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Abstract

In this paper, we present a physically-based multidimensional deformable model,
which can be used to track and to analyze non-rigid motion of dynamic structures in
time sequences of 2D or 3D medical images.

The model considers an object undergoing an elastic deformation as a set of masses
linked by springs, where the classical natural lengths of the springs is set equal to zero,
and is replaced by a set of constant equilibrium forces, which characterize the shape of
the elastic structure in the absence of external forces.

This model has the extremely nice property of yielding dynamic equations which are
linear and decoupled for each coordinate, whatever the amplitude of the deformation.

Compared to the former work of Terzopoulos and his colleagues [11, 22, 20, 12] and
Pentland and his colleagues [17, 16, 18, 10], our model provides a reduced algorith-
mic complexity, and a sound framework for modal analysis, which allows a compact
representation of a general deformation by a reduced number of parameters.

The power of the approach to segment, track and analyze 2-D and 3-D images is
demonstrated by a set of experimental results on various complex medical images.

Segmentation, suivi, et analyse du mouvement des objets
déformables

Résumé : Nous présentons un modéle physique d’objets déformables capable de
segmenter, de suivre, et d’analyser les mouvements de structures non-rigides. Dans ce
modéle, un objet subissant une déformation élastique est considéré comme un ensemble
de masses ponctuelles reliées entre elles par des ressorts de longueur ¢ vide nulle. Ce
choiz est compensé par un champ de forces d’équilibre, constant, qui caractérise la
forme de l'objet en l'absence de forces extérieures. Une des propriétés intéressantes de
ce modéle est que les équations différentielles qu’il fournit sont linéaires et découplées
en chaque coordonnée, quelle que soit l'amplitude de la déformation. Par rapport auz
approches précédentes de l’équipe de Terzopoulos [11, 22, 20, 12], et de l’équipe de
Pentland [17, 16, 18, 10], notre modéle aboutit a une complezité algorithmique réduite,
et fournit un cadre rigoureuzr pour l'analyse modale, qui permet une représentation
compacte de la déformation d’un objet par un nombre réduit de paramétres. Enfin,
nous présentons des résultats expérimentaur sur des images médicales 2D et 3D.



1 Introduction

In this paper, we present a physically-based multidimensional deformable model, which can
be used to track and to analyze non-rigid motion of dynamic structures in time sequences
of 2D or 3D medical images.

The model considers an object undergoing an elastic deformation as a set of masses
linked by springs, where the classical natural lengths of the springs is set equal to zero, and
is replaced by a set of constant equilibrium forces, which characterize the shape of the elastic
structure in the absence of external forces.

This model has the extremely nice property of yielding dynamic equations which are
linear and decoupled for each coordinate, whatever the amplitude of the deformation.

Compared to the former work of Terzopoulos and his colleagues [11, 22, 20, 12] and
Pentland and his colleagues [17, 16, 18, 10], our model provides a reduced algorithmic com-
plexity, and a sound framework for modal analysis, which allows a compact representation
of a general deformation by a reduced number of parameters.

We show how the model is built, and how to integrate the dynamic equations through
time, with the possibility to take into account some tracking contraints, as the knowledge
of sparse anatomical features. We then dicuss the use of two different types of modes to
describe the deformation, and propose to use the one which best fits our physical model.
Finally, we illustrate by a set of experiments on synthetic and real data, the validity and the
power of our approach to track and analyze the motion of anatomical structures both in two
and three dimensions.

Concerning the tracking and the analysis of deformable objects, our work differs from



but is related to the one of [13], who constrains locally the deformations to be conformal,
and also to the one of {7, 1, 4], where tracking takes into account local differential properties
of the surfaces. The principal warps analysis of [3] as well as the Fourier decomposition of
[19] both show a similar spirit as our modal analysis. Finally the work of [5] and [8] provides
an alternative way to segment volumetric images, but without explicitly trying to model the

deformations.
2 The model

We consider both the surface and volumetric properties of the objects at hand. We restrict
ourselves to elastic deformations, i.e. we assume the object recovers its reference configu-
ration as soon as all applied forces causing deformation are removed. Modelling an elastic
boundary M can be achieved by a mesh of n virtual masses on the contour, each mass being
attached to its neighbors by springs of stiffness k and natural length Iy, as shown in figures 1
and 2. These springs model the elastic surface properties of the object.

We can improve thé'modelling by attaching extra springs between non-neighbor nodes in
order to model some volu;netric elastic properties inside the object (see appendix A). These
springs constrain the general form of the object within its deformation. The boundary M
modelled as above will also be called structure. Such a structure can be easily deformed to
match the contour of an object of interest, thus performing a segmentation step. Now if we
take a set of images displaying the deformation of the object, structure M can also achieve

simultaneously both segmentation and tracking of the object’s surface through time.



Figure 1: A 2D valve model with surface and volume springs

Figure 2: A 3D mass-spring mesh with surface springs



Figure 3: Segmentation of a human head from a 3D magnetic resonance image

3 The governing equation

The system under study is composed of n masses that are positionned at time ¢ on the points

(M), (M), ..., (Mp)s). Let :
My = (M), (Ma)s, . .., (M))T
The evolution of the structure is governed by the fundamental equation of dynamics :
= m;a; i=1,...,n

where m; is the mass of point M; and a; its acceleration under total load F;.
Now, what are the applied forces to the point M; at time ¢? First, there is the elastic

force due to its neighbors (assuming the 2D case where a mass has two neighbors) :

(Mio1 M)
(M M)l

(M1 M),

Fe(Mi, t) = —k[(Mi— 1 M;): — lo m] (1)

] = K[(Mi M), — b



where lj is the natural length of the springs.
Then, a damping force can be considered. This force is generally set proportional to the
point velocity v; :

Fy(M;,t) = —civy

Moreover, an external load Fe(M;,t) acts on each node M;. Note that the structure must
be given an initial position at time ¢y. Since we want the structure to hold in this position,
we have to apply on each node a force F¢, so that time ¢y is an equilibrium state of the
structure. This force is similar to the force our fingers apply to an elastic in order to give a

certain form to it. Thus, at initial time, we have :

Feq(M,') + Fe(Mi, to) = 0 (2)

that is, the sum of the forces acting on each is zero. We assume that at any future time this
equilibrium force is constant.

Hence, the total load at time t is for each node M; :

F(M;,t) = Fo(M;, t) + Fa(M;, t) + Fore(M;, t) + Foo( M)

The governing equation of the structure is :

Fe(Mia t) + Fd(Mi, t) + Fe:tt(Mia t) + Feq(Mi) = m;a,

This equation, expressed for all n nodes, leads to a nonlinear system of coupled differential
equations (for each node, the z, y and 2 displacements are coupled, and the displacement
of a node depends on its neighbors’ displacement, as it is clearly shown in equation 1).

One possible approach is the solving of these nonlinear coupled equations by a rather costly



iterative procedure [20]. Another approach is the local approximation of the system as a
linear one [18], an approximation which is only valid for small displacements, otherwise it
must, be recomputed at differents time steps.

We propose in this paper to set l[p = 0, an assumption which does not restrict the
generality of the problem because the constant equilibrium forces Fe,(M;) allow an arbitrary
initial configuration. The advantage of this assumption is that we end up with a set of linear
differential equations with node displacements decoupled in each coordinate, whatever the
magnitude of the displacements.

Indeed, setting Iy = 0 and denoting U;(t) = (M;)e — (M;):

, We can express the elastic

force in terms of nodal displacements :
Fe(M;,t) = —k[(Mio1 My)y + (Mg My)e) = Fe(Mi, to) — K[2Uy(t) — Uiy (t) — Ui (2)]
Remembering equation (2), the governing equation becomes :
—k[2Ui() = Usa(t) = Usea ()] = ciUi(t) + Fear( My, t) = myUi(t)
These equations can now be written in a matrix form :
MU +CU + KU = F, (3)

where K is the stiffness matrix of the element (see appendix A), C its damping matrix, M
its mass matrix, and F; is the external force field at time ¢, and U is the nodal displacements
vector (U = M; — M,,). Note that in the above formulation the stiffness matrix is constant
(i.e. the same at each time step), and no recomputation is necessary.

In 3D, the above matrix-form equation represents 3n coupled second-order ordinary dif-
ferential equations. However, by setting l; = 0, this equation is separable in three n order
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equations with respect to z, y and 2. Therefore, from now on, except when specified, vectors
and matrices will be of order n. For instance, U will refer indifferently to the z, y or z nodal

displacements vector.

4 An elastic potential

4.1 General form of the potential

We make the common assumption that the external force field at time ¢, derives from a

potential field V; :

F,=-VV, (4)

Various potential fields can successfully solve the problem. In the "snake” formulation [11,
20], in order to have the snake attracted to contours with large image gradients, the potential

on any point M; is set to :
V(Mz) = —”VGU * I(‘Ml)”
where G,* denotes convolution with a gaussian smoothing filter of width o, so that the edges

of the image can attract the snake from a distance. Note that the farther the snake from

the edges, the weaker the attraction force field.
In our formulation, we need a potential field that can a posteriori describe which nodal

displacements are the most likely. One interesting choice for the potential is :
1
V(M;) = é‘kaPiMin (5)

where P, is the closest boundary point to M;. The algorithm for obtaining this potential on

each point of an image is described in [6].



Another advantage of this potential is that it can be represented by a spring of natural

length zero and of stiffness k, joining M; to P; :
Fy(M;) = ~VV(M;) = k, M, P,

Hence, the whole model remains elastic. Moreover, the farther the structure from the edges,
the larger the attraction force. This procedure speeds up the segmentation of the image
edges by the deformable structure.

Thus, we have defined n springs of natural length zero and of stiffness &, joining structure

nodal points M; to their closest boundary point P;. The external force field at time ¢ is :
F, = k,D,

where D; = [(M1P,),, (MaPy)y, ..., (M,P,))T is a distance field which may not be unique
(several structure points may have the same closest boundary point).

The governing equation is, for this choice of the potential field :

MU+ CU + KU = k,D, (6)

4.2 Automatic selective potential

Suppose that the displacement of node i is known (M;, matches M; ) by an alternative
method (for example by use of anatomical or artificial landmarks such as high curvature
points, see [1, 4]). The displacement of landmark M;, has to be computed separately, in
other terms, M;, must be submitted to another potential field that the non-landmark nodes,
having it attracted by M;,.

This can be achieved automatically with 2D and 3D feature extraction algorithms {14, 21}.
We set the potential differently on every point (M;);, depending on (M;); being a landmark

10



or not. If (M), is a landmark, we find its new deformed position, namely, the point M
that has the same feature (for instance, (M;,); and M; are both maximum curvature points
on the surface). We submit M;, to the potential field :

1 )
V(M) = §a||Mi0(Mio)t||2

For the non-landmark nodes (M;);, the potential is computed as :
1
V(M) = §kp||(P,~),(M,~)t||’

where (P;); is the closest boundary point to (M;); at time ¢, and a > k,. Intuitively, the
physical interpretation of the landmark constraint for M;, can be seen as attaching a stiff

spring between M;, and M; , and discarding the spring between M, and P, (figure 4).

!
M,

Figure 4: Attraction force for landmark node M;, and for non-landmark node M;

5 Direct integration of the governing equation

As the distance field may not be unique, there may be several acceptable solutions to the
tracking problem. This implies that we have to give the structure a reasonable position at
initial time to=0, that is, the initialization has to minimize the risk of conflicts.

11



The governing equation can then be directly integrated through time by various methods

[2, 20]. One of the simplest and quickest ones is the explicit Euler method :

4

U, = M~Y(F, - CU, - KU,)

\ Uiiae = U, + AtU;

\ Ut+At = AtUH—At

where the damping, inertial and stiffness constants are chosen so that the system is over-

damped.

6 Results on 2D objects

6.1 Segmentation

Figure 5 outlines the importance of the volume springs. A classical curvilinear snake cannot
segment the simulated valve given this initial position : it collapses against the bottom
boundary of the second valve contour (figure 5.a and 5.b). Volume springs prevent the
elastic structure from collapsing (figure 5.c and 5.d). A hundred of nodal points were used

for the modelling.

Figure 5: Segmentation of the mitral valve without (a,b) and with (c,d) volume springs
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6.2 Tracking

Figure 6 shows the modification of the nodal displacements when the displacement of one
of the nodes is known. This result is an alternative to the results obtained with another

energy-minimizing procedure [4]. Sixty nodal points were used for the modelling.

N,

Figure 6: Unconstrained and constrained tracking of a 2D contour

7 Modal analysis

This well-known approach in the field of mechanical engineering 2], was brought to the
field of computer vision by Pentland’s team [18, 10]. We outline the general principle and
present our formulation, which differs from the one of Pentland in being better adapted to

the underlying physical model we are using.

7.1 Change of basis

Instead of solving directly the equilibrium equation (3), one can transform it by a change of
basis :

U=PU
where P is the square n order nonsingular transformation matrix to be determined, and U

is referred to as the generalized displacements vector (see [2]).

13



The question is finding a suitable transformation matrix P that would reduce the band-
widsh of the system matrices. One effective way of achieving this is using the displacement

solutions of the free vibration equilibrium equations :
MU+ KU =0 (7)

where M is the mass matrix of the structure. The solution to (7) can be postulated to be of
the form :

U = ¢sinw(t — to)

where ¢ is a vector of order n, t the time variable, ¢ty a time constant, and w the frequency
of vibration of the vector . We can now substitute this expression of U in (7) to determine

¢ and w, which leads to the generalized eigenproblem :
K¢=uw’M¢ (8)

This equation yields n eigensolutions (w?, ¢,)...(w?, ¢,). It can be shown (see appendix B)

that the eigenvectors ¢; (also called shape vectors) are M-orthonormal and K-orthogonal :

1; i=j
$iMe; =
| 0 i)
(
wi; 1=
oiKe; = <
[ 0 1#J

\2 )2 2
0w < w; £...<5w;

The vectors (5,) can then be referred to as the structure’s eigenbasts.

i=1,..,n
The structure’s eigenbasis is determined as soon as the mass matrix and the stiffness matrix

of the structure are defined.

14



The former equations can be rewritten in a matrix form :

M =dTMé= I, (9)

K =0TKd= Q2 (10)

where & is the matrix whose columns are the eigenvectors ¢; (& = [¢1, ¢2, ..., ¢n]) and  is a
diagonal matrix which stores the eigenvalues w? on its diagonal (Q? = diag(w?, w2, ...,w?)).

The matrix ® is then chosen to be the transformation matrix P :
- n
U=oU=) i (11)
i=1
Equation (11) is referred to as the modal superposition equation. ; is the ith-mode amplitude

within displacement U.

Figure 7. Energy-increasing eigenmodes of a flat element
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7.2 Decoupling the equations of motion

Premultiplying the governing equation (3) by ®7 and expressing the displacement vector in

terms of the generalized displacement vector leads to :

o)

U+ 00+ 0% = oTF (12)

Hence, if the matrix C = ®TC® is diagonal, then the above matrix-form equations decouple

into n scalar equations :
~ L 2~ =~ .
Up; + Cillys + Wity ; = Fy; i=1,...,n. (13)

Solving these equations at time ¢ leads to (i),_, _ ,, and the displacement U; of the struc-

ture’s nodes is obtained by the modal superposition equation.

7.3 Modal approximation

In practice, we wish to approximate the nodal points displacements U by picking up p

significant modes, where p K n :

P
U= Y o $og) (14)

i=1
where ¢ is a suitably chosen permutation.

The (Q_;a(i))

im1,..p 2T€ the reduced eigenbasis of the structure.

This is the major advantage of modal analysis : it provides an approximate but quite
accurate solution by selecting a few number of modes. The participation of each mode
to the motion is ordered. In those terms, we can compare modal analysis to principal
components analysis. Whereas in principal components analysis the object, which is in a

high order space, is displayed after being projected into a lower order subspace maximizing

16



its spreading, modal analysis projects the nodal displacements vector U (which is in a n
order space) into a subspace of much lower order p, with minimum loss of accuracy.

It is now apparent that modal analysis provides a compact description of the motion
allowing straightforward interpretation and comparison of motions in terms of modal ampli-
tudes. For a 3D image, the motion parameters are reduced from 3n {r.y. and : displacemems
of the n nodes) to 3p (z, y and z modal amplitudes). Typically, if n is about 1000, and we
assume that 20 modes provide a good approximation of the motion, we reduce the number
of i)arameters from 3000 to 60. This represents a compaction of 50 for the motion descrin-
tion. In 2D, although less spectacular, compaction rates of an order of magnitude are quite

common (see figure 8).

Figure 8: Superposition of high amplitude modes. a. 2 modes (compaction : 80, recov-
ery : 50.6 %) b. 4 modes (compaction : 40. recovery : 68.7 %) c. 20 modes (compaction : &,

recovery : 98.2 %) d. All 160 modes (compaction : 1, recovery : 100.0 %)

7.4 Selecting the most significant modes

In this section we concentrate on the choice of the p modes that can most accurately describe

the object’s motion.

17



The most accurate choice is the che. oo of “he p - odes of highest amplitude, havin. 5m= ted
@, ; by equation (13). Insteacd of ¢!-osin: the - imber p of significant modes, we - an rather
choose a constant p (0 < <1) which represents :he confidence we need for the approximation
of the displacement :
}___: :j}C f;-"z;l
> [l
i=1

Instead of sorting the modal amplitudes. and remembering equation (13), we can choose

>y (15)

the p lowest frequency modes to approximate the displacement (¢ = Id, see appendix C).
Other advantages of this method are : first, whatever the motion, the reduced eigenbasis
is constant for a given structure ; then, only 3p equations instead of 3n of the form of

equation 13 are to be solved.
7.5 Qualitative modes

In this section vectors and matrices a:» «7 sriler $a.

One can choose another suitable matrix P to perform the change of basis :
U=PU

A modal superposition can be performed, if we set P = [v1,...,¥3,) where it is assumed
that each mode %; is orthogonal to all others, but is not necessarily an eigenmode of the

elernent :
3n
U=> a
i=1
The modes ¥; can be set to be elementary displacements referred to as : translation, rotation,

scaling, shearing. .. (see appendix D). They are "qualitative modes”.

18



In general, g (¢ < n) qualitative modes are considered. Denoting ¥ = [31,...,%,] the

change of basis leads to the equation
YTMUU + $TCU + $TKGU = UTF (16)

But the change of basis is interesting when matrices W7 K®, ¥T M ¥ and $TCV are diagonal,
so that the g above equations decouple. Pentland’s team proposes to set directly these
matrices to some diagonal matrices (18, 10], since the stiffness matrix representing the nodes
connections has not been calculated.

As we have calculated the stiffness matrix, we prefer to make use of the calculated node
displacements vector and project it in the g-dimensional space defined by the ¢ qualitative
modes :

g
proj(U) = Z;aiwi
i=
The amplitudes @; can then be easily determined, since the orthonormality of qualitative

modes (with respect to scalar product) can generally be ensured [13] :
; = proj(U).4;

As the qualitative modes often represent global geometrical transforms, they can be assumed
to be of low natural frequency, and the approximation of U by proj(U) is satisfactory, mainly

if the displacement norm [[U}] is small.

7.6 Eigenmodes versus qualitative modes

Qualitative modes provide a good physical interpretation of non-rigid motion. They are

derived from our common vocabulary, and can be quite easily computed via a polynomial

19



approximation [18]. They seem to be well dedicated to computer graphics, where certain
types of deformations are to be synthetized.

On the other hand, the eigenmodes form a complete basis where the motion can be
expressed accurately or approximately. They lack a physical meaning, but they can be used
without any motion assumption ("small” displacement, linearized rotation...). Moreover,
our model provides decoupled eigenmodes with respect to z, y and z, reducing the dimensions
of the handled matrices from 3n x 3n to n x n. The eigenmodes seem to be the best modal
basis for computer vision.

In figures 9 and 10, the motion of the valve with volume springs is analyzed in modal
space. The eigenmodes and their superposition, as well as the qualitative modes and their
superposition are displayed. Note the error in the recovery of the motion using the qualitative
modes (figure 10) versus the accuracy of the superposition eigenmodes using the same number
of modes (figure 9, compare to figure 5). This comes from the fact that our eigenmodes better
correspond to the physical model we have developped for the motion. On the other hand,
qualitative modes are expressed in a reference frame intrinsic to the object, a nice property
that our own eigenmodes can share provided that we choose the intrinsic reference frame of

the model (using the center of inertia and the axes of inertia).

7.7 Applications

One of the applications of modal approximation is motion correction. In order to maintain
an object’s geometry within its displacement, we can approximate the nodal displacements
vector by superimposing a few number of low-frequency modes, then substitute the ap-

proximated displacement to the original one. The displacement field is smoothed and the

20



Figure 9: Four high amplitude eigenmodes of the valve and their superposition

Figure 10: Four qualitative modes of the valve and their superposition
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deformed object has global geometric properties similar to the ones of the undeformed object

(figure 11).

NOAARUUN RN NS

AR A S G0 S Y WA

Figure 11: Motion correction of a rectangle using low frequency mode shapes

The reduced eigenbasis is then a good low order basis enabling straightforward compar-
isons of different types of motions. Moreover, the representation of U/ in modal space is stable
when the number n of structure points varies. In other terms, the modal representation is
not too sensitive to the sampling of the boundary (which is always arbitrary), which is a
very important property (figure 12).

Note that the mode shapes depend upon the original model ; in other words, had we
chosen another way of connecting the nodal points (another K matrix), the eigenmodes

would have been different.

7.8 Computational cost

We consider the general case where matrix K is only symmetric. The choice of [ = 0
which enables decoupled equations in z, y and 2 reduces the matrix vector multiplication
complexity from O(9n?) for 3n-order matrices to O(3n?) for 3 n-order multiplications. This

means that, at each step, we reduce CPU time by a factor 3 in computing the elastic force.
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Figure 12: Four high amplitude eigenmodes with 80 and 95 nodal points

Then, computing eigenvalues and eigenvectors of an n order matrix is in O(n3) versus
O(27n®) for a 3n-order matrix.

On the whole, computational cost is reduced by a factor of 3 x 27 = 81 compared to a
calculation without decoupling.

Finally, we make use of the Euler method for the resolution of our differential equations,
which needs only one calculation at each step. Although the stability of this method is
limited, it is less costly that a more stable method like Runge-Kutta, which can be used if

necessary.

8 Experimental results

8.1 3D segmentation of human head

A mass spring mesh is used to segment a 3D magnetic resonance image of a head. The
resolution of the 3D image is 158 x 158 x 158.
Figures 13, 14 and 15 show the segmentation of the human head by a deformable cylindric
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mesh of 159 x 70 = 11130 nodes. The initial mesh is given by the user as a 2D curve, that
will be repeated on the 70 plans to form a cylindric mesh. The solution is displayed after 50

iterations, each iteration being performed in a few seconds CPU on a workstation, although

no optimization of the code is yet done.

Figure 13: Initial mesh and solution after 5 iterations

8.2 2D tracking of human left ventricle

We have tested our method on a set of ultrasound images of the human heart’s left ventricle.
The tracking of the mitral valve is indeed a problem of major interest in medical imaging.
First, a polar edge extraction is performed on the images (see [9]). Then, for each image,
the distance field is computed on every pixel, using the algorithm described in [6].

The segmentation of the valve is shown in figure 16. It can be performed in one step.

Then we can track the valve through time (figure 17 and 18).
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Figure 14: Solution after 20 and

50 iterations

Figure 15: Segmentation of the human head (11130 nodes)
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Figure 16: Initial segmentation of the valve’s contour
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Figure 17: Tracking of the mitral valve
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9 Conclusion

We have presented an elastic model enabling fast segmentation and tracking of 2D and 3D
images. The high flexibility of the method makes it easy to use for modelling various types of
elastic objects. The stiffness matrix remains constant at all iterations, and the computations
are decoupled in z,y and 2. The external potential field is selective, depending on the node
being a landmark or not. Thanks to the introduction of equilibrium forces Fq, it is possible
to set the natural lengths of the springs to zero ; this yields a set of linear differential
equations decoupled in x, y and z, even for large deformations. Therefore the algorithmic
complexity is reduced by almost two orders of magnitude. Also, we showed how to take
into account additional tracking constraints between irregular features. Finally, we adopted
modal analysis of the motion to better fit the underlying physical model, and showed its

power for a compact description and/or smoothing of a complex deformation.
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Appendices
A Formulation of the stiffness matrix

For a two-dimensional structure with identical springs of stiffness &£ joining a mass to its

neighbors, the monodimensional n order stiffness matrix is respectively for an open and for

a closed structure :

k -k *
-k 2k -k
Kopen = (17)
-k 2k -k
-k k
2k -k —k -
-k 2k -k
Kelosed = (18)
-k 2k -k
i —k -k 2k ]

In the 3D case, the stiffness matrix comprehends submatrices that have the form described

above.

We can model the structure in a more complex way, for instance by attaching extra

springs of stiffness kez:rq between non-neighbor nodes ¢ and 5. The stiffness matrix is then

modified as follows :

(Kﬁ)e:ctra = Kii + keztra
(ij)eztra = ij + ke:z:tra
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(Kij)extra = Kij — Keztra

(Kji)e:ctra = Kji - keztra
Note that the stiffness matrices are non-definite positive (KT =0, with T = [1,1,...,1]T).

B Orthogonality of mode shapes

An important property of mode shapes is orthogonality, which is discussed here.
For the i¢th and jth natural frequencies w; and w; and the ith and jth mode shapes ¢; and
¢;, we have :

K¢; = wMo; (19)

Premultiplying equation (19) by ¢>JT and equation (20) by ¢! leads to :

o7 K¢y = wl¢] Mg (21)

o7 Ko, = wio] Mg, (22)

Taking the transpose of equation (22), and remembering that mass and stiffness matrices
are symmetric, we obtain :

$TK$, = w2dT Mo, (23)

Comparing now equation (21) and equation (23) yields :

(w! —w)gT Mg =0 (24)

2

7, we have :

Since w? # w
¢; Mo; =0 Vi# ]

30



M being a positive definite matrix, we can norm the mode shapes to obtain :
T _ .

The mode shapes are then M-orthonormal.

Using M-orthonormality in equation (21) leads to the K-orthogonality of mode shapes :

¢; K¢ = 0 Vi#j

oK = Wi Vi
C Selecting the low natural frequencies

Using an easy example, we discuss here the choice of mode shapes that have the lowest natural
frequencies for the approximation of the displacement vector. For the detailed equations,
see [2].

Consider a clamped beam. Figure 19 shows the aspect of a low order and a high order

mode.

: §

] [}

[} U

I |

[}

[} [}
. [} U

Clamped Low-order mode High-order mode

beam Low frequency High frequency

Regular geometry  Irregular geometry

Figure 19: a clamped beam
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C.1 Frequential concordance

Consider a concentrated load in the middle of the beam. If the load varies slowly, the natural

high frequencies are not amplified. This is illustrated in figure 20.

F F |
4§ I 4§

Slow load : Low frequency modes amplified Fast load : High frequency modes amplified

Pseudo-static effect on high frequency modes No exciting effect on Low frequency modes

Figure 20: Frequential concordance

C.2 Geometric participation

If the load is equally distributed along the beam, the natural high frequencies, whose ge-
ometry is irregular, are not excited. The amount of work for force F (that is ®TF for

displacement @) is negligible for these [requencies (figure 21).

U i

B .

Equally-distributed Low-frequency mode High-frequency mode

=
T,

load Important work for F Negligible work for F

Figure 21: Geometric participation
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D Qualitative modes

As described before, the qualitative modes #; of an object are generally not the solution of

the eigenproblem K¢ = w?M¢.
Their main advantage is that they can be described by common terms, such as transla-

tion, rotation (rigid-body modes), scaling, shearing (first order modes), tapering, pinching,

bending (second-order modes)...

To intoduce the qualitative modes, consider the general non-rigid motion of an object.
It can be represented by :
M(z,y,z) = M'(z',y', ')
M =rd M+t
Where 7 is a rotation matrix of angles 6;,6,.6,, t is a translation vector (t = t; +t,+1t,),

and d is a symmetric deformation matrix.

Suppose now that the displacement is "small”. Then rotation can be linearized (}f| < ) :

100 0 -8, —9,,1

r=I+p=1010|+]|6, 0 -6,

And deformation can be decomposed into :

d=1+¢

where € is the symmetric strain matrix.
A first order approximation of the motion leads to :
M(z,y,z) > M'(z',y,2")
M~-M=((p+e) M+t
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More precisely, in 3D, we have :
(

T —x=1;— 0,y — Oyz + €25T + €53y + €222

YV —u=t,+0.2 0,2+ T+ €y + €2

2 —2=t, 40,460,y + €, + €Y+ €52

\

Suppose the deformation is homogeneous, that is, matrix e components does not depend
on point positions. The displacement of the points on the object is then controlled by 12
parameters : t;,ty,t;, 02,0y, 0, €2z, €4y €22, €0y, €22, €2

Now if the object points before deformation are positionned at points (z;,¥;, 2;),¢ =

1,...,n, we can derive the twelve low-order modes :

T =1,0,0,1,0,0,. .,1,0,0]
vy =

0,1,0,0,1,0,...,0,1,0]

w\:}T: [0101110a0:1~,~~~)070:1]

z translation
y translation

z translation

¥l = [~y1.21,0, —y2. 72,0, ..., —Yn. T,.0] 2z rotation
Ui =[-2,0,1;,—20.0,79,.... —2,,0,z,] y rotation
Y& =1{0,—-21,41,0,—2,92,...,0,—2,,ys] T rotation
T =1z,,0,0,2,,0,0,...,2,,0,0] T scaling
¥I =10,1,0,0,y2,0,...,0.yn,0] y scaling
¥l =10,0,2,0,0,29,...,0,0, z,] z scaling

vl = [11,71,0,¥2. 22,0, . .., Yn, T, 0] 2 shearing

T _ .
wll = [21,0,1:1., 22,0,1:2, sy Zntofxn]

y shearing

vl =10,21,41,0. 20,92, . ... 0, 2. ) z shearing

Thus, in 3D, assuming that the displacement is small and the strain matrix is homogeneous, -
only twelve modes are necessary for parameterizing the displacement. Note that these as-
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sumptions are restrictive, and more polynomial modes have generally to be considered [16],

and their orthonormality must be ensured.
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