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ABSTRACT
In this paper, we classify speech into several emotional states based
on the statistical properties of prosody features estimated on utter-
ances extracted from Danish Emotional Speech (DES) and a subset
of Speech Under Simulated and Actual Stress (SUSAS) data collec-
tions. The proposed novelties are in: 1) speeding up the sequential
floating feature selection up to 60%, 2) applying fusion of decisions
taken on short speech segments in order to derive a unique decision
for longer utterances, and 3) demonstrating that gender and accent
information reduce the classification error. Indeed, a lower classi-
fication error by 1% to 11% is achieved, when the combination of
decisions is made on long phrases and an error reduction by 2%-
11% is obtained, when the gender and the accent information is
exploited. The total classification error reported on DES is 42.8%.
The same figure on SUSAS is 46.3%. The reported human errors
have been 32.3% in DES and 42% in SUSAS. For comparison pur-
poses, a random classification would yield an error of 80% in DES
and 87.5% in SUSAS, respectively.

1. INTRODUCTION

Emotional speech classification is a problem that has attracted re-
cently the interest of scientific community [1, 2]. In this paper, the
sequential floating forward selection algorithm is used for feature
selection in order to minimize the emotion classification error of the
Bayes classifier when the class conditional probability distribution
functions (pdfs) of features are modeled as Gaussians. To estimate
the classification error achieved by the Bayes classifier, crossval-
idation is employed [3]. A technique is proposed that guarantees
statistically significant reductions of the classification error com-
mitted by the Bayes classifier, when new features are added. The
aforementioned technique controls the number of crossvalidation
repetitions in sequential forward feature selection algorithms. Fre-
quently, the emotional speech classification is conducted on utter-
ances, i.e. speech segments between two silence pauses. However,
the human evaluators provide ground truth for phrases that consist
of sentences and paragraphs. The median rule for decision fusion
is proposed in order to combine the decisions taken by processing
utterances separately and to derive a unique decision for phrases.

The outline of the paper is as follows. In Section 2, the speech
utterances extracted from the data collections employed and the
prosody features extracted from the speech utterances are described.
Section 3 is devoted to the estimation of the classification error
committed by the Bayes classifier during crossvalidation repetitions
when the class conditional pdfs of the prosody features are modeled
by Gaussians. A mechanism that controls the number of crossvali-
dation repetitions is developed in the next section. This mechanism
is incorporated into the sequential floating forward selection algo-
rithm to speed up its execution. In Section 5, we propose an algo-
rithm to fuse decisions taken on short speech segments in order to
derive a unique decision for long phrases and to reduce the classifi-
cation error. Experimental results on speeding up feature selection,
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fusing decisions, and exploiting accent and gender information are
demonstrated in Section 6. Finally, conclusions are drawn in Sec-
tion 7.

2. DATA AND FEATURE EXTRACTION

Two data collections specific to emotion recognition are exploited.
The first data collection is the Danish Emotion Speech (DES) [4]
whose recordings refer to speech expressed by 2 male and 2 female
actors in 5 emotional states such as anger, happiness, neutral, sad-
ness, and surprise. The speech data consist of 2 isolated words,
9 isolated sentences, and 2 isolated paragraphs. Set A is formed
by 360 utterances corresponding to words and sentences. Set B is
the union of Set A and another 800 utterances extracted from para-
graphs. In the experiments, SetA and Set B are divided into subsets
Am,Af and subsets Bm, Bf for male and female speakers, respec-
tively. The second data collection uses a part of the Speech Under
Simulated and Actual Stress (SUSAS) data collection [5] and is de-
noted as Set C. C includes speech utterances under low and high
stress conditions (the so-called Cond50 and Cond70, respectively)
and speech under various talking styles such as anger, clear, fast,
loud, question, slow, and soft. Data from 9 male speakers with three
regional accents, i.e. that of Boston, General, and New York are ex-
ploited. Set C is divided into subsets CB , CG, and CN corresponding
to the aforementioned three regional accents.

The so-called global statistics of prosody feature contours [6],
i.e., statistical properties of pitch, formants, and energy features
are used. The prosody features are estimated on a frame basis,
fs(n;m) = s(n)w(m − n), where s(n) is the speech signal and
w(m− n) is a window of length Nw ending at sample m [7]. The
trends of the feature contours (i.e. plateaux at minimum/maxima
or rising/falling slopes) is a valuable feature for emotion recogni-
tion because they describe the temporal characteristics of emotions.
In the following, the methods to extract pitch, formants, and en-
ergy features, as well as the technique to track contour slopes and
plateaux are described.

The pitch signal, also known as glottal waveform, has informa-
tion about emotion, because it depends on the tension of the vocal
folds and the subglottal air pressure. The pitch signal is produced
from the vibration of the vocal folds. The time elapsed between two
successive vocal fold openings is called pitch period T , while the
vibration rate of the vocal folds is the fundamental frequency of the
phonation F0 or pitch frequency. The method used for extracting
pitch is based on the autocorrelation of center-clipped frames. The
signal is low filtered at 900 Hz and then it is segmented to short-
time frames of speech fs(n;m). The clipping, which is a non-linear
procedure that prevents the 1st formant interfering with the pitch, is
applied to each frame fs(n;m) yielding

f̂s(n;m) =

{
fs(n;m)− Λ if |fs(n;m)| > Λ

0 if |fs(n;m)| < Λ
∀n (1)

where Λ is set at the 30% of the maximum value of fs(n;m). The



pitch frequency is estimated by the short-term autocorrelation

rs(λ;m) =
1

Nw

m∑

n=m−Nw+1

f̂s(n;m)f̂s(n− λ;m) (2)

where λ is the lag. The pitch frequency of the frame ending at m is
given by

F̂0(m) =
Fs
Nw

argmaxλ{|rs(λ;m)|}λ=Nw (Fh/Fs)

λ=Nw (Fl/Fs) (3)

where Fs is the sampling frequency, and Fl, Fh are the perceived
lowest and highest possible pitch frequencies by humans, respec-
tively. The values of the aforementioned parameters are Fs = 8000
Hz, Fl = 50 Hz, and Fh = 300 Hz.

The method to estimate formants relies on the linear predic-
tion analysis. Let a 10-order all-pole vocal tract model at frame m
Θ̂(z;m) with linear prediction coefficients (LPCs) âζ(m) be

Θ̂(z;m) =
1

1−∑10
ζ=1 âζ(m)z−ζ

=
1∏10

ζ=1(z − pζ(m))
. (4)

In (4), âζ(m) are estimated by the Levinson-Durbin algorithm and
the order of the model for speech sampled at 8 kHz is selected as
10. The angles of the 4 poles pζ(m) which are furthest from the
origin are indicators of the 4 formant frequencies. The energy of
the speech frame ending at m is

e(m) =
1

Nw

m∑

n=m−Nw+1

|fs(n;m)|2. (5)

In order to find the energy content of a frequency band, a FIR filter
of 120 coefficients is employed. The coefficients are calculated with
the frequency sampling method using a Hamming window.

A contour of a short-term feature is formed by assigning the
feature value computed on a frame basis to all samples belonging to
the frame. For example, the energy contour is given by

E(n) = e(m), n = m−Nw + 1, . . . ,m. (6)

The contour E(n), n = 1, 2, . . . , L, where L is the length of the
signal, is smoothed by applying a moving average operator of 100
data points, resulting to Ê(n). To determine which samples belong
to a set of rising slopes (Sr), falling slopes (Sf ), plateaux at max-
ima (Sma), and plateaux at minima (Smi), the first derivative of
the feature contour is estimated by numerical methods. The deriva-
tive of the energy contour is estimated by the first-order difference
ÊD(n) = Ê(n) − Ê(n − 1), n = 2, . . . , L. Subsequently, the
algorithm of Figure 1 is applied. In this algorithm, v1 = 10−3 is a
constant that enables the detection of the rising or falling slopes and
the plateaux. The distinction between the plateaux at maxima and
those at minima is accomplished with the constant v2 which is set
to 0.45. The statistical features employed in this study are grouped

if ÊD(n) ≥ v1, s(n) ∈ Sr
else if ÊD(n) ≤ −v1, s(n) ∈ Sf
else if |ÊD(n)| < v1

if E(n) > max(E(i)) · v2, s(n) ∈ Sma
else if E(n) ≤ max(E(i)) · v2, s(n) ∈ Smi
end

end

Figure 1: Algorithm for finding the plateaux at minima/maxima and
the rising/falling slopes of pitch and energy contours.

in several classes as is explained subsequently. The features are
referenced by their corresponding indices throughout the analysis
following.

2.1 Formants features
The set of formants features is comprised by the statistical proper-
ties of the 4 formant frequency contours.
1. - 4. Mean value of the first, second, third, and fourth formant
5. - 8. Maximum value of the first, second, third, and fourth for-
mant
9. - 12. Minimum value of the first, second, third, and fourth for-
mant
13. - 16. Variance of the first, second, third, and fourth formant

2.2 Pitch features
The pitch features are statistics of the pitch frequency contour.
17. - 21. Maximum, minimum, mean, median, interquartile range
of pitch values
22. Pitch existence in the utterance expressed in percentage (0-
100%)
23. - 26. Maximum, mean, median, interquartile range of durations
for the plateaux at minima
27. - 29. Mean, median, interquartile range of pitch values for the
plateaux at minima
30. - 34. Maximum, mean, median, interquartile range, upper limit
(90%) of durations for the plateaux at maxima
35. - 37. Mean, median, interquartile range of the pitch values
within the plateaux at maxima
38. - 41. Maximum, mean, median, interquartile range of durations
of the rising slopes of pitch contours
42. - 44. Mean, median, interquartile range of the pitch values
within the rising slopes of pitch contours
45. - 48. Maximum, mean, median, interquartile range of durations
of the falling slopes of pitch contours
49. - 51. Mean, median, interquartile range of the pitch values
within the falling slopes of pitch contours

2.3 Energy (intensity) features
The energy features are statistics of the energy contour.
52. - 56. Maximum, minimum, mean, median, interquartile range
of energy values
57. - 60. Maximum, mean, median, interquartile range of durations
for the plateaux at minima
61. - 63. Mean, median, interquartile range of energy values for the
plateaux at minima
64. - 68. Maximum, mean, median, interquartile range, upper limit
(90%) of duration for the plateaux at maxima
69. - 71. Mean, median, interquartile range of the energy values
within the plateaux at maxima
72. - 75. Maximum, mean, median, interquartile range of durations
of the rising slopes of energy contours
76. - 78. Mean, median, interquartile range of the energy values
within the rising slopes of energy contours
79. - 82. Maximum, mean, median, interquartile range of durations
of the falling slopes of energy contours
83. - 85. Mean, median, interquartile range of the energy values
within the falling slopes of energy contours

2.4 Spectral features
The spectral features is the energy content of certain frequency
bands divided to the length of the utterance.
86. - 93. Energy below 250, 600, 1000, 1500, 2100, 2800, 3500,

and 3950 Hz.
94.-100. Energy in the 250 - 600, 600 - 1000, 1000 - 1500, 1500 -

2100, 2100 - 2800, 2800 - 3500, 3500 - 3950 frequency bands.
101.-106. Energy in the 250 - 1000, 600 - 1500, 1000 - 2100, 1500

-2800, 2100 - 3500, and 2800 - 3950 frequency bands.
107.-111. Energy in the 250 - 1500, 600 - 2100, 1000 - 2800, 1500

-3500, and 2100 - 3950 frequency bands.
112.-113. Energy ratio of (3950 - 2100)/(2100 - 0) and (2100-1000)

/(1000 - 0) frequency bands.
To facilitate the classifier design, feature subset selection is needed.
A criterion for comparing feature sets is as follows.



3. CROSSVALIDATION ERROR ESTIMATION

Let us denote the set of utterances by uW = {uWi }Ni=1. Such a
set can be considered as an independent and identically distributed
sample from the multidimensional distribution F of the feature set
W = {wk}Kk=1 which consists of K=113 features wk. Each ut-
terance uWi = (yWi , li) is treated as a pattern consisting of a mea-
surement vector yWi and a label li ∈ {1, 2, . . . , C}, where C is the
total number of emotional states.

Let us predict the label of an utterance by processing the fea-
ture vectors using for example a classifier. A usual estimate of
the prediction error using the sample uW is the cross-validation
(CV) estimate. The CV estimate of prediction error is the mean of
b = {1, 2, . . . , B} estimates of the error rate calculated as follows.
In the bth repetition, ND < N samples are randomly selected from
uW without re-substitution to build the design set uWDb, while the
remaining set uWT b of NT = N −ND samples creates the test set.

Let Q[li, ηuWDb
(yi)] denote the zero-one loss function between

the label li and its prediction for an utterance. For an utterance
uWi = (yWi , li), the prediction η is a discrete random variable ad-
mitting the value η if

η = arg maxCc=1{pb(yWi |Ωc)P (Ωc)}, (7)

where P (Ωc) = Nc/N , Nc is the number of utterances that belong
to class Ωc with c = {1, 2, . . . , C}, and pb(yWi |Ωc) is the class pdf
of the measurement vector yWi given Ωc in the bth CV repetition.
The class conditional pdf is assumed as a single Gaussian. Two
parameters for each class Ωc are required for a Gaussian, namely the
mean vector µc and the covariance matrix Σc, ∀yWi : uWi ∈ Ωc.
If uWDbc = {uWDb ∩ Ωc}, then in a single CV repetition b the mean
vector and the covariance matrix of each class Ωc are

µWbc =
1

ND

∑

uWi ∈uWDbc

yWi , (8)

ΣWbc =
1

ND

∑

uWi ∈uWDbc

(yWi − µWbc )(yWi − µWbc )T . (9)

The class conditional probability for each class Ωc is

pb(y
W
i |Ωc) =

exp[− 1
2
(yWi − µWbc )T (ΣWbc )−1(yWi − µWbc )]

(2π)K/2|det(ΣWbc )|1/2 ,

(10)
where det(·) is the determinant of a matrix. If err(F̂ (uWDb),u

W
T b)

is the error predicted from the model F̂ trained on the set uWDb and
applied to set uWT b for classification, then the CV estimate of pre-
diction error for a single repetition b is

CV be (uW) = err(F̂ (uWDb),u
W
T b) =

1

NT

∑

uWi ∈uWT b

Q[li, ηuWDb
(yWi )],

(11)
and the mean CV estimate for all B repetitions is

MCV Be (uW) =
1

B

B∑

b=1

CV be (uW). (12)

Let the variance of the B CV estimates be

V CV Be (uW) =
1

B

B∑

b=1

[CV be (uW)−MCV Be (uW)]2. (13)

From the experiments conducted, it is deduced that V CV B
e (uZ),

whereZ ⊆ W , depends on 1) the number of samples per emotional

stateNc, 2) the number of emotional statesC, and 3)MCV B
e (uZ).

On the contrary, V CV Be (uZ) does not depend on the dimension-
ality of the feature set Z . In order to find a reasonable expression
that correlates the three factors on which V CV Be (uZ) depends on,
three experiments are conducted.

In the first experiment, the pdfs of f(CV be (uZ)) for several
artificially generated data sets uZi and b = 1, 2, . . . , 1000 are es-
timated and plotted in Figure 2. It is inferred that V CV Be (uZ) is
inversely proportional to the number of samples per class.
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Figure 2: Pdf of CV be (uZ) for several feature set selections Zi for
Nc equal to (a) 20, (b) 36, (c) 100, and (d) 200 for 5 equiprobable
classes.

In a second experiment, the modes of the pdfs of f(CV b
e (uZ))

are estimated and plotted in Figure 3 for several artificial and real
data sets uZi and b = 1, 2, . . . , 1000 . The pdfs marked by ∗
correspond to three emotional speech feature sets of 5 emotional
states. In each emotional state Ωc, Nc = 36 utterances belong to,
c = 1, 2, . . . , 5. Moreover, artificially generated feature sets for five
classes have been created whose prediction errors are modeled as in
Figure 2. For each pdf, the peak at its mode is marked with ◦. It can
be seen that the variance V CV Be (uZ) depends on MCV Be (uZ).
Experimentally, it is found that V CV Be (uZ) can be parameterized
by a polynomial function of MCV Be (uZ).
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Figure 3: A parametric model for the modes of the pdf ofCV b
e (uZ)

for several feature sets Zi selections for C = 5 classes with 36
samples each.

Third, by plotting the modes of f(CV be (uZ)) for artificially
generated data sets with Nc = 36, c = 2, 3, . . . , 8 and various
MCV Be (uZ) values in Figure 4, it is deduced that V CV Be (uZ)
is inversely proportional to C. Combining the three observations,
it is found that MCV 10

e (uZ) can be used in order to estimate
V CV∞e (uZ) as follows

V CV∞e (uZ) =
9.24∑C
c=1 Nc

(−(MCV 10
e (uZ))2 +MCV 10

e (uZ))

(14)
where the scalar value of 9.24 was found by linear regression.
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4. APPLICATIONS IN FEATURE SELECTION

Feature selection is used in order to determine a feature set that
has the lowest classification error. We will augment the sequential
floating forward selection algorithm (SFFS) by a mechanism that
controls the number of crossvalidation repetitions to reduce com-
putational burden. The SFFS consists of a forward step and a con-
ditional backward step. The forward step is as follows. Starting
from an initially empty set of features Z0, at each forward (inclu-
sion) step at the level r we seek the feature w+ ∈ W − Zr−1

such that for Zr = Zr−1 ∪ {w+} the mean cross-validated error
MCV

Bthres
e (uZr ) is minimized. Thus

w+ = argmin{wk}∈W−Zr−1
[MCV Bthrese (uZr−1∪{wk})] (15)

where Bthres is the minimal number of crossvalidation repetitions
set by the user. A typical value for Bthres is 50, but there is not a
theoretical backround of that choice [3]. At the end of this section,
an investigation on the variance of the CV be (uZ) will be presented,
and a method to select Bthres will be proposed. In order to find
w+ in (15), the feature w1 is initially registered as the feature wcur
which currently achieves the lowest error rate

JMinCur = MCV Bthrese (uZr−1∪{w1}) (16)

among the non-selected features inW − Zr−1. Next, w2 is com-
pared with wcur . If MCV

Bthres
e (uZr−1∪{w2}) < JMinCur ,

then w2 becomes wcur and JMinCur is set toMCV
Bthres
e (uZr−1

∪{w2}). Otherwise, we proceed to w3. In general, for the kth fea-
ture {wk}, the comparison is

MCV Bthrese (uZr−1∪{wk}) < JMinCur, (17)

and if it is valid then wcur = wk.
Let us treat the error CV be (uZ) achieved by the Bayes classi-

fier as a random variable. Its pdf f(CV be (uZ)) is a Gaussian pdf as
it has been demonstrated by simulations in [8]. In inequality (17),
Bthres CV repetitions are not necessary to see if (17) is violated.
We propose to formulate a t-test in order to check whether (17)
does not hold at 95% significance level for a small number of CV
repetitions (e.g. B=10). If this hypothesis is accepted, the candidate
feature wk is rejected and we proceed to wk+1. Otherwise, we per-
form Bthres CV repetitions and we check whether inequality (17)
is valid.

In addition to the aforementioned inclusion step the SFFS al-
gorithm applies a conditional backward step (exclusion) when no
improvement can be made by any inclusion [9]. The exclusion step
is as follows. We exclude at level r the w− ∈ Zr which achieves
the highest error for the feature set Zr − {w−}.

The V CV Be (uZ) is of great importance when testing (17). In
the forward step of feature selection algorithms, two feature sets

Z1,Z2 must be compared in order to select the best. Let assume
that MCV B1

e (uZ1) is compared against MCV B2
e (uZ2). To be

certain that

MCV B1
e (uZ1) > MCV B2

e (uZ2), (18)

the lower limit of the confidence interval of MCV B1
e (uZ1) should

be greater than the upper limit of MCV B2
e (uZ2)

MCV B1
e (uZ1) − za/2

√
V CV∞e (uZ1)/B1 >

MCV B2
e (uZ2) + za/2

√
V CV∞e (uZ2)/B2, (19)

where a=0.05 for 95% confidence intervals, and B1, B2 > 30. The
unknown parameters are the number of CV repetitions B1 and B2.
Let assume that all the confidence intervals should have the same
length γ

γ = 2za/2
√
V CV∞e (uZi)/Bi, i = 1, 2 (20)

where V CV∞e (uZi) is estimated from the 10 CV repetitions by
using (14). Then Bi can be estimated by (20) as

Bi =
9.24(−(MCV 10

e (uZi))2 +MCV 10
e (uZi))4z2

a/2

γ2
∑C
c=1 Nc

, i = 1, 2.

(21)
Subset Z1 is considered to be better than Z2 if MCV B1

e (uZ1) −
MCV B1

e (uZ2) > γ. The user selects γ with respect to the compu-
tation speed, as it can be inferred from (21).

5. DECISION FUSION

The probability pb(y
Zopt
i |Ωm) for u

Zopt
i = (y

Zopt
i , li), whereZopt

is the optimum feature set selected by the SFFS, can be used to
classify a phrase φ represented by the union of the utterances ui ∈
φ. If φρ =

⋃
ui∈φρ(y

Zopt
i , lρ), where ρ is the index of the phrase,

and lρ is the target of the lth phrase. Then the likelihood of φρ given
Ωj is determined by

p(φρ|Ωj) = median
ui∈φρ

(Bthres∑

b=1

pb(y
Zopt
i |Ωj)

)
. (22)

In (22) the median operator achieves lower error rates than the
mean or the majority voting operators, because the mean is sensitive
to outliers and the majority voting flattens the pdfs pb(y

Zopt
i |Ωj).

By employing the Bayes classifier (7), then φρ is assigned to the
class with the highest probability p(φρ|Ωj). We must note that
p(Ωj |φρ) = 1/C ∀j ∈ {1, 2, . . . , C}, because all phrases, i.e.
sentences or paragraphs occur with the same frequency in DES.

6. EXPERIMENTAL RESULTS

The experiments aim at rating the discriminating capability of an
optimum feature set when the proposed SFFS algorithm where the
number of CV repetitions is controlled by the user is used. The
data are divided according to the gender and the accent information
for DES and SUSAS, respectively. In addition, to demonstrate that
the utterances from paragraphs have a lower arousal level than that
of words and sentences, the proposed SFFS is applied separately
on Set B from A. Also, a comparison of the proposed SFFS is
performed against the normal SFFS for the same features and data
sets. The classification errors are compared to the human error rates
estimated with perception tests performed for DES in [4] and for
SUSAS in [10].

As it is evident from the second and the third lines in Table 1,
the proposed technique that uses the t-test to reject a feature and es-
timates the number of CV repetitions that should be done speeds up
the execution of SFFS by 50%-60%. From the classification errors



in Table 1, we infer that there is not any significant performance de-
terioration between the standard algorithm and the proposed variant
of SFFS. Thus the proposed SFFS is adopted throughout the re-
maining experiments.

A comparison of the classification error achieved by SFFS for
several data sets vs. the human errors is made in Table 2. From the
inspection of the second row in Table 2 we conclude that the gender
information reduces classification error by 5%-7%. The classifica-
tion error for set B is worse than that for set A by 7%, because the
former data set is assumed to have a lower arousal, since it addition-
ally contains utterances from long paragraphs. The classification er-
ror for the Set C is reduced by 2%-7% when the accent information
is used.

In Table 3, the best combination of 10 features for each experi-
ment is indicated. The energy below 250 Hz (index 86) is present
in all combinations. The energy below 2100 Hz (index 90) is also
quite frequent. The mean value of pitch within the rising slopes of
the pitch contours (index 42), and the interquartile range of energy
values (index 56) are found to be also important.

To demonstrate the usefulness of the proposed decision fusion
algorithm described in section 5 we compare the classification er-
rors measured on the sets A and B of DES with and without deci-
sion fusion. It is seen that higher errors are measured when fusion
is not applied than when it does. The improvement in accuracy for
the set B is about 7%-11%, whereas for set A is 1%-2%, because
the number of utterances consisting a phrase in the former set is
much higher than that in the latter set. The results obtained are
closer to those reported for humans in the same task [4] that are
listed in the last column. It is worth noting that we do not have
ground truth information for emotional speech classification on ut-
terances, whereas such ground truth is provided for emotional per-
ception tests performed on phrases. To fill the aforementioned lack
of ground truth for utterances, we assume that the latter is equal to
that provided for phrases.

Experiments on set B are also reported in investigations [11]
and [12]. The classification error is about 46% in [11], which is in
agreement with our results. The only difference is that the bootstrap
method was used, which is considered biased [3]. A 30% classifi-
cation error is reported in [12], which is lower than the human error
(33%). The low error might be due to the Fujisaki intonation pa-
rameters and the classification using only the voiced part of speech.

7. CONCLUSIONS

First, we have described how sequential floating forward feature se-
lection algorithm can be accelerated. The proposed method can be
applied to other subset selection algorithms such as the branch and
bound or the backward selection. The second contribution of the
paper was in the combination of partial emotional speech classifi-
cation decisions from short speech segments in order to derive a
unique, more robust, decision on the basis of long phrases. When
gender and accent information is taken into account the reported
errors are approaching the human errors.
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