
300 VOLUME 34 NUMBER 3 MARCH 2016 NATURE BIOTECHNOLOGY

A N A LY S I S

The amount of sequence information in public repositories

is growing at a rapid rate. Although these data are likely to

contain clinically important information that has not yet been

uncovered, our ability to effectively mine these repositories

is limited. Here we introduce Sequence Bloom Trees (SBTs),

a method for querying thousands of short-read sequencing

experiments by sequence, 162 times faster than existing

approaches. The approach searches large data archives for

all experiments that involve a given sequence. We use SBTs

to search 2,652 human blood, breast and brain RNA-seq

experiments for all 214,293 known transcripts in under 4 days

using less than 239 MB of RAM and a single CPU. Searching

sequence archives at this scale and in this time frame is

currently not possible using existing tools.

The National Institutes of Health (NIH) Sequence Read Archive (SRA)1
contains ~3 petabases of sequence information that can be used to
answer biological questions that single experiments do not have the
power to address. However, searching the entirety of such a database for
a sequence has not been possible in reasonable computational time.

Some progress has been made toward enabling sequence searches
on large databases. The NIH SRA provides a sequence search
functionality2; however, the search is restricted to a limited number
of experiments. Existing full-text indexing data structures such as
Burrows-Wheeler transform3, FM-index4 or others5–7 are currently
unable to mine data of this scale. Word-based indices8,9, such as
those used by internet search engines, are not appropriate for edit-
distance-based biological sequence searches. The sequence-specific
solution caBLAST and its variants10–12 require an index of known
genomes, genes or proteins, and so cannot search for novel sequences.
Further, none of these existing approaches are able to match a query
sequence q that spans many short reads.

Here, we use an indexing data structure, Sequence Bloom Tree
(SBT), to identify all experiments in a database that contain a given
query sequence q. A query is an arbitrary sequence, such as a tran-
script. The SBT index is independent of eventual queries, so the

approach is not limited to searching for known sequences, and the
index can be efficiently built and stored in limited additional space.
It also does not require retaining the original sequence files and can
be distributed separately from the data. SBTs are dynamic, allowing
insertions and deletions of new experiments. A coarse-grained ver-
sion of an SBT can be downloaded and subsequently refined as more
specific results are needed. They can be searched using low memory
for the existence of arbitrary query sequences. We show that SBTs can
search large collections of RNA-seq experiments for a given transcript
orders of magnitude faster than existing approaches.

RESULTS

Application of SBT to sequence searching

SBTs create a hierarchy of compressed bloom filters13,14, which effi-
ciently store a set of items. Each bloom filter contains the set of k-mers
(length-k subsequences) present within a subset of the sequencing
experiments. SBTs are binary trees in which the sequencing experi-
ments are associated with leaves, and each node v of the SBT contains
a bloom filter that contains the set of k-mers present in any read in
any experiment in the subtree rooted at v (Supplementary Fig. 1). We
reduced the space usage by using bloom filters that are compressed
by the RRR15 compression scheme (Online Methods). Hierarchies
of bloom filters have been used for data management on distrib-
uted systems16. However, they have not previously been applied to
sequence search, and we find that this allows us to tune the bloom fil-
ter error rate much higher than in other contexts (Theorem 2, Online
Methods), vastly reducing the space requirements. Bloom filters have
also been used for storing implicit de Bruijn graphs17,18, and one view
of SBTs is as a generalization of this to multiple graphs.

We used SBTs to search RNA-seq experiments for expressed iso-
forms. We built an SBT on 2,652 RNA-seq experiments in the SRA
for human blood, breast and brain tissues (Supplementary Table 1).
The entire SBT required only 200 GB (2.3% of the size of the original
sequencing data) (Supplementary Table 2). For these data, construc-
tion of the tree took ≈2.5 min per file (Supplementary Table 3).

These experiments could be searched for a single transcript query
in, on average, 20 min (Fig. 1), using less than 239 MB of RAM with
a single thread (Online Methods). We estimate the comparable search
time using SRA-BLAST2 or mapping by STAR19 to be 2.2 d and 921 d,
respectively (Online Methods), though SRA-BLAST and STAR return
alignments whereas SBT does not. However, even a very fast aligner
such as STAR cannot identify query-containing experiments as fast
as SBT. We also tested batches of 100 queries and found SBT was an
estimated 4,056 times faster than a batched version of the mapping

Fast search of thousands of short-read sequencing
experiments

Brad Solomon1 & Carl Kingsford2

1Joint Carnegie Mellon University–University of Pittsburgh Ph.D. Program

in Computational Biology, Computational Biology Department, School of

Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
2Computational Biology Department, School of Computer Science, Carnegie

Mellon University, Pittsburgh, Pennsylvania, USA. Correspondence should be

addressed to C.K. (carlk@cs.cmu.edu).

Received 28 April 2015; accepted 23 November 2015; published online

8 February 2016; doi:10.1038/nbt.3442

n
p
g

©
 2

0
1
6

N
a

tu
re

 A
m

e
ri

c
a

,
In

c
.
A

ll
 r

ig
h

ts
 r

e
s

e
rv

e
d

.

http://dx.doi.org/10.1038/nbt.3442

NATURE BIOTECHNOLOGY VOLUME 34 NUMBER 3 MARCH 2016 301

approach (Supplementary Fig. 2). These queries were performed over
varying sensitivity threshold θ (the minimum fraction of query k-mers
that must exist in order to return a ‘hit’) as well as the transcripts per
million (TPM) threshold used to select the query set (Supplementary

Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on
queries that were not expressed in any experiment (Supplementary

Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms

SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST,
by first ruling out experiments in which the query sequences are not
present. This allows the subsequent processing time to scale with the
size of the number of hits rather than the size of the database. We
first used SBTs to filter the full dataset consisting of 2,652 human
blood, breast and brain RNA-seq experiments. We then compared
the performance of STAR or SRA-BLAST on the filtered dataset with
the time to process the unfiltered dataset with these algorithms. Using
SBTs to first filter the data reduced the overall query time of STAR or
SRA-BLAST by a factor of ≈3 (Supplementary Fig. 6).

Measuring the performance of SBT

To analyze the accuracy of the SBT filter, we compared the experiments
returned by SBT with those in which the query sequence was estimated
to be expressed using Sailfish20. Because it is impractical to use existing
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files
on which we ran Sailfish (Fig. 2). Three collections of representative
queries were constructed using Sailfish, denoted by High, Medium and
Low, which included transcripts of length >1,000 nt that were likely to
be expressed at a higher, medium or low level in at least one experiment
contained in the set of 100 experiments on which Sailfish was run. The
High set was chosen to be 100 random transcripts with an estimated
abundance of >1,000 TPM in at least one experiment. The Medium and
Low query sets were similarly chosen randomly from among transcripts
with >500 and >100 TPM, respectively. These Sailfish estimates were
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch
between SBT’s definition of present (coverage of k-mers over a sufficient
fraction of the query) and Sailfish’s definition of expressed (as estimated

by read mapping and an expectation-maximization inference). These
two definitions are related, but not perfectly aligned, resulting in some
disagreement that is quantified by the false-positive rates (FPR) and
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no
results but their expression is above the TPM threshold as estimated
by Sailfish. This is supported by the fact that the average true-positive
rate at θ = 0.7 for queries that return at least one file was 96–100%,
and the median true-positive rate across all queries was 100% for all
but the strictest θ (Fig. 2).

DISCUSSION

We used SBT to search all blood, brain and breast SRA sequencing runs
for the expression of all 214,293 known human transcripts and used these
results to identify tissue-specific transcripts (Supplementary Table 5
and Supplementary Fig. 7). This search took 3.3 d using a single thread
(Supplementary Fig. 8). There are presently no search or alignment
tools that can solve this scale of sequence search problem in a reasonable
time frame, but we estimate an equivalent search using Sailfish would
take 92 d. The speed and computational efficiency of SBTs will enable
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and
metagenomic collections as well. Researchers could search for conditions
from among thousands that are likely to express a given novel isoform or
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a
particular research question from available sequencing experiments.
Individual hospitals, sequencing centers, research consortia and
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to
find the relevant conditions for further study. SBTs enable the efficient
mining of these data and could be used to uncover biological insights
that can be revealed only through the analysis of multiple data sets from
different sources. Furthermore, SBTs do not require prior knowledge
about sequences of interest, making it possible to identify, for example,
the expression of unknown isoforms or long noncoding RNAs. This
algorithm makes it practical to search large sequencing repositories and
may open up new uses for these rich collections of data.

10
7

10
6

10
5

10
4

10
3

10
2

10
1

SBT

SR
A-B

LA
ST

STA
R

(C
PU

 ti
m

e) STA
R

(1
5-

th
re

ad
)

T
im

e
 (

m
in

)

Figure 1 Estimated running times of search tools for one transcript. The

SBT per-query time was recorded using a maximum of a single filter in

active memory and one thread. The other bars show the estimated time to

achieve the same query results using SRA-BLAST and STAR.

1.0

0.9

0.8 0.7

TPM

100
500
1,000

0.6
0.5

0.8

0.6

0.4

0.2

0
0

� = 1.0

0.05 0.10 0.15 0.20 0.25 0.30 0.35

T
ru

e
 p

o
s
it
iv

e

False positive

Figure 2 Receiver operating characteristic (ROC) curve averaged over

100 queries with estimated expression >100, >500 and >1,000 TPM

and variable θ (Online Methods). Solid lines represent mean true-positive

and false-positive rates, dashed lines represent the median rates on the

same experiments. Relaxing θ leads to a higher sensitivity at the cost of

specificity. In more than half of all queries, 100% of true-positive hits can

be found with θ as high as 0.9.

A N A LY S I S

n
p
g

©
 2

0
1
6

N
a

tu
re

 A
m

e
ri

c
a

,
In

c
.
A

ll
 r

ig
h

ts
 r

e
s

e
rv

e
d

.

302 VOLUME 34 NUMBER 3 MARCH 2016 NATURE BIOTECHNOLOGY

METHODS

Methods and any associated references are available in the online
version of the paper.

 Note: Any Supplementary Information and Source Data files are available in the online

version of the paper.

ACKNOWLEDGMENTS

This research is funded in part by the Gordon and Betty Moore Foundation’s Data-
Driven Discovery Initiative through grant GBMF4554 to C.K., by the US National
Science Foundation (CCF-1256087, CCF-1319998) and by the US National Institutes
of Health (R21HG006913, R01HG007104). C.K. received support as an Alfred P. Sloan
Research Fellow. B.S. is a predoctoral trainee supported by US National Institutes of
Health training grant T32 EB009403 as part of the Howard Hughes Medical Institute
(HHMI)–National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Interfaces Initiative.” We would like to thank D. Filippova, J. Fong, H. Wang, E. Sefer,
G. Johnson, and especially G. Marçais, G. Duggal and R. Patro for sharing their source
code, and for valuable discussions and comments on the manuscript.

AUTHOR CONTRIBUTIONS

B.S. and C.K. designed the method, devised the experiments, implemented the
software and wrote the manuscript. B.S. performed the experiments.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/

reprints/index.html.

1. Leinonen, R., Sugawara, H. & Shumway, M. The sequence read archive. Nucleic

Acids Res. 39, D19–D21 (2011).

2. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10,

421 (2009).

3. Burrows, M. & Wheeler, D.J. A block sorting lossless data compression algorithm.

Technical Report 124 (Digital Equipment Corporation, 1994).

4. Ferragina, P. & Manzini, G. Indexing compressed text. J. Assoc. Comput. Mach.

52, 552–581 (2005).

5. Grossi, R. & Vitter, J.S. Compressed suffix arrays and suffix trees with applications

to text indexing and string matching. SIAM J. Comput. 35, 378–407 (2005).

6. Grossi, R., Vitter, J.S. & Xu, B. Wavelet trees: from theory to practice. in Data

Compression, Communications and Processing (CCP), 2011 First International

Conference on 21–24 June 2011 (pp.210–221). (IEEE, 2011).

7. Navarro, G. & Mäkinen, V. Compressed full-text indexes. ACM Comput. Surv. 39,

Article No. 2 doi:10.1145/1216370.1216372 (2007).

8. Ziviani, N., Moura, E., Navarro, G. & Baeza-Yates, R. Compression: a key for next-

generation text retrieval systems. IEEE Computer 33, 37–44 (2000).

9. Navarro, G., Moura, E., Neubert, M., Ziviani, N. & Baeza-Yates, R. Adding compression

to block addressing inverted indexes. Inf. Retrieval 3, 49–77 (2000).

10. Loh, P.-R., Baym, M. & Berger, B. Compressive genomics. Nat. Biotechnol. 30,

627–630 (2012).

11. Daniels, N.M. et al. Compressive genomics for protein databases. Bioinformatics

29, i283–i290 (2013).

12. Yu, Y.W., Daniels, N.M., Danko, D.C. & Berger, B. Entropy-scaling search of massive

biological data. Cell Syst. 1, 130–140 (2015).

13. Bloom, B.H. Space/time trade-offs in hash coding with allowable errors. Commun.

ACM 13, 422–426 (1970).

14. Broder, A. & Mitzenmacher, M. Network applications of bloom filters: a survey.

Internet Math. 1, 485–509 (2005).

15. Raman, R., Raman, V. & Srinivasa Rao, S. Succinct indexable dictionaries with

applications to encoding k-ary trees and multisets. in Proceedings of the Thirteenth

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’02 (233–242)

(Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2002).

16. Crainiceanu, A. Bloofi: a hierarchical bloom filter index with applications to

distributed data provenance. in Proceedings of the 2nd International Workshop on

Cloud Intelligence, article 4. doi:10.1145/2501928.2501931 (ACM, 2013).

17. Pell, J. et al. Scaling metagenome sequence assembly with probabilistic de Bruijn

graphs. Proc. Natl. Acad. Sci. USA 109, 13272–13277 (2012).

18. Chikhi, R. & Rizk, G. Space-efficient and exact de Bruijn graph representation

based on a Bloom filter. Algorithms Mol. Biol. 8, 22 (2013).

19. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29,

15–21 (2013).

20. Patro, R., Mount, S.M. & Kingsford, C. Sailfish enables alignment-free isoform

quantification from RNA-seq reads using lightweight algorithms. Nat. Biotechnol.

32, 462–464 (2014).

A N A LY S I S

n
p
g

©
 2

0
1
6

N
a

tu
re

 A
m

e
ri

c
a

,
In

c
.
A

ll
 r

ig
h

ts
 r

e
s

e
rv

e
d

.

http://dx.doi.org/10.1038/nbt.3442
http://dx.doi.org/10.1038/nbt.3442
http://dx.doi.org/10.1038/nbt.3442
http://dx.doi.org/10.1038/nbt.3442
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html
http://www.nature.com/doifinder/10.1002/ng.2042
dx.doi.org/10.1145/2501928.2501931

NATURE BIOTECHNOLOGYdoi:10.1038/nbt.3442

ONLINE METHODS
Data Availability. An open-source prototype implementation of SBT is avail-
able at http://www.cs.cmu.edu/~ckingsf/software/bloomtree (Supplementary

Software). Testing and analysis scripts, along with their inputs and outputs,
are available at https://github.com/Kingsford-Group/sbtappendix.

SBT construction and insertion. A SBT is a binary tree that is built by
repeated insertion of sequencing experiments. Given a (possibly empty) SBT
T, a new sequencing experiment s can be inserted into T by first computing
the bloom filter b(s) of the k-mers present in s and then walking from the root
along a path to the leaves and inserting s at the bottom of T in the follow-
ing way. When at node u, if u has a single child, a node representing s (and
containing b(s)) is inserted as u’s second child. If u has two children, b(s) is
compared against the bloom filters b(left(u)) and b(right(u)) of the left left(u)
and right right(u) children of u. The child with the more similar filter under
the Hamming distance between the filters becomes the current node, and
the process is repeated. If u has no children, u represents a sequencing experi-
ment s′. In this case, a new union node v is created as a child of u’s parent.
This new node has two children: u and a new node representing s.

Each filter consists of a bit vector of length m and a set of h hash functions
h1 : U → [0, m) that map items to bits in the bit vector. Insertion of k ∈ U is
performed by setting to 1 the bits specified by hi(k) for i = 1, … , h. Querying
for membership of k in b(k) checks these same bits; if they are all 1, the filter
is reported to contain k. Because of overlapping hash results, bloom filters
have one-sided error: they can report a k-mer k is present when it is not. This
error, and its effect on overall query accuracy of SBTs, can be made quite small
with the appropriate choice of parameters (see below). Bloom filters have been
used in several others contexts in bioinformatics (e.g. refs. 21,22). Hierarchies
of Bloom filters have been used in other applications23.

As s is walked down the tree, the filters at the nodes that are visited are
unioned with b(s). This unioning process can be made fast (and trivially paral-
lelized for large filters) because the union of two bloom filters can be computed
by computing a bit vector with each bit set to 1 exactly when the corresponding
bit in either of the two bloom filters is 1. This is particularly beneficial where
graphics processing units or vector computations can be used for these single
instruction, multiple data (SIMD) operations. SBTs are different than cascad-
ing bloom filters24,25, which aim to reduce false-positive rates of a single set
query by recursively storing false positives in their own bloom filters. SBT
works when word based indices fail26,27.

The insertion process is designed to greedily group together sequencing
experiments with similar bloom filters. This is important for two reasons.
First, it helps to mitigate the problem of filter saturation. If too many dissimilar
experiments are present under a node u, then b(u) tends to have many bits set.
In addition, by placing similar experiments in similar subtrees, more subtrees
are pruned at an earlier stage of a query, reducing query time.

A primary challenge with scaling SBTs to terabytes of sequence is saturation
of the filters at levels of the tree near the root. The filter at any node v is the
union of the filters of its children. However, this means as one moves from
the leaves to the root, the filters will tend to contain more and more bits set to
1, increasing their false-positive rate. This saturation can be overcome using
several techniques: appropriate parameter selection (see “Setting the bloom
filter size”), grouping of related experiments during insertion into the tree as
above and including only k-mers that have a minimum coverage count (see
“Building bloom filters”). Note that filters with poor false-positive rates at high
levels of the tree only affect query time: accuracy is governed entirely by the
false-positive rate of the leaf filters.

Querying. Given a query sequence q and a SBT T, the sequencing experiments
(at the leaves) that contain q can be found by breaking q into its constituent
set of k-mers Kq and then flowing these k-mers over T starting from the root.
At each node u, the bloom filter b(u) at that node is queried for each of the
k-mers in Kq. If more than θ|Kq| k-mers are reported to be present in b(u), the
search proceeds to all of the children of u, where θ is a cutoff between 0 and
1 governing the stringency required of the match. The parameter θ governs
a query’s tolerance to errors. Ignoring the effects of sequence boundaries, a
general SBT query with N k-mers and k-mer size k tolerates at least N (1 − θ)/k
k-mer mismatches, between the query and the stored data.

If fewer than that number of k-mers are present, the subtree rooted at u is
not searched further (it is pruned). It has been shown that k-mer similarity
is highly correlated to the quality of the alignments between sequences28–31,
and SBT guarantees that if the query sequence is present (at sufficient cover-
age), it will be found.

When a search proceeds to the children, the children are added to a
queue for eventual processing. Even though there may be a large frontier of
nodes that are currently active, the memory usage for querying is the trivial
amount of memory needed to store the tree topology plus the memory needed
to store the single current filter. The SBT timings reported here are all for
single-threaded operation.

If several queries are to be made, they can be batched together so that a
collection C = {Kq1, … , Kqt} of queries starts at the root, and only queries
for which |b(u) ∩ Kqi| > θ|Kqi| are propagated to the children. When C becomes
empty at a node, the subtree rooted at that node is pruned and not searched
further. The main advantage of batching queries in this way is locality of
memory references. If b(u) must be loaded from disk, it need be loaded only
once per batch C rather than once per query. Batch queries can be paral-
lelized in the same way as nonbatched queries by storing with the nodes on the
queue the indices of query sets that remain active at that node. Additionally,
batch queries offer an alternative means of parallelization where the query
collection C is split evenly among active threads that merge results for the
final query results.

Our implementation of SBT allows a user to specify a weight wa
between 0 and 1 for each k-mer a in their query Kq. When these weights are
specified, a subtree rooted at u is searched if Σ Σa Kq b u a a Kq aw w∈ ∩ ∈≥() q .
That is, a subtree is searched if greater than θ fraction of the possible
total k-mer weights are observed. K-mers that the user considers essential
to their query (e.g., those spanning an exon junction) can be given higher
weight than others. For all experiments here, we use unweighted k-mers
(wa = 1 for all a).

Setting the bloom filter size. There are two important parameters that need
to be set when constructing the bloom filters contained in a SBT. These are
the bloom filter length (m) and the number of hash functions (h) used in the
filter. We also must choose the k-mer threshold θ for our queries. We explore
below the relationship between m, h, θ and the resulting false-positive rate ξ
of the filters.

Let S be a collection of r sequencing experiments with the property that each
s ∈ S contains n distinct k-mers. We analyze the behavior of a union of filters
under the simplifying assumption that the k-mer overlap between all pairs of
experiments in S is uniform. Specifically, assume that the probability that two
different experiments si and sj in S share any given k-mer is p. In other words, the
expected number of k-mers that appear in sj that do not appear in si is d(1 − p),
where d is the number of k-mers in the experiments. We can then estimate the
expected number of unique k-mers:

Lemma 1. Let U = Us∈S s be the union of sequencing experiments in S
as described above. The expected number of distinct k-mers in the union is
n(1 − (1 − p)r)/p.

Proof. We have E E E E[| |] [| |] [| \ |] [| \ \ |]U S S S S S S= + + +1 2 1 3 1 2 . Each
k-mer in Si is absent from Uj < iSj independently with probability (1 − p)i−1.
Therefore E[| \ |] ()S S n pi j i j

iU <
−= −1 1, and we have:

E[| |] () (())/U n p n p p

i

r
i r= − = − −

=

−∑
1

1
1 1 1

The assumptions of a uniform k-mer count n and uniform overlap
probability p do not hold in practice. However, under idealized assump-
tions, Lemma 1 formalizes the intuition that the expected number of ele-
ments in the SBT is the union set of all k-mers. In practice, this allows us to
define the size of the bloom filter to be equal to an estimate of the total
number of unique k-mers. Under the theoretical assumptions, it also
shows that when the overlap is large (p is close to 1), the number of ele-
ments of U approaches that of a single experiment. Using this relation-
ship, we can select the optimal number of hash functions for such a union
as in Theorem 1.

(1)(1)

n
p
g

©
 2

0
1
6

N
a

tu
re

 A
m

e
ri

c
a

,
In

c
.
A

ll
 r

ig
h

ts
 r

e
s

e
rv

e
d

.

http://www.cs.cmu.edu/~ckingsf/software/bloomtree
https://github.com/Kingsford-Group/sbtappendix

NATURE BIOTECHNOLOGY doi:10.1038/nbt.3442

Theorem 1. The number of hashes that minimizes the false-positive rate of a
union filter U with the expected number of elements is

h m n p p p p loadr r* ((ln)/((())/)) (ln)/(()))= − − = − −2 1 1 2 1 1

where load = n/m. Under this setting of h, the FPR of U is

1

2

h*

,

which is at most 1/2 so long as h* ≥ 1.
Proof. Follows directly by treating U as a single filter containing

n(1 − (1 − p)r)/p items.
In the case of SBTs, we have an advantage that we are not ultimately inter-

ested in a single bloom filter query on a k-mer, but rather a set of queries of the
k-mers contained in the longer query string q. Thus, we are concerned mostly
with the FPR on queries rather than FPR on k-mers. Theorem 2 explores the
connection between the two.

Theorem 2. Let q be a query string containing distinct k-mers. If we treat
the k-mers of q as being independent, the probability that > q false-positive
k-mers appear in a filter U with FPR ξ is

1 −

i

i i

i
=

−∑

−
0

1

q
x x

()

The above expression is nearly 0 when ξ << θ.
Proof. Treating each k-mer in q independently allows us to model the repeated

queries using a binomial distribution, yielding (4). A false positive in q occurs
when > q false-positive k-mers occur in U. Let X be the number of false-
positive k-mers, and let Y be the number of correctly determined k-mers. Then
Pr[] Pr[]X Y> = ≤ −q q . When θ ≥ ξ, we have − ≤ − =q x() []1 E Y ,
and the following bound holds by Chernoff ’s inequality:

Pr[] exp
(() ())

()

exp
()

(

Y ≤ − ≤
− − − −

−

=
− −

q
x q

x

q x

1

2 1

2

2

2

11 −

x)

In our search application, it is natural to require that at least 1/2 the k-mers
of a query are present; if <1/2 are present it is fair to say that the query is not
contained within the experiment. Therefore θ will typically be >>0.5. In this
case, if we choose the FPR of the bloom filters to be 0.5, by Theorem 2, we will
be unlikely to observe >θ fraction of false-positive k-mers in the filter. A bloom
filter FPR of 0.5 is much higher than typical applications of bloom filters, in
which very low false-positive rates are sought. The above analysis assumes
independence of the k-mers, which is, of course, unrealistic. Nevertheless, it
formalizes the intuition that choosing a high FPR can still lead to few errors.
By choosing such a high filter FPR, we can use smaller filters, limiting the
memory footprint of the SBT.

To set the bloom filter size, we follow the intuition of Lemma 1, and use
an estimate of the total number of unique k-mers across as an estimate of the
number of items any individual filter will contain. As it is computationally
expensive to quantify this across all 2,652 files, the total was estimated by
counting the combined k-mer content of 100 random files using Jellyfish 2.0,
yielding an estimate of 1,902,731,933 k-mers. Because we use a filter FPR of
0.5 and h = 1, as suggested by the above theorems, a single element in the SBT
has a storage cost of ≤1 bit. Therefore, we set the size m of each bloom filter (in
bits) to approximately equal this estimate of the number of k-mers. This offers
an approximation that, by undercounting k-mers, sacrifices some accuracy at
the highest levels of the tree for a reduced bloom filter size. This value is also
substantially higher than the number of k-mers expected in any individual
leaf filter and allows leaf filters (where accuracy is most important) to be less
saturated and easily compressed. This leads to an uncompressed filter size of
239 MB, and any k-mer of sufficient coverage that is shared between two files
will correspond to a shared bit.

(2)(2)

(3)(3)

(4)(4)

(5)(5)

Experiments selected for inclusion in the SBT. A SBT was constructed from
2,652 human, RNA-seq short-read sequencing runs from the NIH SRA. These
2,652 files represented the entire set of publicly available, human RNA-seq runs
from blood, brain and breast tissues stored at the SRA at the time of download
as determined by keywords in their metadata and excluding files sequenced
using the SOLID technology. Files where the metadata was unclear about
tissue type or experimental setup were discarded. This tree was used for all
experiments described in the manuscript.

Building bloom filters. The construction of the SBT involves three major
tasks: creation of bloom filters for each of the experiments included at its
leaves, the construction of the tree and internal bloom filters, and the
RRR compression15 of each of the filters. Timing for each stage is given in
Supplementary Table 4.

In the experiments here, bloom filters were constructed using the
Jellyfish k-mer counting library32 from short-read FASTA files downloaded
from the NIH SRA by counting canonical k-mers (the lexicographically smaller
k-mer between a k-mer and its reverse complement). We choose k = 20 as
these k-mers are reasonably unique within the human genome. Jellyfish was
allowed to use 20 threads—all other computation reported here was run with
a single thread.

To select only k-mers from sufficiently expressed transcripts and to
avoid counting k-mers resulting from sequencing errors, we built trees
containing k-mers that occur greater than a file-dependent threshold. This
threshold count(si) was determined using the file size of experiment si as
follows: count(si) = 1 if si is 300 MB or less, count(si) = 3 for files of size
300–500 MB, count(si) = 10 for files of size 500 MB–1 GB, count(si) = 20 for
files between 1 GB and 3 GB, and count(si) = 50 for files > 3 GB or larger
FASTA files. These cutoffs were determined by the analysis of a small set of
18 sequence experiments of various sizes and tissue types and were chosen
such that at least 60% of the transcripts expressed at a non-zero level in each of
these files had an estimated uniform coverage above this number. In practice,
we found these thresholds to outperform two naive thresholds (count(si) = 0
and count(si) = 3 for all i) in speed and accuracy. We report only the results
from the file-dependent threshold for this reason.

We can use a cutoff based on file size here because all the experiments
sequenced the human transcriptome. In a situation where experiments of
mixed organism origin are included, a more sophisticated scheme based
directly on sequencing coverage would be needed to avoid counting sequenc-
ing errors.

After the SBT is built, the filters (both leaf and internal) are compressed
using the RRR15 bit vector compression scheme as implemented in the succinct
data structures library33. This permits querying a bit without decompression
and incurs only a O(log m) factor increase in access time (where m is the size
of the bloom filter).

Hardware used for computational experiments. All times in all experiments
reported here, except for SRA-BLAST, were obtained on a shared computer
with Intel Xeon 2.60 GHz CPUs using a single thread (or 15 threads in the
case of STAR and 20 in the case of Jellyfish). The SBT queries were limited
to keeping a single compressed filter in memory at any one time, leading to
memory usage of <239 megabytes of RAM. SRA-BLAST queries were executed
using its web interface.

Representative query sets and ground truth results. To determine the
accuracy of SBTs, we selected a subset of 100 random read files and used
Sailfish20 to quantify the expression of all transcripts in each of these experi-
ments. All SBT queries are queried on the full set of 2,652 files but the accuracy
is computed based only on the random subset of files for which we computed
expression results from Sailfish.

Note that SBT returns no false negatives in the sense that if a query is
covered by k-mers in sufficient depth over θ-fraction of its length then the
experiment will be returned. The false negatives in Figure 2 are those experi-
ments where Sailfish indicated the transcript was sufficiently expressed but
SBT indicated that it was not sufficiently present. In this context, present and
expressed are different concepts: “present” means sufficient coverage of the
transcript at a given depth, whereas “expression” is estimated using Sailfish’s

n
p
g

©
 2

0
1
6

N
a

tu
re

 A
m

e
ri

c
a

,
In

c
.
A

ll
 r

ig
h

ts
 r

e
s

e
rv

e
d

.

NATURE BIOTECHNOLOGYdoi:10.1038/nbt.3442

expectation-maximization approach to allocate mapped reads to isoforms.
These are related, but not identical notions. SBT has a 0% false negative rate
and a very low false-positive rate identifying present transcripts (false positives
identifying present transcripts are due to the one-sided bloom filter errors and
k-mer shredding of the reads). Figure 2 shows SBT’s false-negative and false-
positive rates identifying expressed transcripts, which are partially due to the
mismatch between the definitions of present and expressed.

SRA-BLAST. There are presently no search or alignment tools that can solve
the sequence search problem in short-read sequencing files at the scale we
attempt here. However, as alignments can be used to determine query coverage
and thus the presence of transcripts in sequence files, we compare with SRA-
BLAST2. SRA-BLAST has a limitation on the total nucleotide count that can
be searched at once and requires specifying SRX (experiment) files rather then
SRR (run) files. Because it is impractical to use SRA-BLAST at the SBT scale,
we estimated an average SRA-BLAST query time from 100 random queries
of a transcript against a single SRX experiment set using the SRA-BLAST
webtool2. Specifically, we randomly selected a short read file from the total
2,652 set and a query from the Low representative query set and recorded the
time it took SRA-BLAST to return an alignment. Some publicly available SRR
files cannot be searched using this webtool and random queries containing
these files were discarded. The extrapolated time to process one >1,000-nt
query against one megabase of sequence read file was recorded at 0.024 s per
megabase per query.

The comparison with SRA-BLAST is not meant to indicate that SBT
can provide the same information as SRA-BLAST. In fact, the tools provide
complementary information: a list of experiments identified with SBT can be
searched for individual read alignments with SRA-BLAST, thereby partially
overcoming SRA-BLAST’s limitation on the number of experiments that can
be searched.

STAR. We also compare our search times with an alignment-based approach
using a read mapping algorithm, STAR20. To do this, we built a separate STAR
index for each of the 100 sequence queries in the Low query set using a size-6
pre-index string. Reads from the 100 files analyzed by Sailfish (our ground
truth set) were mapped to these indices, allowing zero mismatches during the
alignment and a single thread. After 3 d of 15-threaded continuous run-time,
only one STAR query had completed searching these 100 files, and from this an
average 15-thread STAR query time of 0.708 s per megabase per query was cal-
culated by normalizing the time it takes to perform a STAR alignment against
the total size of each sequence file. Single-threaded times were approximated

using the CPU clock time, which took 9.9 s per megabase per query. Whereas
these single-query indices are more representative of the standard search use
case, they represent an index size smaller than is typically used with STAR. To
estimate batched times, a single STAR index was built from all 100 sequences
queries in the Low query set using a size-11 pre-index string. Six alignments
that took longer than 4 h were terminated before completion and their times
were discarded as outliers. In this case, an average STAR query time of 0.0110 s
per megabase per query was calculated. Note in either case, the time per mega-
base per query does not include the time to build the STAR index. Although
STAR was designed to perform efficient alignments, it represents one of the
most competitive existing tools that could be adapted to the general search
problem we solve. The comparison with STAR is not intended to indicate that
SBT provides the same information as STAR, but rather to show that even a
very fast aligner such as STAR cannot identify experiments that contain a
query sequence as quickly as SBT.

21. Stranneheim, H. et al. Classification of DNA sequences using Bloom filters.

Bioinformatics 26, 1595–1600 (2010).

22. Melsted, P. & Pritchard, J.K. Efficient counting of k-mers in DNA sequences using

a bloom filter. BMC Bioinformatics 12, 333 (2011).

23. Crainiceanu, A. & Lemire, D. Multidimensional bloom filters. Inf. Syst. 54, 311–324

(2015).

24. Salikhov, K., Sacomoto, G. & Kucherov, G. Using cascading Bloom filters to improve

the memory usage for de Brujin graphs. Algorithms Mol. Biol. 9, 2 (2014).

25. Rozov, R., Shamir, R. & Halperin, E. Fast lossless compression via cascading Bloom

filters. BMC Bioinformatics 15 (suppl. 9), S7 (2014).

26. Witten, I., Moffat, A. & Bell, T. Managing Gigabytes, 2nd edn. (Morgan Kaufmann,

1999).

27. Baeza-Yates, R. & Ribeiro, B. Modern Information Retrieval (Addison-Wesley,

1999).

28. Zhang, Q., Pell, J., Canino-Koning, R., Howe, A.C. & Brown, C.T. These are not the

k-mers you are looking for: efficient online k-mer counting using a probabilistic

data structure. PLoS One 9, e101271 (2014).

29. Brown, C.T., Howe, A.C., Zhang, Q., Pyrkosz, A.B. & Brom, T.H. A Reference-Free

Algorithm for Computational Normalization of Shotgun Sequencing Data.

arXiv:1203.4802 [q-bio.GN]. Preprint at http://arxiv.org/abs/1203.4802.

30. Rasmussen, K.R., Stoye, J. & Myers, E.W. Efficient q-gram filters for finding all

ε-matches over a given length. J. Comput. Biol. 13, 296–308 (2006).

31. Philippe, N., Salson, M., Commes, T. & Rivals, E. CRAC: an integrated approach

to the analysis of RNA-seq reads. Genome Biol. 14, R30 (2013).

32. Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting

of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).

33. Gog, S., Beller, T., Moffat, A. & Petri, M. in 13th International Symposium on

Experimental Algorithms, Copenhagen, 29 June–1 July 2014 (eds. Gudmundsson,

J. & Katajainen, J.) 326–337 (Springer, 2014).

n
p
g

©
 2

0
1
6

N
a

tu
re

 A
m

e
ri

c
a

,
In

c
.
A

ll
 r

ig
h

ts
 r

e
s

e
rv

e
d

.

http://arxiv.org/abs/1203.4802

	Fast search of thousands of short-read sequencing experiments
	Main
	Results
	Application of SBT to sequence searching
	SBTs can speed up existing algorithms
	Measuring the performance of SBT

	Discussion
	Methods
	Data Availability.
	SBT construction and insertion.
	Querying.
	Setting the bloom filter size.
	Lemma 1.
	Theorem 1.
	Theorem 2
	Experiments selected for inclusion in the SBT.
	Building bloom filters.
	Hardware used for computational experiments.
	Representative query sets and ground truth results.
	SRA-BLAST.
	STAR.

	Acknowledgements
	References

