskind, J. Sherman, I. Pollak, M.P. Harper, and C.A. Bouman. Spatial random tree grammars for modeling hierarchal structure

in images. Preprint, May 2004.www.ece.purdue.edu/˜ipollak/draft2004 5 25.pdf

[40] K. Ramchandran and M. Vetterli. Best wavelet packet bases in a rate-distortion sense.IEEE Trans. Im. Proc., 2(2):160-175, Apr. 1993.

[41] J.H. Rothweiler. Polyphase quadrature filters—a new subband coding technique. InProc. ICASSP-83, pp. 1280-1283, Boston, MA,

March 1983.

[42] A. Said and W.A. Pearlman. A new, fast, and efficient image codec based on set partitioning in hierarchical trees.IEEE

Trans. Circ. Syst. Vid. Tech., 6(3):243-250.

[43] G.M. Schuster and A.K. Katsaggelos. A video compression scheme with optimal bit allocation between displacement vector field and

displaced frame difference. InProc. ICASSP-96, pp. 1967-1970, Atlanta, GA, May 1996.

[44] G. J. Sullivan and R. L. Baker. Efficient quadtree coding of images and video.IEEE Trans. Im. Proc., 3(3):327-331, May 1994.

[45] D. Taubman. High performance scalable image compression with EBCOT.IEEE Trans. Im. Proc., 9(7):1158-1170, July 2000.

[46] C.M. Thiele and L.F. Villemoes. A fast algorithm for adapted time-frequency tilings.J. of Appl. and Comput. Harmonic Analysis,

3:91-99, 1996.

[47] J. Vaisey and A. Gersho. Image compression with variable block size segmentation.IEEE Trans. Sig. Proc., 40(8):2040-2060, Aug. 1992.

[48] L.F. Villemoes. Adapted bases of time-frequency local cosines. Preprint, June 1999,

www.math.kth.se/old-home-pages/larsv/publ.html

27

[49] M.B. Wakin, J.K. Romberg, H. Choi, and R.G. Baraniuk. Rate-distortion optimized image compression using wedgelets. InProceedings

of ICIP-2002, Rochester, New York, September 2002.

[50] M. Wien. Variable block-size transforms for H.264/AVC.IEEE Trans. Ckts. Syst. Vid. Tech., 13(7):604-613.

[51] R.M. Willett and R.D. Nowak. Platelets: a multiscale approach for recovering edges and surfaces in photon-limited medical imaging.

IEEE Trans. Medical Imaging, 22(3):332 -350, March 2003.

[52] Z. Xiong, K. Ramchandran, C. Herley, and M.T. Orchard. Flexible tree-structured signal expansions using time-varying wavelet packets.

IEEE Trans. Sig. Proc., 45(2):333-345, Feb. 1997.

[53] D. Xu and M.N. Do. Anisotropic 2-D wavelet packets and rectangular tiling: theory and algorithms. InProc. SPIE Conf. on Wavelet

Appl. in Sig. and Im. Proc. X, San Diego, Aug. 2003.

	Purdue University
	Purdue e-Pubs
	12-1-2004

	Fast Search for Best Representations in Multitree Dictionaries
	Yan Huang
	Ilya Pollak
	Minh N. Do
	Charles A. Bouman

