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Abstract
There has been growing interest in mapping image data

onto compact binary codes for fast near neighbor search in
vision applications. Although binary codes are motivated
by their use as direct indices (addresses) into a hash ta-
ble, codes longer than 32 bits are not being used in this
way, as it was thought to be ineffective. We introduce a
rigorous way to build multiple hash tables on binary code
substrings that enables exact K-nearest neighbor search in
Hamming space. The algorithm is straightforward to im-
plement, storage efficient, and it has sub-linear run-time
behavior for uniformly distributed codes. Empirical results
show dramatic speed-ups over a linear scan baseline and
for datasets with up to one billion items, 64- or 128-bit
codes, and search radii up to 25 bits.

1. Introduction
There has been growing interest in mapping image data

onto compact binary codes for fast near neighbor search in
vision applications (e.g., [20, 21, 23]). Binary codes are
storage efficient and comparisons require just a small num-
ber of machine instructions; millions of binary codes can be
compared to a query in less than a second. But the most
compelling reason for binary codes is their use as direct
indices (addresses) into a hash table, yielding a dramatic
increase in search speed compared to an exhaustive linear
scan (e.g., [24, 19, 16]).

The problem is that, in practice, using binary codes as
hash indices is not necessarily efficient. To find near neigh-
bors one needs to examine all hash table entries (or buck-
ets) within some Hamming ball around the query. And the
number of such buckets grows near-exponentially with the
search radius (Fig. 2a). Even with a small search radius, the
number of buckets to examine may be larger than the num-
ber of items in the database, hence slower than linear scan.
Recent papers on binary codes mention the use of hash ta-
bles, but resort to linear scan when codes are longer than 32
bits (e.g., [23, 19, 12, 16]), although longer codes are often
necessary to preserve sufficient similarity (e.g., see Fig. 5).
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Figure 1. Nearest-neighbor search on a database of 64-bit binary
codes learned from SIFT descriptors. Run-times per query are
shown for the proposed multi-index hashing algorithm, searching
for 10, 100, and 1000 nearest neighbors. They are compared to
a linear scan baseline. Left and right plots show different vertical
scales; i.e., the vertical axis of the right plot is 100 times smaller
than the left, showing query times between 0 and 0.2s.

This paper presents a new algorithm for exact K-nearest
neighbor search on binary codes that is dramatically faster
than linear scan. This has been an open problem since
the introduction of hashing techniques with binary codes.
Our new multi-index hashing algorithm exhibits sub-linear
search times, is storage efficient, and straightforward to im-
plement. As an example, Fig. 1 plots CPU run-times per
query as a function of the size of a database comprising
64-bit codes learned from SIFT descriptors with Minimal
Loss Hashing [16]. Our current implementation searches a
dataset of a billion codes hundreds of times faster than lin-
ear scan, on a single computer.

1.1. Background: Problem and Related Work

Nearest neighbor (NN) search on binary codes has been
used for image search [18, 23, 24], matching local fea-
tures [9, 21], and parameter estimation [20]. Such tech-
niques begin with a similarity-preserving mapping from
high-dimensional data to binary codes. For many prob-
lems one wants to preserve Euclidean distance (e.g., [5,
12, 18, 21, 24]), while others focus on semantic similarity
(e.g., [16, 20, 19, 23]). Our algorithm does not depend on
the specific method for generating the binary codes. Rather,
we are primarily concerned with fast search in Hamming
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Figure 2. (a) Curves show the (log10) number of distinct hash
table indices (buckets) within a Hamming ball of radius r, for dif-
ferent code lengths. With 64-bit codes there are about 1B buckets
within a Hamming ball of radius 7 bits. Hence with fewer than
1B database items, and a search radius of 7 or more, a hash table
would be less efficient than linear scan. Using hash tables with
128-bit codes is prohibitive for radii larger than 6. (b) This plot
shows the expected search radius required for K-NN search as a
function of K, based on a dataset of 1B SIFT descriptors. Binary
codes with 64 and 128 bits were obtained by random projections
(LSH) from the SIFT descriptors [11]. Standard deviation bars
help show the large search radii required in many cases.

space. While there exist several other promising approaches
to fast approximate NN search on large real-valued image
features (e.g., [1, 10, 15]), we restrict our attention in this
paper to the use of compact binary codes.

In particular, we address two related search problems.
Given a dataset of binary codes, D, the first is to find the
K codes in D that are closest in Hamming distance to a
given query, i.e., K-NN search in Hamming space. The 1-
NN problem in Hamming space was called the Best Match
problem by Minsky and Papert [14]. They observed that
there are no obvious approaches significantly better than ex-
haustive search.

The second problem is to find all codes in a dataset D
that are within a fixed Hamming distance of a query, some-
times called the Approximate Query problem [6], or Point
Location in Equal Balls (PLEB) [8]. A binary code is an
r-neighbor of a query code q if it differs from q in r bits or
less. One way to find all r-neighbors of q is to use a hash
table populated with the binary codes, and examine all hash
buckets whose indices are within r bits of q (e.g., [23]). For
binary codes of b bits, the number of distinct hash buckets
to examine is

L(b, r) =

r∑
k=0

(
b

k

)
.

As shown in Fig. 2a, L(b, r) grows rapidly with r. Thus,
this approach is only practical for small radii or short code
lengths. Some vision applications restrict search to exact
matches (i.e., r = 0) or a small search radius (e.g., [7]), but
in most cases of interest the desired search radius is larger
than is currently feasible (e.g., see Fig. 2b).

Our work is inspired in part by the multi-index hashing
results of Greene, Parnas, and Yao [6]. Building on the clas-

sical Turan problem for hypergraphs, they show that with a
suitable choice of a set of over-lapping binary substrings,
any two codes that differ by at most r bits are guaranteed to
be identical in at least one of the substrings. Accordingly,
they propose an exact method for finding all r-neighbors of
a query using multiple hash tables, one for each substring.
At query time, candidate r-neighbors are found by using
query substrings as indices into their corresponding hash
tables. As explained below, the main drawback of their
approach is the prohibitive storage required for the requi-
site number of hash tables. By comparison, the method we
propose requires much less storage, and is only marginally
slower in search performance.

While we focus on exact search, there also exist algo-
rithms for finding approximate r-neighbors of queries (ε-
PLEB), or approximate nearest neighbors (ε-NN) in Ham-
ming space. One example is Locality Sensitive Hashing
(LSH) for binary codes [8, 2]. LSH also uses multiple sub-
strings as hash indices to formulate a bound on the probabil-
ity of missing a (1+ε)r-neighbor. Such approximate meth-
ods are interesting, and indeed, our approach below could
be made faster by allowing misses. Nevertheless, this paper
is concerned primarily with the exact search problem.

This paper proposes a data-structure that applies to both
K-NN and to finding r-neighbors in Hamming space. We
prove that for uniformly distributed binary codes of b bits,
and a search radius of r bits when r/b is small, our query
time is sub-linear in the size of dataset. We also apply the
algorithm to real-world datasets, with performance far su-
perior to linear scan. To our knowledge this is the first prac-
tical data-structure solving exactK-NN in Hamming space.

2. Multi-Index Hashing
Our approach is a form of multi-index hashing. Binary

codes from the database are indexed m times into m dif-
ferent hash tables, based on m disjoint binary substrings.
Given a query code, entries that fall close to the query in
at least one such substring are considered neighbor candi-
dates. Candidates are then checked for validity using the
entire binary code, to remove any non-r-neighbors. To be
practical for large-scale datasets, the substrings must be
chosen so that the set of candidates is small, and storage
requirements are reasonable. We also require that all true
neighbors will be found.

In more detail, each binary code h, comprising b bits, is
partitioned into m disjoint substrings, h(1), . . . ,h(m), each
of length bb/mc or db/me bits. For convenience in what
follows, we assume that b is divisible by m, and that the
substrings comprise contiguous bits. The key idea rests on
the following proposition: When two binary codes h and
g differ by r bits or less, then, in at least one of their m
substrings they must differ by at most br/mc bits. Formally,
when ‖h− g‖H ≤ r, where ‖.‖H denotes Hamming norm,



then there exists a substring k, 1≤ k ≤m, such that

‖h(k) − g(k)‖H ≤
⌊ r
m

⌋
. (1)

Proof of (1) follows straightforwardly from the Pigeonhole
Principle. That is, if Hamming distance between each of the
m substrings is strictly greater than br/mc, then ‖h− g‖H
must be larger than r, which is a contradiction.

The significance of (1) arises from the fact that the sub-
strings have only b/m bits, and that the required search ra-
dius in each substring reduces to br/mc. For example, if
h and g differ by 3 bits or less, and m = 4, at least one
of the 4 substrings must be identical. If they differ by at
most 7 bits, then in at least one substring they differ by no
more than 1 bit; i.e., we can search a Hamming radius of 7
bits by searching a radius of 1 bit on each of 4 substrings.
More generally, instead of examining L(b, r) hash buckets,
it suffices to examine L(b/m, br/mc) buckets in each of m
substring hash tables.

Given a dataset, one hash table is built for each of the
m substrings of the codes. For a query q with substrings
{q(i)}mi=1, we search the ith substring hash table for entries
that are within a Hamming distance br/mc of q(i), thereby
retrieving a set of candidates, denoted Ni(q). According
to the above proposition, the union of the m sets, N (q) =⋃
iNi(q), is necessarily a superset of the r-neighbors of

q. The last step of the algorithm computes the Hamming
distance between q and each candidate in N (q), retaining
only those codes that are true r-neighbors of q.

The key idea here stems from the fact that, with n bi-
nary codes of b bits, the vast majority of the 2b possible
buckets in a full hash table will be empty, since 2b � n.
It seems expensive to examine all L(b, r) buckets within r
bits of a query, since most of them contain no items. In-
stead, we merge many buckets together (most of which are
empty) by marginalizing over different dimensions of the
Hamming space. The downside is that these larger buckets
are not restricted to the Hamming volume of interest around
the query. Hence not all items in the merged buckets are r-
neighbors of the query, so we need to cull any candidate that
is not a true r-neighbor.

The search cost depends on the number of lookups
(i.e., the number of buckets examined), and the number of
candidates tested. Not surprisingly there is a natural trade-
off between them. With a large number of lookups one can
minimize the number of extraneous candidates. By merging
many buckets to reduce the number of lookups, one obtains
a large number of candidates to test. In the extreme case
with m = b, substrings are 1 bit long, so we can expect the
candidate set to include the entire database.

Note that the idea of building multiple hash tables is not
novel in itself (e.g., see [6, 8]). However previous work re-
lied heavily on exact matches in substrings, which we relax
in this paper. This leads to a much more practical method.

3. Performance Analysis
Next, we develop an analytical model of search perfor-

mance to answer two questions: (1) How does search cost
depend on substring length and hence the number of sub-
strings? (2) How do run-time and storage complexity de-
pend on database size, code length, and search radius? To
help answer these questions we exploit a well-known bound
on the sum of binomial coefficients; i.e., for any 0 < ε ≤ 1

2
and 1 ≤ η ,

bε ηc∑
κ=0

(
η

κ

)
≤ 2H(ε) η , (2)

where H(ε) ≡ −ε log2 ε− (1−ε) log2(1−ε) is the entropy
of a Bernoulli distribution with probability ε [4].

As above, let n denote the number of b-bit codes in the
database, and let r be the Hamming search radius. Let m
denote the number of hash tables (one for each substring),
and let the substring length be s = b/m. Hence, the sub-
string search radius becomes br/mc = bs r/bc.

The number of lookups in our multi-index hashing algo-
rithm is the product of m, the number of substrings, and the
number of hash table buckets within a radius of bs r/bc on
substrings of length s bits. Accordingly, using (2), if the
search radius is less than half the code length, r ≤ b/2 ,
then the total number of lookups is given by

lookups(s) = m

bs r/bc∑
k=0

(
s

k

)
≤ b

s
2H(r/b)s . (3)

Clearly, as we decrease the substring length s, thereby in-
creasing the number of substrings m, exponentially fewer
lookups are needed.

To analyze the expected number of candidates per
bucket, we consider the case in which the n binary codes
are uniformly distributed over the Hamming space. In this
case, for a substring of s bits, the substring hash table has 2s

buckets, and hence the expected number of items per bucket
in a substring hash table is n/2s. The size of the candidate
set therefore equals the number of lookups times n/2s.

The total search cost per query is the cost for lookups
plus the cost for candidate tests. While these costs will vary
with the code length b and the way the hash tables are im-
plemented, we find that, to a reasonable approximation, the
costs of a lookup and a candidate test are similar. Accord-
ingly, we model the total search cost per query, for retriev-
ing all r-neighbors, in units of the time required for a single
lookup, as

cost(s) =
(
1 +

n

2s

) b

s

bsr/bc∑
k=0

(
s

k

)
, (4)

≤
(
1 +

n

2s

) b

s
2H(r/b)s . (5)
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Figure 3. The cost (4) and its upper bound (5) are shown as func-
tions of substring length. The code length in all cases is b = 128
bits. The left panel shows different search radii, all for a database
with n = 109 codes. The right panel shows three database sizes,
all for a search radius r = 0.25 b. Here, each curve has been
displaced horizontally by − log2 n. The minima are aligned.

3.1. Optimal Substring Length

In order to optimize cost(s) with respect to s, note that
dividing (4) by b has no effect on the optimal s, denoted s∗.
So s∗ can be viewed as a function of n and the ratio r/b.

Figure 3 plots cost as a function of substring length s,
for 128-bit codes, different database sizes n, and different
search radii (expressed as a fraction of the code length b).
Dashed curves depict cost(s) in (4) while solid curves of
the same color depict the upper bound in (5). The tightness
of the bound is evident in the plots, as are the quantization
effects of the upper range of the sum in (4).

Fig. 3 (left) shows cost for search radii equal to 5%, 15%,
and 25% of the code length, with n = 109 for all curves.
One striking property of these curves is that the cost is per-
sistently minimal in the vicinity of s = log2 n, indicated
by the vertical line close to 30 bits. This behavior remains
consistent over a wide range of database sizes.

Fig. 3 (right) shows the dependence of cost on s for
databases with n = 106, 109, and 1012, all with r/b = 0.25
and b = 128 bits. In this case we have laterally displaced
each curve by − log2 n; notice how this aligns the minima
close to 0. These curves suggest that, over a wide range of
conditions, cost is minimal for s = log2 n. Interestingly,
for this choice of the substring length, the expected number
of items per substring bucket, i.e., n/2s, reduces to 1. As a
consequence, the number of lookups is expected to be equal
to the number of candidates.

A somewhat involved theoretical analysis, based on Stir-
ling’s approximation, also suggests that deviating from s =
log2 n will increase the order of retrieval time. We omit this
analysis here due to lack of space.

3.2. Run-Time Complexity

Choosing s in the vicinity of log2 n provides a character-
ization of retrieval run-time complexity. When s = log2 n,
the upper bound on the number of lookups (3) also becomes
a bound on the number candidates. In particular, if we sub-

stitute log2 n for s in (5), then we find the following upper
bound on the cost, now as a function of the database size,
the code length, and the search radius:

query cost ≤ 2
b

log2 n
nH(r/b) . (6)

Thus, for a uniform distribution over binary codes, if we
choose m such that s ≈ log2 n, the expected query time
complexity is O(b nH(r/b)/log2 n). For a small ratio of
r/b this is sub-linear in n. For example, if r/b ≤ .11,
then H(.11) < .5, and the run-time complexity becomes
O(b
√
n/log2 n). That is, the search time increases with the

square root of the database size. For r/b ≤ .06, this be-
comes O(b 3

√
n/log2 n). The time complexity with respect

to b is not as important as that with respect to n since b is
not expected to vary significantly in most applications.

3.3. Storage Complexity

The storage complexity of our multi-index hashing algo-
rithm is also appealing. To store the full database of binary
codes requires O(nb) bits. For each of m hash tables, we
also need to store n unique identifiers to the database items.
This allows one to identify the retrieved items and fetch
their full codes; this requires an additional O(mn log2 n)
bits. In sum, the storage required is O(nb + mn log2 n).
When m ≈ b/ log2 n, as is suggested above, this storage
cost reduces to O(nb + n log2 n). (Here, the n log2 n term
always appears because m ≥ 1 .)

While the storage cost of our multi-indexing algorithm is
close to linear in n, the multi-indexing algorithm of Greene
et al. [6] entails storage complexity that is super-linear in
n. To find all r-neighbors, for a given search radius r,
they construct m = O(r2sr/b) substrings of length s bits
per binary code. Their suggested substring length is also
s = log2 n, so the number of substring hash tables becomes
m = O(rnr/b). And of course each such hash table re-
quires O(n log2 n) amount of storage. As a consequence
for large values of n, even with small r, this technique re-
quires a prohibitive amount of memory to store all of the
hash tables.

Our approach is more memory-efficient than that of [6]
because we do not enforce exact equality in substring
matching. In essence, instead of creating all of the hash
tables off-line, and then having to store them, we flip bits
of each substring at run-time and implicitly create some of
the substring hash tables on-line. This increases run-time
slightly, but greatly reduces storage costs.

4. K-Nearest Neighbors Search
To use multi-index hashing in practice, one must specify

a Hamming search radius r. For many tasks, the value of r
is chosen such that queries will, on average, retrieve K near
neighbors. Nevertheless, we find that, for many hashing



64-bit LSH 128-bit LSH 128-bit MLH

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

F
ra

c
ti
o
n
 o

f 
q
u
e
ri
e
s

Hamming radii needed for 10−NN
0 5 10 15 20 25 30

0

0.05

0.1

F
ra

c
ti
o
n
 o

f 
q
u
e
ri
e
s

Hamming radii needed for 10−NN
0 5 10 15 20 25 30

0

0.05

0.1

F
ra

c
ti
o
n
 o

f 
q
u
e
ri
e
s

Hamming radii needed for 10−NN

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.1

0.2

F
ra

c
ti
o
n
 o

f 
q
u
e
ri
e
s

Hamming radii needed for 1000−NN
0 5 10 15 20 25 30

0

0.05

0.1

F
ra

c
ti
o
n
 o

f 
q
u
e
ri
e
s

Hamming radii needed for 1000−NN
0 5 10 15 20 25 30

0

0.05

0.1

F
ra

c
ti
o
n
 o

f 
q
u
e
ri
e
s

Hamming radii needed for 1000−NN

Figure 4. Shown are histograms of the search radii that are required to find 10-NN and 1000-NN, for 64 and 128-bit code from LSH [2],
and 128-bit codes from MLH [16], based on 1B SIFT descriptors [11]. Clearly shown are the relatively large search radii required for both
the 10-NN and the 1000-NN tasks, as well as the increase in the radii required when using 128 bits versus 64 bits.

techniques and different sources of visual data, the distribu-
tion of binary codes is such that a single search radius for
all queries will not produce similar numbers of neighbors.

Figure 4 depicts empirical distributions of search radii
required for 10-NN and 1000-NN on three corpora of binary
codes obtained from 1 billion SIFT descriptors [11, 13]. In
all cases, for 64 and 128-bit codes, and for hash functions
based on LSH [2] and MLH [16], there is a substantial vari-
ance in the search radius. This suggests that binary codes
are not uniformly distributed over the Hamming space. As
an example, for 1000-NN in 64-bit LSH codes, more than
10% of the queries require a search radius of 10 bits or
larger, while for about 10% of the queries it can be 5 or
smaller. Also evident from Fig. 4 is the growth in the re-
quired search radius as one moves from 64-bit codes to 128
bits, and from 10-NN to 1000-NN.

A fixed radius for all queries would produce too many
neighbors for some queries, and too few for others. It is
therefore more natural for many tasks to fix the number of
required neighbors, i.e.,K, and let the search radius depend
on the query. Fortunately, our multi-index hashing algo-
rithm is easily adapted to accommodate query-dependent
search radii. Given a query, one can progressively increase
the Hamming search radius per substring, until a specified
number of neighbors is found. For example, if one exam-
ines all r′-neighbors of a query’s substrings, from which
more than K candidates are found to be within a Hamming
distance of (r′+1)m−1 bits (using the full codes for vali-
dation), then it is guaranteed that K-nearest neighbors have
been found. Indeed, based on our proposition, if all K-NN
of a query q, differ from q in (r′ + 1)m − 1 bits or less,
then they will be found in {r′-neighbors of q(k)}mk=1 given
by the substring hash tables.

In our experiments, we follow this progressive increment
of the search radius until we can find K-NN in the guar-
anteed neighborhood of a query. This approach is helpful

because it uses a specific search radius for each query de-
pending on the distribution of codes in that neighborhood.

5. Experiments
All experiments are run on a single core 2.0GHz CPU

with 256GB of memory. Both linear scan and multi-index
hashing were implemented in C++ and compiled with the
same flags. The memory requirements for multi-index
hashing are described, along with other implementation
details, in the Appendix. We currently require approxi-
mately 86GB for multi-index hashing with one billion 64-
bit codes, and approximately twice that for 128-bit codes.
As discussed in the Appendix, these numbers could be re-
duced significantly in a more memory-efficient implemen-
tation. Further, a distributed implementation of multi-index
hashing is straightforward, in which each substring hash ta-
ble is stored on a separate machine with much less memory.

Our implementation of the linear scan baseline searches
almost 55 million 64-bit codes in just under a second. This
is remarkably fast compared to Euclidean NN search with
128D SIFT vectors. The speed of linear scan is in part due
to memory caching, without which it would be about 10
times slower. Without optimizing cache usage, our multi-
index hashing method solves exact 1000-NN for a dataset
of one billion 64-bit codes in less than 0.2 seconds, over
100 times faster than linear scan (see Table 1). Performance
on 1-NN and 10-NN are even more impressive.

5.1. Datasets

Experiments are conducted on two well-known vi-
sion corpora: 80M Gist descriptors from 80 million tiny
images [22] and 1B SIFT features from the BIGANN
dataset [11]. SIFT vectors [13] are 128D descriptors of local
image structure in the vicinity of feature points. Gist [17]
features extracted from 32×32 images capture global image



speed-up factors for K-NN vs. linear scan
dataset nbits mapping 1-NN 10-NN 100-NN 1000-NN linear scan

SIFT 1B
64

MLH 213 205 182 126
18.03s

LSH 229 213 175 107

128
MLH 272 170 87 37

35.33s
LSH 204 114 56 25

Gist 79M
64

MLH 161 128 78 33
1.41s

LSH 169 80 31 8

128
MLH 58 21 11 6

2.74s
LSH 28 12 6 3

Table 1. Summery of results for 8 datasets of binary codes. The first four rows correspond to 1 billion binary codes, while the last four
rows show the results for 79 million codes. Codes are either 64 or 128 bits long, obtained by LSH or MLH. The run-time of linear scan is
reported along with the speed-up factors for K-NN with multi-index hashing.

structure in 384D vectors. These two feature types cover a
wide spectrum of NN search problems in computer vision
from feature to image indexing.

We use two similarity-preserving mappings to create
datasets of binary codes, namely, binary Locality Sen-
sitive Hashing (LSH) [3], and Minimal Loss Hashing
(MLH) [16]. LSH is considered a baseline random projec-
tion method, closely related to cosine similarity. MLH is a
state-of-the-art learning algorithm that, given a set of simi-
larity labels, finds an optimal mapping by minimizing a loss
function over pairs of binary codes.

Both the 80M Gist and 1B SIFT corpora comprise a
training set, a base set, and a test query set. Gist descriptors
are randomly divided into a base set of 79 million items,
1000 items for the query set, and 300K for the training set.
The SIFT corpus is already divided into three sets, 100M
for training, 109 in the base set, and 104 for the test queries.
The training sets are used to adjust the hash function param-
eters. For LSH we subtract the mean, and pick a set of co-
efficients from a normal density for a linear transform, fol-
lowed by quantization. For MLH the training set is used to
optimize several hash function parameters [16]. After learn-
ing is complete, we remove the training data and use the re-
sulting hash function with the base set to create the database
of binary codes. With two image corpora (SIFT and Gist),
two code lengths (64 and 128 bits), and two hashing meth-
ods (LSH and MLH), we obtain 8 datasets of binary codes
with which to evaluate our multi-index hashing algorithm.

Figure 5 shows Euclidean NN recall rates based on K-
NN search on binary mappings of 1M and 1B SIFT de-
scriptors. In particular, we plot the fraction of Euclidean
1st nearest neighbors found by K-NN in 64-bit and 128-bit
LSH [3] and MLH [16] binary codes. As expected 128-bit
codes are more accurate, and MLH outperforms LSH. Since
multi-index hashing solves exact K-NN in Hamming dis-
tance, the approximations are only due to the binary quan-
tization. To preserve enough of the similarity structure in
the original SIFT descriptors, it seems necessary to use 64
or 128-bit codes, and exploit data-dependant hash functions

DB size = 1M DB size = 1B
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Figure 5. Recall rates for BIGANN dataset [11] (1M and 1B sub-
sets) obtained by K-NN on 64- and 128-bit MLH and LSH codes.

such as MLH. Interestingly, as described below, the speedup
factors of multi-index hashing on MLH codes are better
than those for LSH.

5.2. Results

Each experiment involves 1000 queries for which we re-
port the average run-time. Table 1 shows run-time per query
for the linear scan baseline, along with speed-up factors of
multi-index hashing for differentK-NN problems and the 8
datasets. The running time of linear scan does not depend
on the number of neighbors, nor on the underlying distri-
bution of binary codes. The running time for multi-index
hashing, however, depends on both factors.

As the desired number of NNs increases, the Hamming
radius of the search must also increase (e.g., see Fig. 4); this
implies longer run-times for multi-index hashing. Indeed,
notice that going from 1-NN to 1000-NN on each row of
Table 1 shows decreasing speed-up factors.

The multi-index hashing running time also depends on
the distribution of binary codes. Indeed, one can see from
Table 1 that MLH code databases yield faster run times than
the LSH codes; e.g., for 1000-NN in 1B 128-bit codes the
speed-up for MLH is 37× vs 25× for LSH. Fig. 4 depicts
the histograms of search radii needed for 1000-NN with 1B
128-bit MLH and LSH codes. Interestingly, the mean of the
search radii for MLH codes is 19.9 bits, while it is 19.8 for
LSH. This suggests that LSH might be marginally faster to
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Figure 6. Run-times per query for multi-index hashing with 1, 10, 100, and 1000 nearest neighbors, and a linear scan baseline on 1B
64-bit binary codes given by LSH from SIFT.
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Figure 7. Run-times per query for multi-index hashing with 1, 10, 100, and 1000 nearest neighbors, and a linear scan baseline on 1B
128-bit binary codes given by MLH from SIFT.

search. On the other hand, the standard deviations of the
search radii for MLH and LSH are 4.0 and 5.0 respectively.
The longer tail of the distribution of search radii for LSH
plays an important role in the expected running time. In
fact, queries that require relatively large search radii tend
to dominate the average query cost. From these observa-
tions, multi-index hashing performs best when the mean of
required radii is small (e.g., in case of 1-NN vs. 1000-NN)
and when the standard deviation is small too (e.g., in case
of 1000-NN MLH vs. LSH).

It is also interesting to look at the multi-index hashing
run-times as a function of the number of binary codes in
the database i.e., n. To that end, Fig. 6 and 7 depict run-
times for linear scan, and multi-index K-NN search. The
left two figures in each show different vertical scales (since
the behavior of multi-index K-NN and linear scan are hard
to see at the same scale). The right-most panels show the
same data on log-log axes. First, it is clear from these plots
that multi-index hashing is much faster than linear scan for
a wide range of dataset sizes and K. Just as importantly,
it is evident from the log-log plots that as we increase the
database size, the speedup factors improve. The dashed
lines on the log-log plots depict

√
n as function of n (up to

a scalar constant). The similar slope of multi-index hashing
curves with the square root curves suggests that multi-index
hashing has sub-linear query time, even for the empirical,
non-uniform distributions of codes.

6. Conclusion
This paper describes a new algorithm for exact nearest

neighbor search on large-scale datasets of binary codes. The
algorithm is a form of multi-index hashing that has prov-
ably sub-linear run-time behavior for uniformly distributed
codes. It is storage efficient and easy to implement. We
show empirical performance on datasets of binary codes ob-
tained from 1 billion SIFT, and 80 million Gist features.
With these datasets we find that, for 64-bit and 128-bit
codes, our new multi-index hashing implementation is of-
ten more than 100 times faster than a linear scan baseline.
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A. Implementation Details
Our algorithm is essentially a set of exact-match queries

in disjoint s-bit substrings of the codes. When substring
length is small (e.g., s ≤ 32) one can explicitly allocate
memory for 2s buckets and store all the data points associ-
ated with each substring in its correspoding bucket. Then,
given a query one fetches all the relevant data points by m
address lookups with the m substrings of the query.

Folded Hash Tables: When s is large, the 2s addresses
required for explicit memory allocation becomes infeasible.
Instead one could use folded hash tables, for which the bi-
nary substring indices are hashed into smaller hash tables
e.g., by taking them modulo a prime number. This approach

is storage efficient, but slower because it requires a method
to handle hash collisions. We avoided using folded hash
tables since the longest substring we need is 32 bits.
Memory Requirements: A hash table in our implemen-
tation is an array of pointers to resizable arrays. We store
one 64-bit pointer for each hash table bucket; this entails
32GB for an empty 32-bit hash table. There are simple
ways to store empty buckets much more efficiently, but our
current implementation is not optimized for memory.

With m (unfolded) substring hash tables of length s bits,
and a 64-bit address per bucket, the empty hash tables re-
quires m2s8 bytes. For each non-empty bucket a resizable
array is allocated to store the associated data points. Re-
sizable arrays are preferred over linked lists since they are
more cache friendy. To store the size of the resizable arrays,
at most 4mmin(n, 2s) bytes are needed as the number of
non-empty buckets is bounded by mmin(n, 2s). For each
data point per hash table we store an ID to reference the
full binary code; each ID is 4 bytes as the size of datasets
n ≤ 232; this yields a total of 4mn bytes. Lastly, storing the
full binary codes requires nms/8 bytes, because b = ms.

In total, the memory cost is 4m(2s+1 + min(n, 2s) +
n + ns/32) bytes. For one billion 64-bit codes, and two
chunks (32 bits each), this cost is 86GB. Note that the last
two terms (for the IDs and binary codes) are irreducible, but
the first term can be reduced in a memory efficient imple-
mentation at least by a factor of two. The first term heav-
ily dominates the storage cost. If we search 60-bit binary
codes instead of 64-bit ones, then s = 30 and the storage
cost drops to 41GB. For 128-bit codes our implementation
requires 186GB of storage, and for 120-bit codes, 82GB.

Duplicate Candidates: When retrieving candidates from
the m substring hash tables, inevitably we will find some
codes multiple times. In order to catch such duplicates, and
discard them, we allocate a bit-string with n bits. Every
time a candidate is found, we check the corresponding bit.
If it is 1, we discard the candidate as a duplicate. Otherwise
it is set to 1 and we retain the candidate. Before each query
we clear the bit array, which in theory requires O(n) but
negligible in practice.

Hamming Distance: To compare a query and a candi-
date, used in both multi-index search and linear scan, we
compute the Hamming distance on the full b-bit codes, with
one xor operation for every 64 bits followed by a pop
count to tally the ones. We used the built-in GCC function
__builtin_popcount.

Number of Substrings: The number of substrings we use
is determined with a hold-out validation set of database en-
tries. From that set we estimate the running time of the
algorithm for different choices of m, and select the m that
yields the best results. Our experiments show that this em-
pirical value for m is typically very close to b / log2 n.


