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ABSTRACT This paper addresses the face recognition task for offline mobile applications. Using AutoML
techniques, we propose a novel approach to develop a fast neural network-based facial feature extractor
for a concrete device. First, the Once-for-All SuperNet is trained on a large facial dataset. Each device
is characterized by its lookup table, which contains the running times of inference in each layer of the
SuperNet. An evolutionary search is then used to select the most accurate subnetwork within a limit on the
maximum expected latency. We propose training a neural architecture comparator using Gradient Boosted
Trees to choose the better subnetwork in this search. Experimental face verification and recognition results
demonstrate our proposed approach’s robustness to various facial region positions. Our best model achieves
an identification accuracy of 98.7% for the LFW dataset in less than 5 ms on the Qualcomm Snapdragon
865 GPU.

INDEX TERMS AutoML, NAS (Neural Architecture Search), CNN (convolutional neural network), face
recognition, mobile device, Once-for-All SuperNet

I. INTRODUCTION
One of the most challenging pattern recognition problems is
face verification and identification tasks [1], [2]. In typical
scenarios, the training set contains a small number of photos
per each subject of interest [3]. As a result, these tasks
are solved nowadays by extracting features (embeddings,
descriptors) with a deep neural network, pre-trained on large
external facial datasets [4]. These feature vectors are clas-
sified by an arbitrary technique, such as k-NN (k-nearest
neighbor).

In this paper, we are focused on mobile applications
with offline facial processing. The most time-consuming
part of the above-mentioned conventional procedure is the
inference in a deep neural network. This part may be too
computationally expensive for real-time facial processing on
a mobile or edge device, e.g., in video-based face recognition.
Hence, the lightweight CNN (convolutional neural network)
architectures should be used [5]. Unfortunately, choosing the
best architecture for a concrete mobile device is difficult.

Indeed, the computational power of cheap and expensive
smartphones is significantly different, so it is impossible
to find a single CNN characterized by high accuracy and
reasonable performance for an arbitrary device. One potential
solution here is the usage of AutoML (Automated Machine
Learning) and NAS (Neural Architecture Search) techniques
for a proper choice of the neural network for a concrete
device [6], [7]. As the traditional AutoML-based training of a
specialized descriptor for a substantial device takes too much
time, we will borrow the idea of the OFA (Once-for-All)
SuperNet [8] that is trained only once. Still, the specialized
CNNs can be rapidly extracted for a latency constraint.

The objective of this paper is to rapidly obtain a facial
extraction neural network with high performance on a given
mobile device without the need to re-train the model. Here
are our main contributions:

1) a novel technological framework for efficient NAS to
extract specialized CNN-based facial features under
hardware-aware constraints;
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2) the novel GBDT (gradient boosting decision tree)-
based NAC (neural accuracy comparator) and the
evolutionary search using the QuickSelect algorithm.
Our experimental study demonstrates the benefits of
the proposed approach over the original MLP (Multi-
Layered Perceptron)-based accuracy predictor from
OFA [8];

3) We obtain several models with low latency by using
our framework and making them publicly available.

The remaining part of the paper is structured as follows.
In Section II, face recognition and AutoML techniques are
reviewed. The problem statement for face recognition is
presented in Section III. In Section IV, we show the details
of the proposed approach. Section V describes the LFW
(Labeled Faces in the Wild) dataset [9] and known facial
descriptors to be compared with our models. Section VI
presents experimental results and ablation study of obtained
neural networks. Conclusion and future works are discussed
in Section VII.

II. LITERATURE SURVEY
A. FACE RECOGNITION
Face recognition has been one of the most widely studied
problems in pattern recognition and computer vision for more
than 50 years [10]. The incredible progress in this area in
the last decade is explained by the appearance of massive
publicly available datasets of facial photographs [4] gathered
in unconstrained environments [11] and the development
of deep learning-based techniques [12]. Their main idea is
to train a CNN to identify subjects from a large external
dataset of celebrities and remove the last classification (fully
connected) layer. The resulting neural network can be used as
a feature extractor to represent the probe and gallery images
as a high-dimensional facial descriptor that ideally can be
classified nearly as well as if a rich dataset of photos of
these individuals were present. Though the high accuracy
is achieved even by using conventional softmax (categorical
cross-entropy) loss function, many regularization techniques,
such as ArcFace (Additive Angular Margin Loss) [1] and
MagFace (Magnitude-aware loss) [13], have been proposed
to improve the quality of facial representations (embeddings).
In addition, special triplet loss has been actively studied since
its introduction in FaceNet [2], which tries to minimize the
distance between photos of the same subject and maximize
the distance between different persons. The application of Lie
algebra theory was examined in [14] to deal with face rotation
for accurate facial feature extraction using CNNs. Moreover,
adding modalities via speech recognition [15]–[17] or depth
estimation [18]–[20] followed by depth refinement [21]–[25]
can improve the accuracy for video-based person identifica-
tion. As a result of these efforts, a great number of various
applications have recently appeared in video surveillance and
biometrics [26], [27].

However, many challenging issues in face recognition
still need to be resolved. For example, even contemporary
facial descriptors are characterized by racial bias [28], low

accuracy for low- illumination images, and re-identification
tasks [29]. Data augmentations for low-resolution facial im-
ages are studied in [30]. Due to the COVID-19 pandemic,
masked face recognition has also been widely studied [31].
Finally, facial processing on mobile and embedded systems
has been recently examined [32], [33]. The lightweight and
mobile models [5] have shown high accuracy even in low-
resource scenarios. To reduce the required computational
cost of the existing face recognition models, the QuantFace
based on low-bit precision format model quantization was
applied [34]. However, it is known that mobile devices have
very different computational power. Hence, it is practically
impossible to train a universal facial descriptor that can be
used for real-time face recognition with high accuracy on all
devices. Let us consider the possibility of applying modern
AutoML techniques to search the CNN that ideally fits the
capabilities of a concrete device.

B. AUTOML AND SUPERNETS FOR MOBILE DEVICES
Face recognition can be considered as a particular case
of image recognition tasks. Though the loss functions are
usually different, the architectures of neural networks for
both tasks are generally identical. Hence, several applications
of AutoML for image recognition on mobile devices are
discussed in this Subsection. One of the first techniques,
namely, NetAdapt (Neural Network Adaptation) [35], sug-
gests the usage of a latency LUT (look-up table) for efficient
hardware-aware NAS. The development of these ideas in
the MnasNet (mobile neural architecture search) [6] finds
CNN architectures with high accuracy and low latency based
on a customized weighted product. Unlike previous works,
where latency is considered via an inaccurate proxy (e.g.,
FLOPS, FLoating-point OPerations per Second), the Mnas-
Net directly measures the latency by executing the inference
on a mobile phone. The combination of MobileNetV2 with
Squeeze-and-Excite blocks, swish activation functions, and
Platform-aware NAS with NetAdapt caused the development
of MobileNetV3 [36], which was the first network from
the MobileNet family that was obtained using AutoML.
However, the most valuable result was uniformly scaling
depth/width/resolution using a simple yet highly effective
compound coefficient. It was integrated into AutoML to
obtain the state-of-the-art EfficientNets [37]. Moreover, effi-
cient neural networks without the need to evaluate candidate
models can be obtained by the Differentiable Neural Ar-
chitecture Learning based on architecture parameterization
based on scaled sigmoid function [7]. Automatic search space
and search strategies regarding combinatorial optimization
in the Layered Architecture Search Tree [38] have been
considered.

Based on weight-sharing techniques, one-shot architec-
tures (SuperNets) for AutoML were suggested in [39]. The
Single Path One-Shot [40] uses a SuperNet with shared
parameters for efficient training. The Contrastive Neural
Architecture Search [41] estimates the performance of can-
didate architectures by computing the probability of candi-

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290902

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Savchenko et al.: Fast Search of Face Recognition Model for a Mobile Device based on Neural Architecture Comparator

dates being better than a baseline one using graph convo-
lutional network-based NAC. The novel shrinking strategy
that progressively simplifies the original search space by dis-
carding unpromising operators for SuperNets was proposed
in [42]. Hardware constraints for one-shot NAS that do not
require finding a specialized neural network and training it
from scratch for each device were introduced in the OFA
SuperNet [8]. It supports diverse architectural settings by
decoupling training and searches to reduce the cost of getting
a specialized subnetwork from the OFA SuperNet without
additional training. Its core component is the evolutionary
search for the best architecture with suitable latency using
the MLP-based accuracy predictor. The latter solves a simple
regression task and tries to predict the validation accuracy
based on a description of a subnetwork. An extended version
of the OFA was proposed in APQ (Architecture, Pruning,
and Quantization) [43], which implements the joint search
for network architecture, pruning, and quantization policy by
training a surrogate predictor for pruning and quantization-
aware scheme.

Though most AutoML techniques have been used in image
recognition tasks, several papers apply NAS to train facial
descriptors. For example, the differential NAS architecture
has been implemented in the highly lightweight PocketNet
with high performance [44]. Various AutoML methods have
been developed for the loss function search in face recogni-
tion [45] and person re-identification [46]. However, all such
articles introduce efficient neural architectures that cannot be
adapted to generate face recognition networks for a concrete
device rapidly. Our paper fills this gap using the OFA-based
SuperNet with device-specific facial feature extraction.

III. FACE RECOGNITION BASED ON DEEP
EMBEDDINGS
A. FACE IDENTIFICATION
In the face identification task, it is required to assign an
observed facial image X to one of C ≥ 1 classes of subjects
(identities) or make a decision that an observed person does
not belong to the list of known subjects (open-set scenario).
These subjects are specified by the gallery set of N ≥ C
facial images with known subject identifier c(n) ∈ {1, ..., C}
of the n-th photo (n = 1, 2, ..., N ).

Due to the complexity of gathering many facial photos of
the subjects of interest, the training set is typically very small
(C ≈ N ) for training a complex classifier. Hence, domain
adaptation and feature learning are commonly applied. At
first, a deep neural network is pre-trained for face identifica-
tion from large datasets of celebrities, e.g., CASIA-WebFace
(Chinese Academy of Sciences Institute of Automation),
MS-Celeb-1M (Microsoft Celebrities with 1 Million photos)
or VGGFace/VGGFace2 (Visual Geometry Group Facial
datasets) [4]. Next, the last classification layer is removed.
Every n-th training example is fed into this CNN to be
described as a descriptor xn = [xn;1, ..., xn;D] at the output
of the penultimate layer. Its dimensionality D is relatively
high: it typically varies in a range [512, 4096]. The input

facial image is associated with embeddings x = [x1, ..., xD]
using the same procedure. Finally, an arbitrary classifier, such
as k-NN, is applied to these descriptors to solve the original
task:

c∗ = argmin
c∈{1,...,C}

ρc(x), (1)

where
ρc(x) = min

r∈{1,...,N},c(n)=c
ρ(x,xn). (2)

If the feature vectors are normalized in the L2 norm,
the Euclidean (L2) metric can be used as the dissimilarity
measure ρ(x,xn). Indeed, it is equivalent to the conventional
cosine distance between unnormalized descriptors for the 1-
NN rule (1).

In this paper, we are apprehensive about the performance
of face recognition on mobile or edge devices. The feature
vectors of the training examples are obtained at the prelimi-
nary stage. Hence, only one inference in a neural network is
required for each input image during offline face recognition.
To compare the efficiency of various techniques, the follow-
ing multi-criteria objective function can be used [47]:

maxA, t ≤ t0. (3)

Here, it is required that the average recognition time t
measured on the target device is not greater than a fixed
threshold t0. The best face recognition method is character-
ized by maximal quality metric A, which can be estimated
using the test set with known class labels. As classes are
usually balanced in face identification, the quality measure A
is chosen as classification accuracy, computed as the number
of correct predictions divided by the total size of the test set.

B. FACE VERIFICATION
Face verification is comparing a candidate’s face to another
and verifying whether it is a match. It can be considered a
special case of the open-set face recognition with C = 1 sub-
ject so that a binary classification problem should be solved
to decide if the person at the input (probe) and gallery photos
are the same. The decision-making is similar to the above-
mentioned procedure, extracting features using pre-trained
CNN and their classification. Still, the minimal distance is
compared with a predefined threshold ρ0. If ρc∗(x) < ρ0,
the decision is made in favor of subject c∗. Otherwise, the
decision is delayed or rejected. In the simplest scenario of
face verification, two facial photos, X1 and X2, are matched.
If ρ(x1,x2) < ρ0, then these images will be considered to
contain photos of the same person. Otherwise, the decision
will be made that faces are not matched.

The quality of the binary classification problem in criterion
(3) can be estimated using different metrics. In face verifica-
tion, one of the following performance measures is typically
used as A:
• Accuracy of face verification, i.e., the relative number

of pairs correctly classified, while the threshold ρ0 was
chosen as good as possible;
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• Validation rate@FAR≤0.001 (from now on “Val@1e-
3"), that indicates how many image pairs of the same
subjects are predicted correctly while keeping FAR
(false alarm rate, probability that two images of different
identities are the same) equal to 0.001;

• AUC-ROC (Area Under Curve Receiver Operating
Characteristic) computed based on the distance between
L2-normed features without the need for estimation of a
threshold;

• EER (Equal Error Rate), i.e., FAR for the threshold ρ0
estimated when FAR equals FRR (false rejection rate).

IV. PROPOSED METHODOLOGY
A. ONCE-FOR-ALL SUPERNET FOR FACE
RECOGNITION
In this paper, the OFA NAS framework [8] is used as it
ideally fits the problem of searching best architectures for
specialized resource constraint deployment scenarios. At
first, its authors train an extensive neural network typically
using knowledge distillation with an arbitrary teacher model
already trained on the same dataset (ImageNet in [8]). The
training procedure combines two loss terms using the soft
labels given by the teacher network and the actual labels.
Next, the resulting large network’s elastic version is fine-
tuned using the special progressive shrinking algorithm. It
samples subnetworks of smaller size with a progressively
smaller resolution of the input image, then kernels, then
lower depth, then width (while still sampling larger networks
occasionally, as it reads). Thirdly, the prediction-based NAS
method (MLP with several hidden layers) is learned in the
performance/inference prediction module, from which the
good subnetworks corresponding to a particular scenario
are obtained. This results in a network from which one
can directly extract sub-architectures for various resource
constraints (latency, memory, etc.) without retraining.

As our paper mainly focuses on mobile devices, we dealt
with the OFAMobileNetV3 that uses the same architecture
space as MobileNetV3 [36]. Here, the subnetwork contains
five groups of blocks. Each group consists of d blocks
(d ∈ {2, 3, 4}). Each block is a dynamically changing con-
volutional layer with kernel size ks ∈ {3, 5, 7} and several
filters proportional to the scaling factor e ∈ {3, 4, 6}.

The original version of OFA [8] was developed for the
general image classification task. In face recognition, it is
more important for a model to obtain better facial represen-
tations rather than maximize celebrity recognition accuracy
in the pre-training phase. Hence, in this paper, while us-
ing the unmodified OFA architecture, its training procedure
has been changed as follows. The OFAMobileNetV3 was
initially trained to recognize celebrities from a large facial
dataset by implementing the progressive shrinking from the
OFA repository with simple replacements of the ImageNet-
related parameters, e.g., the number of output neurons, to the
appropriate parameters of the new dataset. Our experiments
exploited the VGGFace2 large-scale dataset with 9131 sub-
jects [4] for this purpose. Together with the MS-Celeb-1M,

the VGGFace2 is widely used to train deep facial embed-
dings nowadays [48]. The main advantage of training over
VGGFace2 is better performance over two critical problems,
pose and age variance [4]. Thus, we chose this dataset to train
SuperNet in this study. The training set contained 3,067,564
photos of 9131 subjects, while the remaining 243,722 images
were included in the validation set.

To account for the specifics of face recognition, we first
utilized the softmax categorical cross-entropy with label
smoothing and ArcFace [1] regularization. It was minimized
by the SGD (stochastic gradient descent) to improve the
quality of resulting facial descriptors. Secondly, as all faces
have more or less the same size and shape, we simplified
the training pipeline by removing support for different reso-
lutions of the input image. Finally, as the very deep neural
network training requires the teacher model, we used the
EfficientNet-B0 trained on the same train-test split of the
VGGFace2 dataset from our previous paper [49]. Moreover,
several other tricks were employed, such as knowledge dis-
tillation with block-wise loss to train the SuperNet that most
accurately corresponds to the teacher. However, we did not
get an increase in accuracy compared to the basic OFA net-
work. Hence, it was decided to leave the remaining training
procedure of the OFA as close to the original version [8]
as possible. The most important contribution of this paper
covered in the following Subsection is the novel approach
for sampling subnetworks.

B. PROPOSED FRAMEWORK
The original evolutionary search from OFA [8] used the
MLP accuracy predictor to obtain the expected accuracy
of a subnetwork. Training such an MLP regression model
is complex because it usually overestimates the predicted
accuracy. Hence, we propose modifying the evolutionary
search using the NAC [41]. Let us consider the details of our
novel technological framework (Fig. 1).

Its most important goal is to generate the subnetwork
under specific hardware and latency constraints. At first, the
dataset to train the accuracy predictor and NAC are created.
The “Random subnet’s extractor" unit is used to generate
16,000 random subnetworks (subnets) with various latency
and accuracy using the trained SuperNet. As the resolution
of the input image is fixed to 224x224, each subnetwork is
represented as a concatenation of the following parameters:
the number of layers d of each of five blocks and kernel size
ks and scaling factor e for each layer. It is a goal of a search
procedure (unit 5 in Fig. 1) to find the best hyperparameters
in terms of criterion (3).

Secondly, the accuracy of the resulting subnetworks on the
validation part from VGGFace2 is evaluated in the “Accuracy
estimator" unit to create a training dataset of pairs (subnet-
work and its accuracy). Thirdly, the resulting set is used
to train a NAC in the “Accuracy comparator training" unit.
The comparator is a binary classifier with representations
of two subnetworks at the input and tries to predict if the
first subnetwork is more accurate than the second one. This
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FIGURE 1: The proposed approach for fast adaptation of face recognition models.

paper uses the GBDT from the LightGBM (Light Gradient
Boosting Machine) library. The training set for this classifier
is dynamically created by a 20,000-times random selection of
two subnetworks from the dataset at the output of unit 2. The
desired output is equal to 1 if the first subnetwork has higher
accuracy than the second one or 0 otherwise. We do not
use hard-negative or semi-hard negative sampling because
the validation accuracy of even very small subnetwork is
relatively high, so practically all training examples can be
considered semi-hard.

Fourthly, the “LUT generator" unit from a particular An-
droid application is used to create a raw version of latency
LUTs to measure the running time of each possible layer
of the SuperNet on a CPU (Central Processing Unit) of a
specific mobile device. As it is impossible to reliably estimate
the GPU (Graphical Processing Unit) latency of the whole
neural network by summarizing the latency of each layer, the
measurements are performed for inference on the CPU of a
mobile phone. This paper computed the latency LUTs for two
mobile devices with the Qualcomm Snapdragon 865 and 765
SoC (system on a chip) semiconductors.

The fifth step is the most important one. Given the LUT
of the target hardware, the trained NAC, and the maximal
latency constraint, the unit “Search of the subnet (Quick-
Select)" performs the evolutionary search to choose the
subnetwork with maximal expected accuracy, for which the

running time t estimated using the LUT is not greater than the
required latency t0. The details of this step are summarized
in Algorithm 1. It uses an implementation of the known
QuickSelect partition algorithm based on ideas of quick sort.
It re-orders the input list and efficiently returns the top-k
subnetworks.

The proposed algorithm extracts the most accurate subnet-
works from the current generation at each step of the evolu-
tionary search. It contains the following hyperparameters:

1) The number T of iterations, i.e., how many generations
of the population to be searched;

2) The size P of population in each generation;
3) The ratio Kr of subnetworks that are used as parents

for the next generation;
4) The ratio Mr of subnetworks generated by a mutation

in one generation. The remaining P − bP ·Mrc sub-
networks are chosen by crossover;

5) The probability Pm of mutation in evolutionary search.
Their default values were chosen to be identical to the

values from the original evolutionary search procedure [8],
namely: T = 500, P = 100,Kr = 0.25,Mr = 0.5, Pm =
0.1.

As the comparison of each pair of subnetworks in a gen-
eration has quadratic complexity, we implemented the partial
sorting using the QuickSelect algorithm with linear complex-
ity to split the whole generation into top-k and the remaining
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Algorithm 1 The evolutionary search of an optimal subnet-
work

1: Initialize population of subnetworks S := []
2: Compute the number of parents K := bP ·Krc
3: Compute the number of mutations M := bP ·Mrc
4: while size |S| of the list S is less than P do . Get initial

population of size P
5: Randomly sample subnetwork SN from the Super-

Net
6: Compute the latency t̂ of SN as a sum of the laten-

cies of its layers from LUT
7: if t̂ < t0 then
8: Append SN to S
9: end if

10: end while
11: for t ∈ {1, ..., T} do . Evolutionary search
12: SNK := QuickSelect(SN,K,GBDT comparator)

. Get top-K subnetworks (parents) from the list of
subnetworks SN using the GBDT comparator

13: Assign first K elements from SNK to SN
14: Randomly choose M subnetworks from SN , per-

form their mutation to fill the list MSN
15: for i ∈ {1, ...,K −M} do
16: Randomly choose two subnetworks from SN ,

perform their crossover and append the result to MSN
17: end for
18: SN :=MSN
19: end for
20: Obtain top-1 subnetwork SN∗ :=

QuickSelect(SN, 1, GBDT comparator)[0]
21: Remove the last classification layer from SN∗

22: return SN∗

subnetworks. Hence, our algorithm has linear complexity
depending on the number of iterations T and population size
P . Searching for a concrete model requires 5–10 minutes on
a GPU server.

As a result, a PyTorch subnetwork with FP32 (single-
precision binary floating-point) weights is obtained. We re-
move the last classification layer because this CNN will be
used as a feature extractor. It is converted to the TensorFlow
(TF) Lite format in the “PyTorch to TFLite (TensorFlow
Lite) converter" unit to be used on a mobile device. We
implemented our generation of the same architecture. We
copied the weights from PyTorch to TensorFlow format be-
cause the general ONNX (Open Neural Network Exchange)-
based conversion led to very slow models. The resulting
subnetwork is used for extraction of D = 1536-dimensional
descriptor of facial images on a concrete mobile device. The
remaining face identification/verification procedure is imple-
mented identically to the traditional approach (Section III).

Thus, the proposed methodology (Fig. 1) is divided into
three phases. During the first training phase, the SuperNet is
trained on a powerful GPU server to recognize faces from
a large dataset of celebrities [4]. Next, various subnetworks

are randomly extracted from this SuperNet, and the accuracy
of each subnetwork is estimated using the validation part
of the same dataset of celebrities. Finally, the GBDT-based
accuracy comparator GBDT comparator is trained using
a description of a subnetwork and corresponding validation
accuracy.

The LUT is estimated for a concrete mobile device during
the second deployment phase. Next, an appropriate sub-
network is extracted using the proposed Algorithm 1. Fi-
nally, during the third face recognition step, the input facial
photo and every n-th example image of available subjects
are preprocessed, the facial region is detected and fed into
the deployed subnetwork to extract embeddings x and xn,
respectively. The classifier is trained on a set of vectors {xn},
and the input facial descriptor x is classified to make a final
decision.

C. MOBILE APPLICATION
An Android demo application was implemented to demon-
strate the efficiency of the proposed approach (Fig. 1). It sup-
ports two essential functions. At first, it is possible to measure
the mean and standard deviation of the inference time by
100 times running of a CNN selected in the top combo-box
given a randomly initialized input tensor. Secondly, a simple
face verification protocol is implemented as follows (Fig. 2).
A user can select two photos from a gallery on a mobile
device. Next, the facial regions are detected on each image,
and the chosen subnetwork extracts the descriptors. Finally,
red lines are drawn between the closed faces, for which the
distance between their descriptors is less than the predefined
threshold.

Our application is distributed with several models for two
mobile phones with Qualcomm Snapdragon 865 and 765
chipsets. We decided to choose time constraints based on the
time tENet of running the EfficientNet-B0 (TFLite) model,
which is equal to 22 ± 2 ms and 59 ± 5 ms for the CPU
of Snapdragon 865 and 765, respectively. To demonstrate
the potential of our approach, we obtained two subnetworks
(from now on, “Subnet 1" and “Subnet 2") for each device
(865 and 765) by choosing two different values of t0 (3)
to be equal to 40% and 60% of the EfficientNet’s inference
time. The source code of the mobile application, and Jupyter
Notebook to reproduce the main experiments, checkpoints
of facial SuperNet, and our four subnetworks are publicly
available1.

V. EXPERIMENTAL SETUP
A. DATA
In this section, we evaluate our facial SuperNet and its four
subnetworks on the LFW [9] dataset with 13233 images of
5749 people. This dataset is a de facto standard for testing
face recognition algorithms [48]. All models should be as-
sessed on this widespread public face dataset [30], [50]. We

1https://github.com/HSE-asavchenko/mobile-face-recognition
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FIGURE 2: The data flow in the demo mobile application.

used two post-processing techniques of the faces detected by
the RetinaFace [51]:

1) Simple crop of detected faces without any margins
(Fig. 3a);

2) Additional face alignment from InsightFace repository
using five key points at the output of the RetinaFace.
Here, the similarity transform was applied, and a
224x224 image was obtained with some background
(Fig. 3b).

Conventional evaluation protocols were used to compare
the performance of models on face verification and identifi-
cation tasks. In the former case, the metrics from Section III,
namely, accuracy, validation rate@FAR≤0.001, AUC, and
EER, were estimated using 10-fold cross-validation with

splits provided by the authors of the LFW dataset.
In the latter case, classification accuracy A was estimated

using the protocol from [11]: we select C = 596 subjects
who have at least two images in the LFW and at least
one video in the YouTube Faces database. The training set
contains precisely one facial photo of these subjects; all other
images from LFW were put into the testing set. The average
accuracy of the 1-NN classifier is computed using five times
randomly repeated cross-validation.

B. FACIAL DESCRIPTORS
Performance of “Subnet 1" and “Subnet 2" for Snapdragon
865 and 765 is compared with several publicly-available
facial descriptors pre-trained on the same VGGFace2 dataset,
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(a)

(b)

FIGURE 3: Sample images from the LFW dataset: (a)
Cropped by RetinaFace without margins; (b) Cropped and
aligned.

namely:

• IResNet-50 (Improved Residual Network, vgg2_r50_pfc
ONNX model)2 from InsightFace (ArcFace) [1];

• PyTorch version of the SENet-50 (model “senet50_ft")3

provided by the authors of the VGGFace2 [4];
• InceptionResNet v1 from FaceNet [2] repository based

on TensorFlow4.
• Multi-task MobileNet v1 (age_gender_tf2_224_deep-

03-0.13-0.97)5 with simultaneous extraction of facial
features and age/gender prediction [32];

• Our EfficientNet-B0 and EfficientNet-B26 trained on
the same VGGFace2 train-test split. Their fine-tuned
versions are characterized by the state-of-the-art accu-
racy for facial expression recognition on the AffectNet
dataset [49].

In addition, we report the results of several well-known
publicly available facial descriptors trained on the sec-
ond version of preprocessing of the MS-Celeb-1M dataset,
namely, MS1M-refine-v2:

• TensorFlow implementation7 for MobileFaceNet [5];

2https://github.com/deepinsight/insightface/tree/master/model_zoo
3https://github.com/cydonia999/VGGFace2-pytorch
4https://github.com/davidsandberg/facenet
5https://github.com/HSE-asavchenko/HSE_FaceRec_tf/tree/master/age_

gender_identity
6https://github.com/HSE-asavchenko/face-emotion-recognition/tree/

main/models/pretrained_faces
7https://github.com/sirius-ai/MobileFaceNet_TF

TABLE 1: The sizes of facial networks

CNN No. of weights, M.
PocketNetS-128 [44] 1.75
PocketNetM-256 [44] 1.01

MobileFaceNet [5] 1.22
InsightFace (IResNet-50) [1] 41.58
VGGFace2 (SENet-50) [4] 24.92

FaceNet (InceptionResNet) [2] 22.83
Multi-task MobileNet v1 [32] 3.33

EfficientNet-B0 [49] 3.89
EfficientNet-B2 [49] 16.46

Our SuperNet 8.75
Our Subnet 1, 865 4.52
Our Subnet 2, 865 3.16
Our Subnet 1, 765 4.67
Our Subnet 2, 765 3.00

• NAS-based official PocketNetS-128 and PocketNetM-
256 [44] models “295672backbone" and “261556back-
bone"8.

As the proposed method targets mobile applications, the
memory size of the model is also essential. The network
sizes (number of parameters) of the backbones of the above-
mentioned neural networks (without the last fully-connected
classification layer) are shown in Table 1.

VI. EXPERIMENTAL RESULTS
A. FACE VERIFICATION
The mean and standard deviation of the face verification
metrics for cropped (Fig. 3a) and aligned (Fig. 3b) faces are
shown in Table 2 and Table 3, respectively. The best results
in each column are in bold, while the second and third-best
metrics are underlined.

Here, first, modern facial descriptors (InsightFace, VG-
GFace2, FaceNet) are characterized by much better qual-
ity when compared to the mobile architectures (Mo-
bileNet/EfficientNet) trained by ourselves. However, our
lightweight SuperNet and subnetworks obtained using the
proposed framework (Fig. 1) show results competitive to the
best-known models. It is remarkable because all these CNNs
were trained on the same sets of cropped faces from the
VGGFace2 dataset.

Second, VGGFace2 is not the best dataset for pre-training
facial descriptors. All CNNs trained on other datasets are
much better for facial alignment and loosely cropped faces
(Table 3). However, they are not robust to small perturba-
tions: the accuracy is significantly dropped (Table 2) for the
facial regions at the output of the face detector (Fig. 3a).
In the latter case, our models show the best metrics, even
slightly better than for the aligned faces. The OFA SuperNet
is more accurate than the very fast Subnet 2, but Subnet 1
offers practically the same accuracy as the SuperNet.

8https://github.com/fdbtrs/PocketNet/
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TABLE 2: Verification results, cropped faces

Dataset for pre-training CNN Accuracy, % Val@1e-3, % AUC EER
MS1MV2 PocketNetS-128 [44] 91.75±0.82 51.10±3.12 0.97005 0.085
MS1MV2 PocketNetM-256 [44] 94.63±0.82 69.27±3.37 0.98511 0.055
MS1MV2 MobileFaceNet [5] 84.25±1.39 21.47±3.68 0.91043 0.162

InsightFace (IResNet-50) [1] 96.28±0.85 82.90±2.19 0.99232 0.038
VGGFace2 (SENet-50) [4] 99.08±0.37 95.87±1.78 0.99941 0.010

FaceNet (InceptionResNet) [2] 98.97±0.57 96.87±1.49 0.99909 0.010
Multi-task MobileNet v1 [32] 97.33±0.80 85.47±2.43 0.99599 0.027

VGGFace2 EfficientNet-B0 [49] 97.82±0.83 89.77±2.30 0.99685 0.023
EfficientNet-B2 [49] 98.20±0.82 85.43±2.49 0.99819 0.017

Our SuperNet 99.35±0.44 98.47±1.04 0.99975 0.006
Our Subnet 1, 865 99.28±0.41 97.93±1.20 0.99965 0.007
Our Subnet 2, 865 99.02±0.56 97.83±1.24 0.99957 0.010

TABLE 3: Verification results, aligned faces

Dataset for pre-training CNN Accuracy, % Val@1e-3, % AUC EER
MS1MV2 PocketNetS-128 [44] 99.40±0.41 99.03±0.85 0.99905 0.005
MS1MV2 PocketNetM-256 [44] 99.57±0.30 99.27±0.71 0.99935 0.004
MS1MV2 MobileFaceNet [5] 99.17±0.50 97.17±1.42 0.99932 0.008

InsightFace (IResNet-50) [1] 99.22±0.37 98.60±0.98 0.99929 0.006
VGGFace2 (SENet-50) [4] 99.37±0.37 97.87±1.26 0.99964 0.006

FaceNet (InceptionResNet) [2] 99.28±0.53 96.33±1.86 0.99939 0.008
Multi-task MobileNet v1 [32] 98.05±0.76 84.87±1.89 0.99742 0.021

VGGFace2 EfficientNet-B0 [49] 97.17±0.70 88.20±1.79 0.99619 0.028
EfficientNet-B2 [49] 98.45±0.88 90.60±2.02 0.99873 0.015

Our SuperNet 99.32±0.34 98.00±1.27 0.99978 0.006
Our Subnet 1, 865 99.22±0.35 98.00±1.32 0.99970 0.008
Our Subnet 2, 865 99.20±0.41 97.57±1.42 0.99955 0.010

Such robustness is a critical property from the practical
point of view [49]. Indeed, the background near the faces may
vary drastically, so there is no guarantee that high quality is
obtained for any background. Moreover, it may be impossible
to rapidly get the facial key points and align faces in many
mobile applications. Finally, it was demonstrated that such a
robust network might be much better fine-tuned for other fa-
cial processing tasks, e.g., facial expression recognition [49].

B. FACE IDENTIFICATION
The mean and standard deviation of classification accuracy A
are shown in Table 4. Though face verification and identifica-
tion tasks are different, the results of this experiment are sim-
ilar to the results of the previous investigation (Tables 2, 3).
The InsightFace models are the most accurate for aligned
faces but are much worse if the facial regions are cropped.
It is especially noticeable for IResNet-50 architecture trained
on the VGGFace2 dataset, characterized by one of the worst
quality (82.34%) among all models. In the latter case, our
models have at least a 3%-lower error rate than all existing
facial descriptors. As the face identification task is more
complex, Subnet 2, generated under strict time constraints,

is 1.5-2% less accurate than our SuperNet.

C. ORIGINAL OFA VS. PROPOSED FRAMEWORK
This subsection compares the proposed framework with the
original OFAMobileNetV3 SuperNet method. As mentioned
in Subsection IV-A, the loss function has been modified to
train the SuperNet to extract representative features. Hence,
we compare subnetworks extracted from the OFA trained
with the original loss function (softmax categorical cross-
entropy) and the new one (categorical cross-entropy with
label smoothing and ArcFace). Moreover, as the main inno-
vation of this paper is the replacement of the MLP-based ac-
curacy predictor with the architecture defined in the original
OFA [8] to the NAC-based Algorithm 1, their comparison for
our OFA is also presented here. Similarly to our LightGBM
classifier, this MLP predictor was trained on the same dataset
at the output of unit “2. Accuracy estimator" (Fig. 1).

The results for the subnetworks extracted with different
time constraints and LUTs are shown in Table 5. The quality
metrics are computed for face verification and identifica-
tion tasks, but only the cropped faces are used. This study
demonstrates the benefits of the proposed Algorithm 1 with
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TABLE 4: Face identification accuracy A (%)

Dataset for pre-training CNN Aligned faces Cropped faces
MS1MV2 PocketNetS-128 [44] 99.63 ± 0.06 63.94 ± 3.47
MS1MV2 PocketNetM-256 [44] 99.70 ± 0.07 76.12 ± 3.03
MS1MV2 MobileFaceNet [5] 97.42 ± 0.76 44.23 ± 4.16

InsightFace (IResNet-50) [1] 99.23 ± 0.16 82.34 ± 3.35
VGGFace2 (SENet-50) [4] 97.21 ± 4.19 96.61 ± 2.02

FaceNet (InceptionResNet) [2] 96.12 ± 3.41 96.57 ± 1.13
Multi-task MobileNet v1 [32] 92.60 ± 4.01 89.37 ± 4.58

VGGFace2 EfficientNet-B0 [49] 94.07 ± 4.18 94.70 ± 4.67
EfficientNet-B2 [49] 95.00 ± 3.81 91.53 ± 4.53

Our SuperNet 98.97 ± 1.0 99.12 ± 0.83
Our Subnet 1, 865 98.13 ± 2.55 98.71 ± 1.05
Our Subnet 2, 865 96.89 ± 3.55 97.34 ± 2.18

TABLE 5: Comparison of the proposed approach with the original OFA on the LFW, cropped faces

CNN Verification Identification
Device Time constraint OFA Accuracy predictor Accuracy, % Val@1e-3, % Accuracy, %

Original [8] MLP 98.45±0.51 96.34±1.64 96.58 ± 3.05
865 t ≤ 0.6tENet Our MLP 99.10±0.47 97.00±1.66 97.22 ± 3.11

Our Proposed (NAC) 99.22±0.35 98.00±1.32 98.13 ± 2.55
Original [8] MLP 98.39±0.54 96.04±1.80 96.05 ± 3.85

865 t ≤ 0.4tENet Our MLP 99.12±0.49 96.87±1.74 96.48 ± 4.13
Our Proposed (NAC) 99.20±0.41 97.57±1.42 96.89 ± 3.55

Original [8] MLP 98.51±0.43 96.17±1.64 96.67 ± 3.12
765 t ≤ 0.6tENet Our MLP 99.22±0.39 96.87±1.49 97.30 ± 2.86

Our Proposed (NAC) 99.30±0.40 98.03±1.33 98.34 ± 1.93
Original [8] MLP 98.25±0.69 96.96±1.82 96.39 ± 3.99

765 t ≤ 0.4tENet Our MLP 98.95±0.52 97.17±1.69 96.50 ± 4.08
Our Proposed (NAC) 99.07±0.46 96.97±1.70 96.64 ± 3.77

the NAC compared to the MLP-based accuracy predictor. As
one can notice, the proposed NAC increases the validation
rate at FAR 0.001 and recognition accuracy up to 1.1%
greater, especially if the time constraints are not too stringent.
Otherwise, the number of potential subnetworks that satisfy
the latency constraints is deficient. As a result, any search
procedure will likely find models with approximately equal
accuracy (compare the Subnets 2 generated for Snapdragon
765). It is necessary to highlight that the quality of the MLP
predictor is relatively low, though it reached RMSE (root-
mean-square error) 0.16% on the validation set. For example,
it predicts the accuracy of Subnet 1 (865) on the testing part
of the VGGFace2 to be equal to 99.72% while the absolute
accuracy of this subnetwork is equal to 97.90%. A similar
1-2% prediction error is observed even in the original accu-
racy predictor from the OFA [8] on the ImageNet dataset.
However, if we train the LightGBM predictor, it is much
more precise: predicted accuracy on the VGGFace2 test set
(98.47%) is approximately equal to the absolute accuracy
(98.29%) of the extracted subnetwork.

D. ABLATION STUDY
In this Subsection, we conduct an ablation study to ana-
lyze the importance of the various hyperparameters in Al-
gorithm 1. We estimate the face classification accuracy on
the LFW dataset (aligned faces) and the time to run an
evolutionary search on the server with Intel Core i9-10980XE
(3.0GHz/24.75MB/18 cores) and 64Gb RAM. Four subnet-
works have been generated for the LUTs from Snapdragon
865 and 765, and two latency constraints (Table 5). The
dependencies of our quality measures on the number of
iterations T , parents Kr, mutations Mr, population size P ,
and the mutation probability Pm are shown in Figs. 4-8.
The following default values of hyperparameters were used:
T = 500, P = 100,Kr = 0.25,Mr = 0.5, Pm = 0.1,
so only one hyperparameter varied at a time to obtain each
curve on these figures.

As expected, the running time of the evolutionary search
linearly depends on the number of generations (Fig. 4b),
but the classification accuracy does not have a similar trend.
Hence, choosing a reasonable number of T of iterations is
desirable to speed up the search for a subnetwork.

Secondly, the increase in population size leads to an even
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FIGURE 4: Dependence of (a) face identification accuracy
on LFW, and (b) time of the evolutionary search for our
subnetworks on the number of iterations T

more significant increase in the time needed to find a suitable
model (Fig. 5b). However, the accuracy is typically repre-
sented in a U-shaped curve (Fig. 5a). The optimal value of
P is close to 100, at least for the chosen values of other
hyperparameters.

Thirdly, the number of subnetworks that are used as par-
ents should be chosen carefully. For example, its default
value (25, i.e., P ·Kr = 100 ·0.25) lets us reach the maximal
accuracy in all cases except Subnet 1 (Snapdragon 865), for
which it is better to have a more significant number of parents
(Fig. 6a). Surprisingly, the running time is typically increased
with the growth of Kr (Fig. 6b), but the time of search
becomes much lower for a considerable number of parents
(100 · 0.9 = 90).

Fourthly, the default value of the number of subnetworks
generated by a mutation in one generation (P · Mr =
100 · 0.5 = 50) works reasonably well. It does not reach the
maximal accuracy only for one case (Subnet 2, Snapdragon
865), but the difference in the accuracy 0.04% is negligible
(Fig. 7a). The running time also does not depend on Mr: the
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FIGURE 5: Dependence of (a) face identification accuracy
on LFW, and (b) time of the evolutionary search for our
subnetworks on the population size P

evolutionary search procedure becomes significantly faster
only for the high number of mutations (Fig. 7b).

Finally, the probability of mutation in the depth of the
network and kernel size and expand ratio of each block is
the most difficult hyperparameter to set. Its default value
(Pm = 0.1) is not optimal in all four cases. It is important
to emphasize that the value of Pm should not be very high,
as the evolutionary search becomes too slow. Indeed, it is
difficult to mutate most of the subnetwork and still satisfy
the latency constraint.

E. RUNNING TIME ON MOBILE DEVICES
In this Subsection, our mobile demo application measured
the inference time per one face (Fig. 2). Two Xiaomi mobile
devices were utilized: Mi 10T Pro with Snapdragon 865 and
Mi 10 Lite with Snapdragon 765g. Experimental results are
summarized in Table 6. As one can notice, the InsightFace
models are inappropriate for offline facial processing on a
mobile device due to their very high accuracy. It is important
to emphasize that though PocketNets models have a few
parameters, they run very slowly in the PyTorch Mobile
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FIGURE 6: Dependence of (a) face identification accuracy
on LFW, and (b) time of the evolutionary search for our
subnetworks on the relative number of parents Kr

environment. These models seem to have some layers that
should not be used on mobile devices. Even our slowest
models (“Subnet 1") are as fast as MobileNet v1, while
Subnet 2 is 1.5 times faster. Unit 6 in our pipeline (Fig. 1)
is essential. Indeed, in contrast to TensorFlow Lite, PyTorch
1.9 does not support running on the GPU of a mobile device.
Even the running time on the CPU of PyTorch models is
twice as high as the equivalent TFLite model.

VII. CONCLUSION AND FUTURE WORKS
This paper proposes a novel engine (Fig. 1) to develop
device-specific facial descriptors. The main advantage of our
Algorithm 1 is the need for only several minutes to find a
model given a latency constraint for a particular device. An-
other significant advantage is the high processing speed and
accuracy. Indeed, it was experimentally demonstrated that ex-
tracted subnetworks process images faster than MobileNet v1
(Table 6) and reach near the state-of-the-art accuracy in both
LFW’s face verification (Table 2) and identification tasks
(Table 4) using facial regions at the output of face detector
without additional alignment and margins with potentially
noisy background (Fig. 3a).

The subnetworks’ generation pipeline in the original
OFA [8] is based on an accuracy predictor, which focuses
on solving the regression problem using MLP. Although
the regression approach is relatively straightforward, it was
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FIGURE 7: Dependence of (a) face identification accuracy
on LFW, and (b) time of the evolutionary search for our
subnetworks on the relative number of mutations Mr

demonstrated that shifting to GBDT-based binary classifica-
tion can improve performance due to non-linear NAS space
and the difficulty of precise prediction of the expected ac-
curacy. As a result, using the proposed accuracy comparator
leads to up to 1% greater accuracy of generated models
compared to the original accuracy predictor (Table 5).

The SuperNet is trained on the VGGFace2 dataset and
made publicly available with several subnetworks and a demo
Android application (Fig. 2). It may be used in any offline
mobile services, such as clustering of family members and
friends of a device’s owner in a gallery of photos [26],
[32]. The availability of TensorFlow Lite models makes it
possible even to implement video-based face recognition on
embedded or edge devices.

There are several disadvantages of the proposed ap-
proach. First, estimating the latency of a subnetwork running
on a mobile GPU is impossible by summing the running
times for each layer from the LUT (step 4 in Algorithm 1).

The second shortcoming of our Algorithm 1 is the absence
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TABLE 6: Inference time (ms) per one face

Device CNN PyTorch CPU TFLite CPU TFLite GPU
InsightFace (IResNet-50) [1] - 203.75 ± 9.23 53.41 ± 0.71

PocketNetM-128 [44] 284.00 ± 30.07 - -
PocketNetM-256 [44] 407.86 ± 48.37 - -

865 MobileFaceNet [5] - 25.95 ± 1.51 4.75 ± 0.52
Multi-task MobileNet v1 [32] - 13.28 ± 0.63 4.78 ± 0.41

Our Subnet 1 23.54 ± 1.50 11.89 ± 0.53 4.76 ± 0.45
Our Subnet 2 19.78 ± 1.76 8.74 ± 0.58 3.55 ± 0.50

InsightFace (IResNet-50) [1] - 507.12 ± 10.86 85.44 ± 2.26
PocketNetM-128 [44] 715.63 ± 41.21 - -
PocketNetM-256 [44] 1036.11 ± 59.20 - -

765 MobileFaceNet [5] - 39.08 ± 1.34 9.05 ± 0.47
Multi-task MobileNet v1 [32] - 33.07 ± 1.12 8.65 ± 1.05

Our Subnet 1 64.74 ± 2.21 34.02 ± 1.36 9.15 ± 0.87
Our Subnet 2 47.79 ± 2.09 22.82 ± 0.94 6.19 ± 0.72
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FIGURE 8: Dependence of (a) face identification accuracy
on LFW, and (b) time of the evolutionary search for our
subnetworks on the mutation probability Pm

of memory constraints in the generation of subnetworks,
though it is known that the memory size of the network is
also essential. As a result, several existing publicly-available
facial models have much smaller sizes (Table 1), though the
accuracy and latency of our subnetworks are significantly
better.

One of the widely-used techniques to control the model’s

size is network compression [52], [53]. Moreover, it can
influence the latency, as many embedded devices work much
faster with int8-quantized models. From this point of view,
our current models have a third limitation: they struggle
with post-training quantization, so the accuracy degradation
sometimes reaches 10-20%

Hence, in the future, it is necessary to incorporate the
memory constraint into criteria (3), evolution search, and the
architecture of SuperNet. For example, the penultimate layer
of the OFAMobileNetV3 and all extracted subnetworks is
the Conv2D layer that converts 1152-dimensional features to
1536-dimensional facial representations, which is relatively
fast but has more than 1.5M parameters.

Moreover, it is necessary to apply more sophisticated
quantization techniques and modify the proposed framework
for a joint search of multi-AutoML with simultaneous quan-
tization and pruning [43] and quantization-aware selection of
candidates for efficiently compressed subnetworks.

Another research direction is the usage of more com-
plex datasets to pre-train the SuperNet for our method. The
difference in validation accuracies of the deepest (98.3%)
and lightweight subnetworks (97.5%) is less than 1%, so
choosing the most reliable facial descriptor that works in
cross-domain settings is challenging.
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