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A N A LY S I S

The amount of sequence information in public repositories 

is growing at a rapid rate. Although these data are likely to 

contain clinically important information that has not yet been 

uncovered, our ability to effectively mine these repositories 

is limited. Here we introduce Sequence Bloom Trees (SBTs), 

a method for querying thousands of short-read sequencing 

experiments by sequence, 162 times faster than existing 

approaches. The approach searches large data archives for 

all experiments that involve a given sequence. We use SBTs 

to search 2,652 human blood, breast and brain RNA-seq 

experiments for all 214,293 known transcripts in under 4 days 

using less than 239 MB of RAM and a single CPU. Searching 

sequence archives at this scale and in this time frame is 

currently not possible using existing tools.

The National Institutes of Health (NIH) Sequence Read Archive (SRA)1 
contains ~3 petabases of sequence information that can be used to 
answer biological questions that single experiments do not have the 
power to address. However, searching the entirety of such a database for 
a sequence has not been possible in reasonable computational time.

Some progress has been made toward enabling sequence searches 
on large databases. The NIH SRA provides a sequence search  
functionality2; however, the search is restricted to a limited number 
of experiments. Existing full-text indexing data structures such as 
Burrows-Wheeler transform3, FM-index4 or others5–7 are currently 
unable to mine data of this scale. Word-based indices8,9, such as  
those used by internet search engines, are not appropriate for edit-
distance-based biological sequence searches. The sequence-specific 
solution caBLAST and its variants10–12 require an index of known 
genomes, genes or proteins, and so cannot search for novel sequences. 
Further, none of these existing approaches are able to match a query 
sequence q that spans many short reads.

Here, we use an indexing data structure, Sequence Bloom Tree 
(SBT), to identify all experiments in a database that contain a given 
query sequence q. A query is an arbitrary sequence, such as a tran-
script. The SBT index is independent of eventual queries, so the 

approach is not limited to searching for known sequences, and the 
index can be efficiently built and stored in limited additional space. 
It also does not require retaining the original sequence files and can 
be distributed separately from the data. SBTs are dynamic, allowing 
insertions and deletions of new experiments. A coarse-grained ver-
sion of an SBT can be downloaded and subsequently refined as more 
specific results are needed. They can be searched using low memory 
for the existence of arbitrary query sequences. We show that SBTs can 
search large collections of RNA-seq experiments for a given transcript 
orders of magnitude faster than existing approaches.

RESULTS

Application of SBT to sequence searching

SBTs create a hierarchy of compressed bloom filters13,14, which effi-
ciently store a set of items. Each bloom filter contains the set of k-mers 
(length-k subsequences) present within a subset of the sequencing 
experiments. SBTs are binary trees in which the sequencing experi-
ments are associated with leaves, and each node v of the SBT contains 
a bloom filter that contains the set of k-mers present in any read in 
any experiment in the subtree rooted at v (Supplementary Fig. 1). We 
reduced the space usage by using bloom filters that are compressed 
by the RRR15 compression scheme (Online Methods). Hierarchies 
of bloom filters have been used for data management on distrib-
uted systems16. However, they have not previously been applied to 
sequence search, and we find that this allows us to tune the bloom fil-
ter error rate much higher than in other contexts (Theorem 2, Online 
Methods), vastly reducing the space requirements. Bloom filters have 
also been used for storing implicit de Bruijn graphs17,18, and one view 
of SBTs is as a generalization of this to multiple graphs.

We used SBTs to search RNA-seq experiments for expressed iso-
forms. We built an SBT on 2,652 RNA-seq experiments in the SRA 
for human blood, breast and brain tissues (Supplementary Table 1). 
The entire SBT required only 200 GB (2.3% of the size of the original 
sequencing data) (Supplementary Table 2). For these data, construc-
tion of the tree took ≈2.5 min per file (Supplementary Table 3).

These experiments could be searched for a single transcript query 
in, on average, 20 min (Fig. 1), using less than 239 MB of RAM with 
a single thread (Online Methods). We estimate the comparable search 
time using SRA-BLAST2 or mapping by STAR19 to be 2.2 d and 921 d,  
respectively (Online Methods), though SRA-BLAST and STAR return 
alignments whereas SBT does not. However, even a very fast aligner 
such as STAR cannot identify query-containing experiments as fast 
as SBT. We also tested batches of 100 queries and found SBT was an 
estimated 4,056 times faster than a batched version of the mapping 

Fast search of thousands of short-read sequencing 
experiments

Brad Solomon1 & Carl Kingsford2

1Joint Carnegie Mellon University–University of Pittsburgh Ph.D. Program 

in Computational Biology, Computational Biology Department, School of 

Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA. 
2Computational Biology Department, School of Computer Science, Carnegie 

Mellon University, Pittsburgh, Pennsylvania, USA. Correspondence should be 

addressed to C.K. (carlk@cs.cmu.edu).

Received 28 April 2015; accepted 23 November 2015; published online  

8 February 2016; doi:10.1038/nbt.3442

n
p
g

©
 2

0
1
6 

N
a

tu
re

 A
m

e
ri

c
a

, 
In

c
. 
A

ll
 r

ig
h

ts
 r

e
s

e
rv

e
d

.

http://dx.doi.org/10.1038/nbt.3442


NATURE BIOTECHNOLOGY   VOLUME 34 NUMBER 3 MARCH 2016 301

approach (Supplementary Fig. 2). These queries were performed over 
varying sensitivity threshold θ (the minimum fraction of query k-mers 
that must exist in order to return a ‘hit’) as well as the transcripts per 
million (TPM) threshold used to select the query set (Supplementary 

Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on 
queries that were not expressed in any experiment (Supplementary 

Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms

SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST, 
by first ruling out experiments in which the query sequences are not 
present. This allows the subsequent processing time to scale with the 
size of the number of hits rather than the size of the database. We 
first used SBTs to filter the full dataset consisting of 2,652 human 
blood, breast and brain RNA-seq experiments. We then compared 
the performance of STAR or SRA-BLAST on the filtered dataset with 
the time to process the unfiltered dataset with these algorithms. Using 
SBTs to first filter the data reduced the overall query time of STAR or 
SRA-BLAST by a factor of ≈3 (Supplementary Fig. 6).

Measuring the performance of SBT

To analyze the accuracy of the SBT filter, we compared the experiments 
returned by SBT with those in which the query sequence was estimated 
to be expressed using Sailfish20. Because it is impractical to use existing 
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files 
on which we ran Sailfish (Fig. 2). Three collections of representative 
queries were constructed using Sailfish, denoted by High, Medium and 
Low, which included transcripts of length >1,000 nt that were likely to 
be expressed at a higher, medium or low level in at least one experiment 
contained in the set of 100 experiments on which Sailfish was run. The 
High set was chosen to be 100 random transcripts with an estimated 
abundance of >1,000 TPM in at least one experiment. The Medium and 
Low query sets were similarly chosen randomly from among transcripts 
with >500 and >100 TPM, respectively. These Sailfish estimates were 
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch 
between SBT’s definition of present (coverage of k-mers over a sufficient 
fraction of the query) and Sailfish’s definition of expressed (as estimated  

by read mapping and an expectation-maximization inference). These 
two definitions are related, but not perfectly aligned, resulting in some 
disagreement that is quantified by the false-positive rates (FPR) and 
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no 
results but their expression is above the TPM threshold as estimated 
by Sailfish. This is supported by the fact that the average true-positive 
rate at θ = 0.7 for queries that return at least one file was 96–100%, 
and the median true-positive rate across all queries was 100% for all 
but the strictest θ (Fig. 2).

DISCUSSION

We used SBT to search all blood, brain and breast SRA sequencing runs 
for the expression of all 214,293 known human transcripts and used these 
results to identify tissue-specific transcripts (Supplementary Table 5 
and Supplementary Fig. 7). This search took 3.3 d using a single thread 
(Supplementary Fig. 8). There are presently no search or alignment 
tools that can solve this scale of sequence search problem in a reasonable 
time frame, but we estimate an equivalent search using Sailfish would 
take 92 d. The speed and computational efficiency of SBTs will enable 
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and 
metagenomic collections as well. Researchers could search for conditions 
from among thousands that are likely to express a given novel isoform or 
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make 
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a 
particular research question from available sequencing experiments. 
Individual hospitals, sequencing centers, research consortia and 
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to 
find the relevant conditions for further study. SBTs enable the efficient 
mining of these data and could be used to uncover biological insights 
that can be revealed only through the analysis of multiple data sets from 
different sources. Furthermore, SBTs do not require prior knowledge 
about sequences of interest, making it possible to identify, for example, 
the expression of unknown isoforms or long noncoding RNAs. This 
algorithm makes it practical to search large sequencing repositories and 
may open up new uses for these rich collections of data.
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Figure 1 Estimated running times of search tools for one transcript. The 

SBT per-query time was recorded using a maximum of a single filter in 

active memory and one thread. The other bars show the estimated time to 

achieve the same query results using SRA-BLAST and STAR.
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Figure 2 Receiver operating characteristic (ROC) curve averaged over 

100 queries with estimated expression >100, >500 and >1,000 TPM 

and variable θ (Online Methods). Solid lines represent mean true-positive 

and false-positive rates, dashed lines represent the median rates on the 

same experiments. Relaxing θ leads to a higher sensitivity at the cost of 

specificity. In more than half of all queries, 100% of true-positive hits can 

be found with θ as high as 0.9.
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METHODS

Methods and any associated references are available in the online 
version of the paper.

 Note: Any Supplementary Information and Source Data files are available in the online 

version of the paper. 
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ONLINE METHODS
Data Availability. An open-source prototype implementation of SBT is avail-
able at http://www.cs.cmu.edu/~ckingsf/software/bloomtree (Supplementary 

Software). Testing and analysis scripts, along with their inputs and outputs, 
are available at https://github.com/Kingsford-Group/sbtappendix.

SBT construction and insertion. A SBT is a binary tree that is built by 
repeated insertion of sequencing experiments. Given a (possibly empty) SBT 
T, a new sequencing experiment s can be inserted into T by first computing 
the bloom filter b(s) of the k-mers present in s and then walking from the root 
along a path to the leaves and inserting s at the bottom of T in the follow-
ing way. When at node u, if u has a single child, a node representing s (and 
containing b(s)) is inserted as u’s second child. If u has two children, b(s) is 
compared against the bloom filters b(left(u)) and b(right(u)) of the left left(u) 
and right right(u) children of u. The child with the more similar filter under 
the Hamming distance between the filters becomes the current node, and  
the process is repeated. If u has no children, u represents a sequencing experi-
ment s′. In this case, a new union node v is created as a child of u’s parent.  
This new node has two children: u and a new node representing s.

Each filter consists of a bit vector of length m and a set of h hash functions 
h1 : U → [0, m) that map items to bits in the bit vector. Insertion of k ∈ U is 
performed by setting to 1 the bits specified by hi(k) for i = 1, … , h. Querying 
for membership of k in b(k) checks these same bits; if they are all 1, the filter 
is reported to contain k. Because of overlapping hash results, bloom filters 
have one-sided error: they can report a k-mer k is present when it is not. This 
error, and its effect on overall query accuracy of SBTs, can be made quite small 
with the appropriate choice of parameters (see below). Bloom filters have been 
used in several others contexts in bioinformatics (e.g. refs. 21,22). Hierarchies 
of Bloom filters have been used in other applications23.

As s is walked down the tree, the filters at the nodes that are visited are 
unioned with b(s). This unioning process can be made fast (and trivially paral-
lelized for large filters) because the union of two bloom filters can be computed 
by computing a bit vector with each bit set to 1 exactly when the corresponding 
bit in either of the two bloom filters is 1. This is particularly beneficial where 
graphics processing units or vector computations can be used for these single 
instruction, multiple data (SIMD) operations. SBTs are different than cascad-
ing bloom filters24,25, which aim to reduce false-positive rates of a single set 
query by recursively storing false positives in their own bloom filters. SBT 
works when word based indices fail26,27.

The insertion process is designed to greedily group together sequencing 
experiments with similar bloom filters. This is important for two reasons. 
First, it helps to mitigate the problem of filter saturation. If too many dissimilar 
experiments are present under a node u, then b(u) tends to have many bits set. 
In addition, by placing similar experiments in similar subtrees, more subtrees 
are pruned at an earlier stage of a query, reducing query time.

A primary challenge with scaling SBTs to terabytes of sequence is saturation 
of the filters at levels of the tree near the root. The filter at any node v is the 
union of the filters of its children. However, this means as one moves from 
the leaves to the root, the filters will tend to contain more and more bits set to 
1, increasing their false-positive rate. This saturation can be overcome using 
several techniques: appropriate parameter selection (see “Setting the bloom 
filter size”), grouping of related experiments during insertion into the tree as 
above and including only k-mers that have a minimum coverage count (see 
“Building bloom filters”). Note that filters with poor false-positive rates at high 
levels of the tree only affect query time: accuracy is governed entirely by the 
false-positive rate of the leaf filters.

Querying. Given a query sequence q and a SBT T, the sequencing experiments 
(at the leaves) that contain q can be found by breaking q into its constituent 
set of k-mers Kq and then flowing these k-mers over T starting from the root. 
At each node u, the bloom filter b(u) at that node is queried for each of the 
k-mers in Kq. If more than θ|Kq| k-mers are reported to be present in b(u), the 
search proceeds to all of the children of u, where θ is a cutoff between 0 and 
1 governing the stringency required of the match. The parameter θ governs 
a query’s tolerance to errors. Ignoring the effects of sequence boundaries, a 
general SBT query with N k-mers and k-mer size k tolerates at least N (1 − θ)/k 
k-mer mismatches, between the query and the stored data.

If fewer than that number of k-mers are present, the subtree rooted at u is 
not searched further (it is pruned). It has been shown that k-mer similarity 
is highly correlated to the quality of the alignments between sequences28–31, 
and SBT guarantees that if the query sequence is present (at sufficient cover-
age), it will be found.

When a search proceeds to the children, the children are added to a  
queue for eventual processing. Even though there may be a large frontier of 
nodes that are currently active, the memory usage for querying is the trivial 
amount of memory needed to store the tree topology plus the memory needed 
to store the single current filter. The SBT timings reported here are all for 
single-threaded operation.

If several queries are to be made, they can be batched together so that a 
collection C = {Kq1, … , Kqt} of queries starts at the root, and only queries  
for which |b(u) ∩ Kqi| > θ|Kqi| are propagated to the children. When C becomes 
empty at a node, the subtree rooted at that node is pruned and not searched 
further. The main advantage of batching queries in this way is locality of  
memory references. If b(u) must be loaded from disk, it need be loaded only 
once per batch C rather than once per query. Batch queries can be paral-
lelized in the same way as nonbatched queries by storing with the nodes on the  
queue the indices of query sets that remain active at that node. Additionally, 
batch queries offer an alternative means of parallelization where the query 
collection C is split evenly among active threads that merge results for the 
final query results.

Our implementation of SBT allows a user to specify a weight wa  
between 0 and 1 for each k-mer a in their query Kq. When these weights are 
specified, a subtree rooted at u is searched if Σ Σa Kq b u a a Kq aw w∈ ∩ ∈≥( ) q .  
That is, a subtree is searched if greater than θ fraction of the possible  
total k-mer weights are observed. K-mers that the user considers essential 
to their query (e.g., those spanning an exon junction) can be given higher 
weight than others. For all experiments here, we use unweighted k-mers  
(wa = 1 for all a).

Setting the bloom filter size. There are two important parameters that need 
to be set when constructing the bloom filters contained in a SBT. These are 
the bloom filter length (m) and the number of hash functions (h) used in the 
filter. We also must choose the k-mer threshold θ for our queries. We explore 
below the relationship between m, h, θ and the resulting false-positive rate ξ 
of the filters.

Let S be a collection of r sequencing experiments with the property that each 
s ∈ S contains n distinct k-mers. We analyze the behavior of a union of filters 
under the simplifying assumption that the k-mer overlap between all pairs of 
experiments in S is uniform. Specifically, assume that the probability that two 
different experiments si and sj in S share any given k-mer is p. In other words, the 
expected number of k-mers that appear in sj that do not appear in si is d(1 − p),  
where d is the number of k-mers in the experiments. We can then estimate the 
expected number of unique k-mers:

Lemma 1. Let U = Us∈S s be the union of sequencing experiments in S 
as described above. The expected number of distinct k-mers in the union is  
n(1 − (1 − p)r)/p.

Proof. We have E E E E[| |] [| |] [| \ |] [| \ \ |]U S S S S S S= + + +1 2 1 3 1 2  . Each 
k-mer in Si is absent from Uj < iSj independently with probability (1 − p)i−1. 
Therefore E[| \ |] ( )S S n pi j i j

iU <
−= −1 1, and we have: 

E[| |] ( ) ( ( ) )/U n p n p p

i

r
i r= − = − −

=

−∑
1

1
1 1 1

The assumptions of a uniform k-mer count n and uniform overlap  
probability p do not hold in practice. However, under idealized assump-
tions, Lemma 1 formalizes the intuition that the expected number of ele-
ments in the SBT is the union set of all k-mers. In practice, this allows us to  
define the size of the bloom filter to be equal to an estimate of the total 
number of unique k-mers. Under the theoretical assumptions, it also  
shows that when the overlap is large (p is close to 1), the number of ele-
ments of U approaches that of a single experiment. Using this relation-
ship, we can select the optimal number of hash functions for such a union  
as in Theorem 1.
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Theorem 1. The number of hashes that minimizes the false-positive rate of a 
union filter U with the expected number of elements is 

h m n p p p p loadr r* ( (ln )/( ( ( ) )/ )) ( ln )/( ( ) ) )= − − = − −2 1 1 2 1 1

where load = n/m. Under this setting of h, the FPR of U is 

1

2






h*

,

which is at most 1/2 so long as h* ≥ 1.
Proof. Follows directly by treating U as a single filter containing  

n(1 − (1 − p)r )/p items.
In the case of SBTs, we have an advantage that we are not ultimately inter-

ested in a single bloom filter query on a k-mer, but rather a set of queries of the 
k-mers contained in the longer query string q. Thus, we are concerned mostly 
with the FPR on queries rather than FPR on k-mers. Theorem 2 explores the 
connection between the two.

Theorem 2. Let q be a query string containing  distinct k-mers. If we treat  
the k-mers of q as being independent, the probability that >  q  false-positive 
k-mers appear in a filter U with FPR ξ is 

1 −
 

i

i i

i
=

−∑ 





−
0

1

q
x x




( )

The above expression is nearly 0 when ξ << θ.
Proof. Treating each k-mer in q independently allows us to model the repeated 

queries using a binomial distribution, yielding (4). A false positive in q occurs 
when >  q  false-positive k-mers occur in U. Let X be the number of false-
positive k-mers, and let Y be the number of correctly determined k-mers. Then 
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In our search application, it is natural to require that at least 1/2 the k-mers 
of a query are present; if <1/2 are present it is fair to say that the query is not 
contained within the experiment. Therefore θ will typically be >>0.5. In this 
case, if we choose the FPR of the bloom filters to be 0.5, by Theorem 2, we will 
be unlikely to observe >θ fraction of false-positive k-mers in the filter. A bloom 
filter FPR of 0.5 is much higher than typical applications of bloom filters, in 
which very low false-positive rates are sought. The above analysis assumes 
independence of the k-mers, which is, of course, unrealistic. Nevertheless, it 
formalizes the intuition that choosing a high FPR can still lead to few errors. 
By choosing such a high filter FPR, we can use smaller filters, limiting the 
memory footprint of the SBT.

To set the bloom filter size, we follow the intuition of Lemma 1, and use 
an estimate of the total number of unique k-mers across as an estimate of the 
number of items any individual filter will contain. As it is computationally 
expensive to quantify this across all 2,652 files, the total was estimated by 
counting the combined k-mer content of 100 random files using Jellyfish 2.0, 
yielding an estimate of 1,902,731,933 k-mers. Because we use a filter FPR of 
0.5 and h = 1, as suggested by the above theorems, a single element in the SBT 
has a storage cost of ≤1 bit. Therefore, we set the size m of each bloom filter (in 
bits) to approximately equal this estimate of the number of k-mers. This offers 
an approximation that, by undercounting k-mers, sacrifices some accuracy at 
the highest levels of the tree for a reduced bloom filter size. This value is also 
substantially higher than the number of k-mers expected in any individual 
leaf filter and allows leaf filters (where accuracy is most important) to be less 
saturated and easily compressed. This leads to an uncompressed filter size of 
239 MB, and any k-mer of sufficient coverage that is shared between two files 
will correspond to a shared bit.

(2)(2)

(3)(3)

(4)(4)

(5)(5)

Experiments selected for inclusion in the SBT. A SBT was constructed from 
2,652 human, RNA-seq short-read sequencing runs from the NIH SRA. These 
2,652 files represented the entire set of publicly available, human RNA-seq runs 
from blood, brain and breast tissues stored at the SRA at the time of download 
as determined by keywords in their metadata and excluding files sequenced 
using the SOLID technology. Files where the metadata was unclear about 
tissue type or experimental setup were discarded. This tree was used for all 
experiments described in the manuscript.

Building bloom filters. The construction of the SBT involves three major 
tasks: creation of bloom filters for each of the experiments included at its 
leaves, the construction of the tree and internal bloom filters, and the 
RRR compression15 of each of the filters. Timing for each stage is given in 
Supplementary Table 4.

In the experiments here, bloom filters were constructed using the  
Jellyfish k-mer counting library32 from short-read FASTA files downloaded 
from the NIH SRA by counting canonical k-mers (the lexicographically smaller 
k-mer between a k-mer and its reverse complement). We choose k = 20 as 
these k-mers are reasonably unique within the human genome. Jellyfish was 
allowed to use 20 threads—all other computation reported here was run with 
a single thread.

To select only k-mers from sufficiently expressed transcripts and to  
avoid counting k-mers resulting from sequencing errors, we built trees  
containing k-mers that occur greater than a file-dependent threshold. This 
threshold count(si) was determined using the file size of experiment si as  
follows: count(si) = 1 if si is 300 MB or less, count(si) = 3 for files of size 
300–500 MB, count(si) = 10 for files of size 500 MB–1 GB, count(si) = 20 for 
files between 1 GB and 3 GB, and count(si) = 50 for files > 3 GB or larger 
FASTA files. These cutoffs were determined by the analysis of a small set of 
18 sequence experiments of various sizes and tissue types and were chosen 
such that at least 60% of the transcripts expressed at a non-zero level in each of 
these files had an estimated uniform coverage above this number. In practice, 
we found these thresholds to outperform two naive thresholds (count(si) = 0 
and count(si) = 3 for all i) in speed and accuracy. We report only the results 
from the file-dependent threshold for this reason.

We can use a cutoff based on file size here because all the experiments 
sequenced the human transcriptome. In a situation where experiments of 
mixed organism origin are included, a more sophisticated scheme based 
directly on sequencing coverage would be needed to avoid counting sequenc-
ing errors.

After the SBT is built, the filters (both leaf and internal) are compressed 
using the RRR15 bit vector compression scheme as implemented in the succinct 
data structures library33. This permits querying a bit without decompression 
and incurs only a O(log m) factor increase in access time (where m is the size 
of the bloom filter).

Hardware used for computational experiments. All times in all experiments 
reported here, except for SRA-BLAST, were obtained on a shared computer 
with Intel Xeon 2.60 GHz CPUs using a single thread (or 15 threads in the 
case of STAR and 20 in the case of Jellyfish). The SBT queries were limited 
to keeping a single compressed filter in memory at any one time, leading to 
memory usage of <239 megabytes of RAM. SRA-BLAST queries were executed 
using its web interface.

Representative query sets and ground truth results. To determine the  
accuracy of SBTs, we selected a subset of 100 random read files and used 
Sailfish20 to quantify the expression of all transcripts in each of these experi-
ments. All SBT queries are queried on the full set of 2,652 files but the accuracy 
is computed based only on the random subset of files for which we computed 
expression results from Sailfish.

Note that SBT returns no false negatives in the sense that if a query is 
covered by k-mers in sufficient depth over θ-fraction of its length then the 
experiment will be returned. The false negatives in Figure 2 are those experi-
ments where Sailfish indicated the transcript was sufficiently expressed but 
SBT indicated that it was not sufficiently present. In this context, present and 
expressed are different concepts: “present” means sufficient coverage of the 
transcript at a given depth, whereas “expression” is estimated using Sailfish’s 
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expectation-maximization approach to allocate mapped reads to isoforms. 
These are related, but not identical notions. SBT has a 0% false negative rate 
and a very low false-positive rate identifying present transcripts (false positives 
identifying present transcripts are due to the one-sided bloom filter errors and 
k-mer shredding of the reads). Figure 2 shows SBT’s false-negative and false-
positive rates identifying expressed transcripts, which are partially due to the 
mismatch between the definitions of present and expressed.

SRA-BLAST. There are presently no search or alignment tools that can solve 
the sequence search problem in short-read sequencing files at the scale we 
attempt here. However, as alignments can be used to determine query coverage 
and thus the presence of transcripts in sequence files, we compare with SRA-
BLAST2. SRA-BLAST has a limitation on the total nucleotide count that can 
be searched at once and requires specifying SRX (experiment) files rather then 
SRR (run) files. Because it is impractical to use SRA-BLAST at the SBT scale, 
we estimated an average SRA-BLAST query time from 100 random queries 
of a transcript against a single SRX experiment set using the SRA-BLAST 
webtool2. Specifically, we randomly selected a short read file from the total 
2,652 set and a query from the Low representative query set and recorded the 
time it took SRA-BLAST to return an alignment. Some publicly available SRR 
files cannot be searched using this webtool and random queries containing 
these files were discarded. The extrapolated time to process one >1,000-nt 
query against one megabase of sequence read file was recorded at 0.024 s per 
megabase per query.

The comparison with SRA-BLAST is not meant to indicate that SBT  
can provide the same information as SRA-BLAST. In fact, the tools provide 
complementary information: a list of experiments identified with SBT can be 
searched for individual read alignments with SRA-BLAST, thereby partially 
overcoming SRA-BLAST’s limitation on the number of experiments that can 
be searched.

STAR. We also compare our search times with an alignment-based approach 
using a read mapping algorithm, STAR20. To do this, we built a separate STAR 
index for each of the 100 sequence queries in the Low query set using a size-6 
pre-index string. Reads from the 100 files analyzed by Sailfish (our ground 
truth set) were mapped to these indices, allowing zero mismatches during the 
alignment and a single thread. After 3 d of 15-threaded continuous run-time, 
only one STAR query had completed searching these 100 files, and from this an 
average 15-thread STAR query time of 0.708 s per megabase per query was cal-
culated by normalizing the time it takes to perform a STAR alignment against 
the total size of each sequence file. Single-threaded times were approximated 

using the CPU clock time, which took 9.9 s per megabase per query. Whereas 
these single-query indices are more representative of the standard search use 
case, they represent an index size smaller than is typically used with STAR. To 
estimate batched times, a single STAR index was built from all 100 sequences 
queries in the Low query set using a size-11 pre-index string. Six alignments 
that took longer than 4 h were terminated before completion and their times 
were discarded as outliers. In this case, an average STAR query time of 0.0110 s 
per megabase per query was calculated. Note in either case, the time per mega-
base per query does not include the time to build the STAR index. Although 
STAR was designed to perform efficient alignments, it represents one of the 
most competitive existing tools that could be adapted to the general search 
problem we solve. The comparison with STAR is not intended to indicate that 
SBT provides the same information as STAR, but rather to show that even a 
very fast aligner such as STAR cannot identify experiments that contain a 
query sequence as quickly as SBT.
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