
Fast Sequential Circuit Test Generation
Using High-Level and Gate-Level Techniques

Elizabeth M. Rudnick† Roberto Vietti†† Akilah Ellis†

Fulvio Corno†† Paolo Prinetto†† Matteo Sonza Reorda††

†Center for Reliable and High-Performance Computing, University of Illinois, Urbana, IL USA
††Politecnico di Torino, Dipartimento di Automatica e Informatica, Torino, Italy

Abstract
A new approach for sequential circuit test genera-

tion is proposed that combines software testing based
techniques at the high level with test enhancement tech-
niques at the gate level. Several sequences are derived to
ensure 100% coverage of all statements in a high-level
VHDL description, or to maximize coverage of paths.
The sequences are then enhanced at the gate level to
maximize coverage of single stuck-at faults. High fault
coverages have been achieved very quickly on several
benchmark circuits using this approach.

1 Introduction
Most recent work in the area of sequential circuit test

generation has focused on the gate level and has been
targeted at single stuck-at faults. Both determinis-
tic fault-oriented and simulation-based approaches have
been used effectively, although execution times are of-
ten long. The key factor limiting the efficiency of these
approaches has been the lack of knowledge about cir-
cuit behavior. Architectural-level test generation has
been proposed as a means of exploiting high-level in-
formation while maintaining the capability to handle
stuck-at faults [1]. However, the high-level information
must be derived from a structural description at the reg-
ister transfer level (RTL), and sequences generated are
targeted at detecting specific stuck-at faults in modules
for which gate-level descriptions are available. Circuits
with modules for which gate-level descriptions are not
available can be handled, but better fault coverages are
obtained by a gate-level test generator in less time [2].

Several approaches have been proposed for auto-
matic generation of functional test vectors for circuits
described at a high level, including [3][4][5]. The func-
tional test vectors can be used for design verification
and power estimation, in addition to screening for man-
ufacturing defects. Vemuri and Kalyanaraman enumer-
ate paths in an annotated VHDL description and trans-

∗This research was supported in part by DARPA under
Contract DABT63-95-C-0069, in part by the European Union
through the FOST Project, and by Hewlett-Packard under an
equipment grant.

late them into a set of constraints [3]. A constraint
solver is then used to obtain a test sequence to tra-
verse the specified path. Fault coverages of test sets
generated for statement coverage were low, but higher
fault coverages were obtained by covering each state-
ment multiple times. Cheng and Krishnakumar trans-
form the high-level description in VHDL or C into an
extended finite state machine (EFSM) model and then
use the EFSM model to generate test sequences that
exercise all specified functions [4]. Traversing all tran-
sitions in an EFSM model was shown to guarantee cov-
erage of all functions. Execution time was very low for
generation of test sequences, and good fault coverages
were achieved for several circuits. The approach pro-
posed by Corno et al., implemented in the test genera-
tor RAGE, aims to generate test sequences that cover
each read or write operation on a variable in a high-
level VHDL description [5]. The operations are each
covered a specified number of times. Good fault cov-
erages were achieved for several benchmark circuits by
covering each operation at least three times, and fault
coverages were sometimes higher than those obtained
by a deterministic, gate-level test generator. Execution
was fast for all but the larger circuits.

These functional test generation approaches are
based upon a technique commonly used for software
testing: generating tests that cover all statements in
the system description. Another software testing tech-
nique, which has not been implemented in the previous
work on functional test generation, is to generate tests
that traverse all possible paths in the system description
[6]. In this work, we address path coverage, as well as
statement coverage. A VHDL circuit description may
contain multiple processes that execute concurrently.
Since a path is defined only within a single process, we
apply path coverage to single-process designs or to the
main process of multiple-process designs only. Here,
limitations must be placed upon path length to bound
the number of tests generated. Generation of tests for
path coverage, in addition to statement coverage, may
enable higher fault coverages to be achieved.

Whether statement coverage or path coverage is used
as the coverage metric, generation of test sequences us-
ing software testing based techniques is limited by an
inability to specify values of variables that will maxi-
mize detection of faults at the gate level. We propose
to combine a software testing based approach at the
high level with test sequence enhancement techniques at
the gate level to achieve high fault coverages in sequen-
tial circuits very quickly. The gate-level test sequence
enhancement techniques that we use borrow from tech-
niques already developed for dynamic compaction of
tests generated at the gate level [7][8]. The objective is
to maximize the number of faults that can be detected
by each test sequence generated at the high level.

We begin with an overview of the test generation
process in Section 2. Generation of test sequences at
the high level using software testing based techniques
is then described in Section 3, followed by a discussion
about test sequence enhancement at the gate level in
Section 4. Results are presented in Section 5 for several
benchmark circuits, and Section 6 concludes the paper.

2 Overview
We propose to combine software testing based tech-

niques for test sequence generation at a high level with
gate-level techniques for test sequence enhancement.
The overall test generation process is illustrated in Fig-
ure 1. Several partially-specified test sequences are de-

High-Level

Description
VHDL

Test
Set

Automatic
Synthesis

Gate-Level
DescriptionSequences

Test

Test Sequence
Gate-Level

High-Level

Generation
Test Sequence

Enhancement

Figure 1: Overview of test generation.

rived from the high-level circuit description using vari-
ous coverage goals, e.g., coverage of all statements. An
automatic synthesis tool is used to obtain a gate-level
implementation of the circuit, and then the gate-level
test sequence enhancement tool is executed to generate
a complete test set targeted at high coverage of single
stuck-at faults, using test sequences generated at the
high level as input. The high-level sequences generated

are aimed at traversing through a number of control
states in the system, and values of variables are left un-
specified as much as possible. The gate-level tool then
has more freedom to select values that will maximize
fault coverage. The same sequence may be reused a
number of times, but modifications made at the gate
level, which essentially specify the values of variables
in the datapath, are likely to result in different fully-
specified test sequences. Furthermore, any sequences
or subsequences that do not contribute to improving
the fault coverage are not added to the test set.

3 High-Level Test Generation
The first step in our test generation procedure is to

obtain a set of partially-specified test sequences using
the high-level circuit description and various coverage
goals. Ideally, we would like to automate this process,
but automatic generation of tests for both statement
and path coverage is itself a very difficult problem, and
no implementation is currently available. Therefore, in
the current work, the sequences are derived manually.
One of our goals in this work is to provide guidelines on
the types of high-level sequences that are most useful for
stuck-at fault testing. It may be possible to avoid using
sequences that are difficult to derive automatically and
still achieve high fault coverages. In particular, our
experiments indicate that statement coverage usually
suffices and is easier to achieve than path coverage.

Various high-level benchmark circuits are used in our
work, and most of these have been derived from VHDL
descriptions found at various ftp sites. Circuits b01–b08
range from simple filters to more complex microproces-
sor fetch and execution units and are available from the
authors.

The simplest coverage metric is statement coverage.
A test set with 100% statement coverage exercises all
statements in the VHDL description. Every branch
must be exercised at least once in the set of sequences
derived, but all paths are not necessarily taken. Path
coverage is a more comprehensive metric that does aim
to ensure that all paths are taken. To obtain a set of
sequences with 100% statement coverage, the datapath
and control portions of the description are identified,
and the state transition graph (STG) for the control
machine is derived. Then test sequences are assembled
to traverse all control states and all blocks of code for
each state. Each sequence begins by resetting the cir-
cuit. In the benchmark circuits that we are using, a
reset signal is available. However, the only necessary
assumption is that the circuit is initializable. This as-
sumption is satisfied at the gate level by either using a
reset signal or an initialization sequence. Several vec-
tors are then added to traverse between states and ex-
ercise various statements. Finally, vectors are added to

the end of the sequence to ensure that the circuit ends
in a state in which the output is observed. For many cir-
cuits, the outputs are observable in any state, so these
vectors are unnecessary. Portions of the test sequences
that determine the values of variables are left unspeci-
fied as much as possible so that the gate-level tool has
more freedom in choosing values to maximize stuck-at
fault coverage.

Derivation of test sequences for 100% statement cov-
erage is best illustrated by an example. The STG for
the control machine of benchmark circuit b03 is shown
in Figure 2. When the reset signal is asserted, the cir-

Reset

read request[1-4]

write grant

update grant
read request[1-4]

ASSIGN

INIT

ANALISI_REQ

Figure 2: STG for benchmark circuit b03.

cuit is placed in state INIT. In state INIT, the (bit)
variables request1 through request4 are read from the
primary inputs, and the next state is set to ANAL-
ISI REQ. In state ANALISI REQ, the 4-bit grant vari-
able is written to the primary outputs, one of four
blocks of code is executed, depending on the request
variables read in the previous state, and the next state
is set to ASSIGN. In state ASSIGN, the grant vari-
able is updated, the variables request1 through request4
are read from the primary inputs, and the next state
is set to ANALISI REQ. The set of test sequences de-
rived for 100% statement coverage therefore contains
four partially-specified sequences, each having five vec-
tors. The first vector resets the circuit. The second
vector sets the request variables to exercise one of the
four code blocks in the following state. The last three
vectors are used to traverse from the ANALISI REQ
state to the ASSIGN state, where the grant variable is
set, and back to the ANALISI REQ state, where the
grant variable is written to the primary outputs.

In obtaining a set of sequences for path coverage, we
start with a sequence with 100% statement coverage.
Several sequences are then added to maximize coverage
of paths. Paths are considered within each state of the
STG and also across several states. The procedure for
deriving sequences to cover paths within a state is first
explained for benchmark circuit b04. The STG for b04
is shown in Figure 3 along with a flow chart for state

sB sC

read
D_IN

sA

Reset

RLAST = D_IN

ENA = 1

AVE = 1

(D_IN + REG4)/2
D_OUT =

(RMAX + RMIN)/2
D_OUT =

D_OUT =
RLAST

RMAX = D_IN

D_IN
> RMAX

RMIN = D_IN

D_IN
< RMIN

State sC

TF

F T

T

ENA = 1

RES = 1

F

TF

D_OUT = REG4

T

T

F

F

Figure 3: STG for benchmark circuit b04 and flow chart
for state sC.

sC. All assignments in the flow chart are carried out in
the same clock cycle. When the circuit is reset, state
sA is entered. States sB and sC are reached in the next
two clock cycles, regardless of the inputs, as long as the
reset line is not asserted. No particular patterns are
needed to reach all statements and to cover all paths
in states sA and sB. However, many paths are possi-
ble in state sC. The circuit must be in state sC for a
minimum of four clock cycles to exercise all statements
at least once. Either four separate sequences or one
long sequence can be used. We have opted to use a
larger number of shorter sequences in order to provide
more sequences for optimization by the gate-level tool.
Fifteen sequences are needed to cover all paths. (Note
that the ENA variable is used at two separate decision
points.) Only five sequences are needed if the last two
decision points are not considered. We consider the 8-
bit variable D IN used in the last two decision points
to be part of the datapath, and therefore, in our ex-
periments, we have left specification of values for this
variable to the gate-level tool.

Paths that occur across multiple states must also be
considered. Consider the STG for the control unit of
benchmark circuit b06 shown in Figure 4. This STG
contains several cycles. In order to limit the num-
ber of sequences derived, we place restrictions on se-
quences that traverse a cycle. Self-loops are traversed
at most once in any sequence, and for other cycles, the

s_init

s_intr_1

s_intr

s_intr_w

s_enin_w

s_wait

s_enin

Reset

eql = 1 eql = 0

eql = 1

eql = 0

eql = 1 eql = 0

eql = 1

eql = 1
eql = 0

eql = 1

eql = 0

eql = 0

Figure 4: STG for benchmark circuit b06.

sequences are terminated when a state is repeated. Four
sequences are required to fully cover paths involving
states s wait, s enin, and s enin w. Five sequences are
needed to cover paths involving states s wait, s intr 1,
s intr, and s intr w. Nine sequences are thus required
for path coverage.

In general, both the STG and the statement flow for
each reached state must be considered when deriving
sequences for path coverage.

4 Gate-Level Test Enhancement
Functional tests generated at a high level are effective

in traversing through much of the control space of a
machine. However, they cannot exercise all values of
variables, except in very small circuits, due to the large
number of possible values. Selecting good values to use
at the high level is an unsolved problem, and a gate-
level approach may be more effective in finding values
that exercise potential faults.

4.1 Architecture of Gate-Level Tool
Our gate-level test enhancement tool repeatedly se-

lects a partially-specified sequence provided by the
high-level test generator and attempts to evolve a fully-
specified sequence that maximizes fault coverage. The
number of times that test sequence evolution is at-
tempted is a parameter specified by the user. Sequences
may be selected randomly or sequentially from the list
of sequences provided by the high-level test generator.
If sequences are selected randomly, a random number
generator is used to decide which sequence to select.
Random selection does not guarantee that every se-
quence will be used, but it does not restrict the order
in which the sequences are selected. If sequences are
selected sequentially, the first sequence is selected first,
the second sequence is selected second, and so on. Ev-
ery sequence will be selected at least once if the number

of attempts at test sequence evolution is greater than
or equal to the number of sequences.

The main function of the gate-level test enhancement
tool is to repeatedly solve an optimization problem:
maximizing the number of faults detected by each se-
quence. Genetic algorithms (GAs) have been used effec-
tively for many different optimization problems, includ-
ing sequential circuit test generation [9]–[11],[2]. Thus,
we use a GA for test sequence enhancement. We simply
seed the GA with a sequence obtained at the high-level
and then set the GA fitness function to maximize fault
detection. The GA will explore several alternative se-
quences through a number of generations, and the best
one is added to the test set if it improves the fault cov-
erage. Any vectors at the end of the sequence that do
not contribute to the fault coverage are removed. Then
the next high-level sequence is selected, and the genetic
enhancement procedure is repeated. This process con-
tinues until the number of attempts at test sequence
enhancement reaches the user-specified limit.

4.2 A GA for Test Sequence Enhancement
In this work, we use a simple GA, rather than a

steady-state GA [12], since exploration of the search
space is paramount. The simple GA contains a popu-
lation of strings, or individuals [13]. In our application,
each individual represents a test sequence, with succes-
sive vectors in the sequence placed in adjacent positions
along the string. Each individual has an associated fit-
ness, and in our application, the fitness measure indi-
cates the number of faults detected by each sequence.
The population is initialized with a set of sequences de-
rived from a single sequence generated at the high level,
and the evolutionary processes of selection, crossover,
and mutation are used to generate an entirely new pop-
ulation from the existing population. This process is
repeated for several generations. To generate a new
population from the existing one, two individuals are
selected, with selection biased toward more highly fit
individuals. The two individuals are crossed to create
two entirely new individuals, and each character in a
new string is mutated with some small mutation prob-
ability. The two new individuals are then placed in the
new population, and this process continues until the
new generation is entirely filled. Binary tournament se-
lection without replacement and uniform crossover are
used, as was done previously for gate-level test gener-
ation [10]. The goal of the evolutionary process is to
improve the fitness of the best individual in each suc-
cessive generation by combining the good portions of
fit individuals from the preceding generation. However
the best individual may appear in any generation, so
we save the best individual found.

The GA is seeded with copies of the partially-

specified test sequence provided by the high-level test
generator. The specified bits are the same for every
individual. Bits that are not specified are filled ran-
domly. Each fully-specified test sequence is then fault
simulated to obtain its fitness value; the fitness value
measures the quality of the corresponding solution, pri-
marily in terms of fault coverage. The GA is evolved
over several generations, and by the time the last gen-
eration is reached, several of the values specified by the
high-level test generator may have changed in many
of the individuals due to the mutation operator; i.e.,
the sequences may no longer be covered by the original
partially-specified sequence. However, such a sequence
will only be added to the test set if it covers some ad-
ditional faults not already covered by previous vectors
in the test set and if it has the highest fault coverage.

4.3 Fitness Function
The PROOFS sequential circuit fault simulator [14]

is used to evaluate the fitness of each candidate test se-
quence and again to update the state of the circuit after
the best test sequence is selected. The number of faults
detected is the primary metric in the fitness function,
since the objective of the GA is to maximize the number
of faults detected by a given test sequence. To differ-
entiate test sequences that detect the same number of
faults, we include the number of fault effects propagated
to flip-flops in the fitness function, since fault effects at
the flip-flops may be propagated to the primary out-
puts in subsequent time frames. However, the number
of fault effects propagated is offset by the number of
faults simulated and the number of flip-flops to ensure
that the number of faults detected is the dominant fac-
tor in the fitness function:

fitness = # faults detected

+
fault effects propagated to flip flops

(# faults simulated)(# flip flops)

While an accurate fitness function is essential in
achieving a good solution, the high computational cost
of fault simulation may be prohibitive, especially for
large circuits. To avoid excessive computations, we can
approximate the fitness of a candidate test by using a
small random sample of faults. In this work, we use a
sample size of about 100 faults if the number of faults
remaining in the fault list is greater than 100.

5 Results
Experiments were carried out to evaluate the pro-

posed approach for combining high-level and gate-level
techniques for sequential circuit test generation. Test
sequences were derived manually at the high level by
extracting the STG of the control machine and then en-
suring that all VHDL statements or paths were covered

within each control state. For diffeq, a short C program
was written to assist in obtaining high-level sequences.
This circuit contains a single loop, and the loop must
be exited to observe the output. The C program was
used to determine the number of loop iterations exe-
cuted for a given input. Gate-level implementations of
the circuits were synthesized using a commercial syn-
thesis tool. Test sequence enhancement was then per-
formed at the gate level using a new GA-based tool
implemented using the existing PROOFS [14] source
code and 2100 additional lines of C++ code. A small
GA population size of 32 was used, and the number
of generations was limited to 8 to minimize execution
time. Nonoverlapping generations and crossover and
mutation probabilities of 1 and 1/64 were used.

Tests were generated for several high-level bench-
mark circuits on an HP 9000 J200 with 256 MB mem-
ory. Characteristics of the benchmark circuits are sum-
marized in Table 1, including number of VHDL lines
in the high-level description, number of control states,
number of logic gates in the gate-level circuit, number
of flip-flops (FFs), number of primary inputs (PIs),
number of primary outputs (POs), and number of col-
lapsed faults. Circuits b01–b08 have been used previ-
ously for research on functional test generation [5]. Cir-
cuits barcode, gcd, dhrc, and diffeq were taken from the
HLSynth92 and HLSynth95 high-level synthesis bench-
marks. All circuits were translated into a synthesizable
subset of VHDL before they were used.

Test generation results are shown in Table 2 for se-
quences derived at the high level to maximize path
coverage. Results for HITEC [15], a gate-level deter-
ministic test generator, and GATEST [10], a gate-level
GA-based test generator, are also shown for compari-
son. Three passes through the fault list were made by
HITEC for all circuits unless all faults were identified as
detected or untestable earlier. Time limits for the three
passes were 0.5, 5, and 50 seconds per fault. For each
circuit, the number of faults detected (Det), the num-
ber of test vectors generated (Vec), and the execution
time are shown for each test generator. The execution
time for the proposed approach includes the time for
gate-level test enhancement only, but the time for gen-
erating sequences from high-level circuit descriptions is
expected to be of the same order of magnitude, based
on previous work [5]. The number of attempts at gen-
erating a useful test sequence (Seq) and the sequence
selection strategy (Strat), whether sequential or ran-
dom, are also shown in the table, as well as the num-
ber of faults identified as untestable by HITEC. Results
are shown for the sequence selection strategy and num-
ber of attempts that gave the highest fault coverage,
while using a minimal number of test vectors. If more

Table 1: High-Level Benchmark Circuits

High Level Gate Level
Circuit VHDL Lines Control States Gates Flip-Flops PIs POs Faults

b01 102 8 60 5 3 2 135
b02 70 7 37 4 2 1 72
b03 134 3 210 30 5 4 452
b04 79 3 676 66 12 8 1396
b05 297 5 892 34 2 36 1884
b06 127 7 92 9 3 6 206
b07 92 7 600 51 2 8 1271
b08 88 4 210 21 10 4 489

barcode 97 4 617 46 12 18 1091
gcd 44 1 1191 49 33 16 2199
dhrc 135 2 4420 202 65 8 9468
diffeq 66 1 9340 129 81 48 18,216

Table 2: Combining High-Level Test Generation with Gate-Level Test Enhancement

High-Level + Gate-Level HITEC GATEST
Circuit Det Vec Time Seq Strat Det Vec Time Unt Det Vec Time

b01 133 44 6.02s 10 seq 133 110 0.50s 2 133 80 12.0s
b02 69 27 5.80s 20 seq 69 54 0.29s 3 70 69 10.1s
b03 334 105 46.3s 20 rand 333 214 1.25h 41 334 169 1.12m
b04 1204 113 1.17m 20 rand 1177 303 1.42h 136 1217 220 4.60m
b05 905 85 2.36m 20 rand 913 396 11.9h 236 902 129 1.41m
b06 190 31 17.7s 20 seq 190 89 0.89s 16 190 62 19.6s
b07 888 100 6.80m 20 seq 878 206 4.87h 140 871 88 1.39m
b08 311 54 1.37m 40 seq 461 563 1.16m 28 261 84 46.3s

barcode 580 77 1.68m 20 rand 689 1816 28.7h 12 552 161 4.52m
gcd 1988 356 17.8m 90 rand 1638 206 13.7h 3 1377 227 10.6m
dhrc 8861 317 48.9m 60 seq 8864 1094 15.2h 150 8860 820 1.55h
diffeq 17,881 335 1.80h 100 rand 17,730 803 23.6h 46 18,009 662 7.71h

attempts are made at test sequence enhancement, the
execution time will increase, but higher fault coverages
were not achieved in our experiments.

For most circuits, the fault coverages for the pro-
posed approach are competitive with the fault coverages
achieved by HITEC. For barcode, the fault coverage is
about the same as that achieved by HITEC after two
passes through the fault list and 51.1 minutes of exe-
cution, although more faults are detected by HITEC
in the third pass. For b08, HITEC achieves higher
fault coverage in the first pass. In some cases, such as
b04, b07, and gcd, higher fault coverages are obtained
by combining the high-level and gate-level techniques.
Furthermore, for a given level of fault coverage, the test
sets generated using the proposed approach are much
more compact. Execution times for gate-level test en-
hancement are often orders of magnitude smaller than
those for HITEC. Nevertheless, untestable faults cannot
be identified using the proposed approach. Thus, the
designer may choose to run a gate-level test generator
such as HITEC in a postprocessing step. Fault cover-
ages for the proposed approach are significantly higher

than those for GATEST for several circuits. For some
circuits, GATEST achieves the same fault coverage as
the proposed approach, but test set lengths and execu-
tion times are significantly higher. For diffeq, the GAT-
EST fault coverage was higher, but execution time was
also significantly higher. The gate-level test enhance-
ment is very similar to the procedure used in GATEST,
except that GATEST uses random sequences in the ini-
tial GA population. The seeds used by the gate-level
test enhancement tool are critical in providing informa-
tion to the GA about sequences that can activate faults
and propagate fault effects.

The two sequence selection strategies are compared
in Table 3 for sequences derived at the high level to
maximize path coverage or for 100% statement cover-
age. Statement and path coverage are the same for
diffeq, since this circuit contains only a single path. For
path coverage, the sequential selection strategy gives
better results in terms of fault coverage and test set size
for some circuits, but in a few cases, the fault coverages
are significantly higher for random selection. Random
selection is therefore preferred in general. For statement

Table 3: Sequential vs. Random Selection of Sequences Derived for Path Coverage or Statement Coverage

Path Coverage Statement Coverage
Sequential Random Sequential Random

Circuit Seq Det Vec Time Det Vec Time Det Vec Time Det Vec Time

b01 10 133 44 6.02s 133 55 6.42s 128 38 4.76s 132 39 5.08s
b02 20 69 27 5.80s 69 30 6.37s 67 20 5.37s 69 29 5.44s
b03 20 334 108 36.4s 334 105 46.3s 334 108 36.3s 334 105 46.2s
b04 20 1189 95 1.16m 1204 113 1.17m 1199 91 1.26m 1200 104 1.28m
b05 20 153 31 2.55m 905 85 2.36m 232 71 2.48m 232 71 2.48m
b06 20 190 31 17.7s 190 41 17.8s 190 37 33.1s 190 30 33.1s
b07 20 888 100 6.80m 887 97 6.81m 877 67 6.45m 877 67 6.46m
b08 40 311 54 1.37m 301 43 1.50m 311 54 1.34m 302 40 1.47m

barcode 20 573 91 1.93m 580 77 1.68m 575 110 3.36m 575 110 3.35m
gcd 90 1914 302 18.6m 1988 356 17.8m 1662 304 16.8m 1769 283 13.6m
dhrc 60 8861 317 48.9m 8843 312 51.6m 8860 404 1.29h 8860 404 1.24h
diffeq 100 17,881 335 1.79h 17,881 335 1.80h 17,881 335 1.79h 17,881 335 1.80h

coverage, the random selection strategy tends to give
fault coverages that are as good as or better than those
for sequential selection. Fault coverages are sometimes
higher than those for sequences derived for path cov-
erage. However, fault coverages may be significantly
lower, as is the case for circuit b05. These results are
not unexpected, since certain paths may need to be
traversed in order to excite some faults and propagate
their effects to the primary outputs. Nevertheless, since
good results are often obtained for sequences derived for
100% statement coverage alone, and these sequences are
easier to derive, this approach may be preferred.

6 Conclusions
High fault coverages have been obtained very quickly

by combining high-level and gate-level techniques for
test generation. Sequences derived to maximize cov-
erage of statements or paths in the high-level VHDL
description are enhanced at the gate level to maximize
coverage of single stuck-at faults. This approach may
be used as a preprocessing step to gate-level test gen-
eration to speed up the process, and it sometimes re-
sults in improved fault coverages as well. Higher fault
coverages were obtained for sequences derived for path
coverage, but good results were also obtained for 100%
statement coverage. A random selection of sequences
for gate-level enhancement was shown to provide con-
sistently good results.

References
[1] J. Lee and J. H. Patel “Architectural level test generation

for microprocessors,” IEEE Trans. Computer-Aided Design,
vol. 13, no. 10, pp. 1288–1300, Oct. 1994.

[2] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, “Sequential
circuit test generation using dynamic state traversal,” Proc.
European Design and Test Conf., pp. 22–28, 1997.

[3] R. Vemuri and R. Kalyanaraman, “Generation of design ver-
ification tests from behavioral VHDL programs using path

enumeration and constraint programming,” IEEE Trans.
VLSI Systems, vol. 3, no. 2, pp. 201–214, June 1995.

[4] K.- T. Cheng and A. S. Krishnakumar, “Automatic gener-
ation of functional vectors using the extended finite state
machine model,” ACM Trans. Design Automation of Elec-
tronic Systems, vol. 1, no. 1, pp. 57–79, Jan. 1996.

[5] F. Corno, P. Prinetto, and M. Sonza Reorda, “Testability
analysis and ATPG on behavioral RT-level VHDL,” Proc.
Int. Test Conf., Nov. 1997.

[6] M. W. Johnson, “High level test generation using software
metrics,” M.S. thesis, Department of Electrical and Com-
puter Engineering, Tech. Report CRHC-95-06/UILU-ENG-
95-2204, University of Illinois, Feb. 1995.

[7] E. M. Rudnick and J. H. Patel, “Simulation-based tech-
niques for dynamic test sequence compaction,” Proc. Int.
Conf. Computer-Aided Design, pp. 67–73, 1996.

[8] E. M. Rudnick and J. H. Patel, “Putting the squeeze on test
sequences,” Proc. Int. Test Conf., pp. 723–732, Nov. 1997.

[9] D. G. Saab, Y. G. Saab, and J. A. Abraham, “CRIS: A test
cultivation program for sequential VLSI circuits,” Proc. Int.
Conf. Computer-Aided Design, pp. 216–219, Nov. 1992.

[10] E. M. Rudnick, J. H. Patel, G. S. Greenstein, and T. M.
Niermann, “Sequential circuit test generation in a genetic
algorithm framework,” Proc. Design Automation Conf.,
pp. 698–704, 1994.

[11] F. Corno, P. Prinetto, M. Rebaudengo, and M. Sonza Re-
orda, “GATTO: A genetic algorithm for automatic test
pattern generation for large synchronous sequential cir-
cuits,” IEEE Trans. Computer-Aided Design, vol. 15, no.
8, pp. 991–1000, Aug. 1996.

[12] J. H. Holland, Adaptation in Natural and Artificial Systems,
Ann Arbor, MI: University of Michigan Press, 1975.

[13] D. E. Goldberg, Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning, Reading, MA: Addison-Wesley,
1989.

[14] T. M. Niermann, W. -T. Cheng, and J. H. Patel, “PROOFS:
A fast, memory-efficient sequential circuit fault simula-
tor,” IEEE Trans. Computer-Aided Design, vol. 11, no. 2,
pp. 198–207, Feb. 1992.

[15] T. M. Niermann and J. H. Patel, “HITEC: A test genera-
tion package for sequential circuits,” Proc. European Conf.
Design Automation (EDAC), pp. 214–218, 1991.

