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Abstract

We present parallel algorithms for union, intersection and
difference on ordered sets using random balanced binary
trees (treaps [26]). For two sets of size n and m (m < n) the
algorithms run in expected O(mlg(n/m)) work and O(lgn)
depth (parallel time) on an EREW PRAM with scan oper-
ations (implying O(lg® n) depth on a plain EREW PRAM).
As with the sequential algorithms on treaps for insertion
and deletion, the main advantage of our algorithms are their
simplicity. In fact, our algorithms for set operations seem
simpler than previous sequential algorithms with the same
work bounds, and might therefore also be useful in a sequen-
tial context. To analyze the effectiveness of the algorithms
we implemented both sequential and parallel versions of the
algorithms and ran several experiments on them. Our par-
allel implementation uses the Cilk [5] shared memory run-
time system on a 16 processor SGI Power Challenge and a
6 processor Sun Ultra Enterprise 3000. It shows reasonable
speedup: 6.3 to 6.8 speedup on 8 processors of the SGI, and
4.1 to 4.4 speedup on 5 processors of the Sun.

1 Introduction

Balanced trees provide a wide variety of low-cost operations
on ordered sets and dynamic dictionaries. Of the many types
of balanced trees that have been developed over the years,
treaps [26] have the advantage of both being simple and
general—in addition to insertion and deletion they easily
support efficient finger searching, joining, and splitting. Fur-
thermore, by using appropriate hash functions they require
no balance information to be stored at the nodes. Treaps,
however, have only been studied in the context of sequential
algorithms, and there has been little study of their perfor-
mance.
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In this paper we extend previous work on treaps by de-
scribing and analyzing parallel algorithms on treaps and by
presenting experimental results that demonstrate their util-
ity. We focus on the aggregate set operations intersection,
union, and difference since, among other applications, these
operations play an important role in databases queries and
index searching [30, 19]. The techniques we describe can
also be applied to searching, inserting and deleting multiple
elements from a dictionary in parallel. Although we use two
of the same building blocks used in the sequential algorithms
(split and join), the design and analysis of our algorithms is
quite different. The algorithms we present have the follow-
ing properties, which together make them attractive from
both a theoretical and practical point of view.

e For two sets of size n and m with m < n our algo-
rithms for union, intersection, and difference run in
expected O(mlg(n/m)) serial time or parallel work.
This is optimal.

e Our algorithms are significantly simpler than previ-
ous parallel and serial algorithms with matching work
bounds. We therefore expect that our algorithm could
be useful even in a sequential setting. The paper in-
cludes the full C code for our algorithms.

e The parallelism in our algorithms comes purely from
their divide-and-conquer nature. The algorithms are
therefore easy to implement in parallel and well suited
for asynchronous execution. We have implemented the
parallel versions of the algorithms in Cilk [5] with only
minor changes to the sequential C code.

e Our algorithms are fully persistent—they create the
resulting set while leaving the input sets untouched.!
Such persistence is important in database and indexing
applications.

e Our algorithms are efficient when the results are from
interleaving blocks of the ordered input sets. For ex-
ample, a variant of our union algorithm requires ex-
pected serial time (or parallel work) that is only loga-
rithmic in the input sizes when the inputs have only a
constant number of blocks.

!Note that just copying the inputs does not work since this would
violate the O(mlg(n/m)) work bounds—it would require O(n + m)
work.



e The algorithms use the same representation of treaps
as Seidel and Aragon [26] so that all their algorithms
can be used on the same data without modification.

Treaps are randomized search trees in which each node
in the tree has a key and an associated random priority.
The nodes are organized so that the keys appear in in-
order and the priorities appear in heap-order. Seidel and
Aragon showed that insertion, deletion, searching, splitting,
and joining can all be implemented on treaps of size n in
O(lgn) expected time, and that given a finger in a treap (a
pointer to one of the nodes), one can find the key that is d
away in the sorted order in O(lg d) expected time (although
this requires extra parent pointers). They also showed that
one need not store the priorities at the nodes, but instead
can generate them as needed using a hashing function. The
simplicity of the algorithms led them to conjecture that the
algorithms should be fast in practice. Although they did
not present experimental results, we have run experiments
that compared treaps to splay trees [27], red-black trees, and
skip-lists [22] and the results show that treaps have around
the same performance as these other fast data structures.
These results are briefly presented in Section 3.1.

Our interest is in developing fast parallel algorithms for
set operations. Set operations are used extensively for in-
dex searching—each term (word) can be represented as a
set of the “documents” it appears in and searches on log-
ical conjunctions of terms are implemented as set opera-
tions (intersection for and, union for or, and difference for
and-not) [30, 19]. Most web search engines use this tech-
nique. The set union operation is also closely related to
merging—it is simply a merge with the duplicates removed.
It is well known that for two sets of size m and n (m < n)
merging, union, intersection and difference can be imple-
mented sequentially in O(mlg(n/m)) time [6]. In applica-
tions in which the sets are of varying and different sizes, this
bound is much better than using a regular linear time merge
(O(n + m) time) or inserting the smaller set into the larger
one at a time using a balanced tree (O(mlgn) time). Pre-
vious sequential algorithms that achieve these bounds, how-
ever, are reasonably messy [6, 7]. The only parallel version
we know of that claims to achieve these work bounds [15] is
much more complicated.

In regards to treaps, Seidel and Aragon did not directly
consider merging or set operations, but it is straightfor-
ward to use their finger search to implement these opera-
tions within the optimal time bounds, expected case. In
particular if p; is the position of element 7 of set A in set
B, the expected time of inserting all of A into B by insert-
ing one at a time using the previous element as a finger is
S (1 4 1g(1 + pic1 — pi)). With [A| = m, |B| = n, and
m < n this sum is bounded by O(mlg(n/m)). Although the
algorithm is probably simpler than previous techniques, it
requires parent pointers and does not parallelize.

In this paper we describe direct algorithms for union, in-
tersection and difference on ordered sets using treaps. The
algorithms run in optimal O(mlg(n/m)) work and in O(lgn)
depth (parallel time) on an EREW PRAM with unit-time
scan operations (used for load balancing)—all expected case.
This bound is based on automated pipelining [3]—without
pipelining the algorithms run in O(lg? n) depth. As with
the sequential algorithms on treaps, the expectation is over
possible random priorities, such that the bounds do not de-
pend on the key values. The algorithms are very simple
(although the analysis of their bounds is not) and can be

applied either sequentially or in parallel. All the algorithms
have a similar divide-and-conquer structure and require no
extensions to the basic treap data structure. We also show
that for two ordered sets of size n and m and if k is the
minimum number of blocks in a partitioning of the first set
that contains no elements of the second, a variant of our
union algorithm requires only O(klg((n + m)/k) expected
work. This is optimal with respect to the measure [8].

To analyze the effectiveness of the algorithms in practice
we ran several experiments. We were interested in various
properties including how well treaps compare sequentially
with other balanced trees such as red-black trees, how well
our algorithms perform for various overlaps in the keys, and
how well the algorithms parallelize. The serial experiments
show that treaps are competitive with splay trees, skip lists,
and red-black trees. They also show that the algorithms
perform well with small overlap in the keys. The parallel
implementation was coded in Cilk [5], a parallel extension of
C, and run on a Sun Ultra Enterprise 3000 and a SGI Power
Challenge. The algorithms achieve speedups of between 4.1
and 4.4 on 5 processors of the Sun and between 6.3 and 6.8
on 8 processors of the SGI. We feel that this is reasonably
good considering the high memory bandwidth and irregular
access pattern required by the algorithm.

Related Work

Merging and the related set operations (union, intersec-
tion and difference) have been well studied. Merging two
ordered sets N and M of size n and m requires at least
[lg ("';m)] comparisons in the worse case since an algorithm
needs to distinguish between the (”TL’") possible placements
of the n keys of N in the result. Without loss of gen-
erality we will henceforth assume m < n, in which case
[lg (nim)] = 6(mlg(n/m)). Hwang and Lin [14, 18] de-
scribed an algorithm that matches this lower bound, but
the algorithm assumes the input sets are in arrays and only
returns cross pointers between the arrays. To rearrange the
data into a single ordered output array requires an addi-
tional O(n + m) steps. Brown and Tarjan gave the first
O(mlg(n/m)) time algorithm that outputs the result in the
same format as the inputs [6]. Their algorithm was based
on AVL-trees and they later showed a variant based on fin-
ger searching in 2-3 trees [7]. The same bounds can also be
achieved with skip-lists [21].

The lower bound given above makes no assumptions about
the input. When using a measure of the “easiness” of the in-
put the bounds can be improved. In particular, suppose set
A is divided into blocks of elements A;, As, ..., Ax and set
B is divided into blocks of elements B1, Bo, ..., B; such that
the merged set is an alternation of these blocks from A and B
(k =1+£1). Such inputs can be merged in O(klg((n+m)/k))
time [8, 21]. In fact any data structure that takes O(lgk)
time for a split on the k*" element of an ordered set, or
to append (join) k elements to an ordered set can be used
to achieve these bounds. Pugh used this approach for skip
lists [21] and although not discussed directly, the approach
can also be applied to treaps when using the “fast” versions
of splits and joins. However, as with finger searches, these
“fast” versions require parent pointers.

In the parallel setting previous work has focused either
on merging algorithms that take O(n + m) work and are
optimal when the two sets have nearly equal sizes or on
multi-insertion algorithms that take O(mlgn) work and are



optimal when the input values to be inserted are not pre-
sorted.

Anderson et al. [1], Dekel and Ozsvath [9], Hagerup and
Riib [12], and Varman et al. [29] provide O(n/p + lgn)
time EREW PRAM algorithms for merging. Guan and
Langston [11] give the first time-space optimal algorithm
that takes O(n/p + lgn) time and O(1) extra space on an
EREW PRAM. Katajainen et al. [16] gives a simpler algo-
rithm with the same time and space bounds for the EREW
and an optimal space-efficient O(n/p + lglgm) time and
O(1) space algorithm for the CREW PRAM.

Paul et al. provide EREW PRAM search, insertion, and
deletion algorithms for 2-3 trees [20], and Highan and Schenk
have extended these results to B-trees [13]. Ranade [23] gives
algorithms for processing least-upper-bound queries and in-
sertion on distributed memory networks. Baumker and Dit-
trich [2] give algorithms for search, insertion, and deletion
into BB*(a) trees for the BSP* model that are 1-optimal
and 2-optimal. All these algorithms require O(mlgn) work
and appear to have large constants.

In 1975 Gravil gave the first CREW PRAM merge algo-
rithm that requires only O(mlg(n/m)) comparisons. How-
ever, as with Hwang and Lin’s serial algorithm, it requires an
additional O(n +m) operations to return the sorted merged
results in an array. Katajainen describes EREW PRAM
algorithms for union, intersection and difference that use
the same input and output representations [15]. The algo-
rithms are an extension of Paul et al.’s 2-3 tree algorithms
and he claims they run in optimal O(lgn + lgm) depth and
O(mlg(n/m)) work. The algorithms as described, however,
do not actually meet these bounds since the analysis incor-
rectly assumes a 2-3 tree of depth lgm has O(m) leaves. It
may be possible to modify the algorithms to meet the bound
and the general approach seems correct.

2 Treaps

Treaps use randomization to maintain balance in dynami-
cally changing search trees. Each node in the tree has an
associated key and a random priority. The data are stored
in the internal nodes of the tree so that the tree is in in-order
with respect to the keys and in heap-order with respect to
the priorities. That is, for any node, x, all nodes in the left
subtree of x have keys less than x’s key and all nodes in
the right subtree of = have keys greater than z’s key (in-
order), and all ancestors of x have priorities greater than
x’s priority and all descendents have priorities less than z’s
(heap-order). For example, Figure la shows a treap where
each (letter, number) pair represents a node and the letter
is the key value and the number is the priority value. When
both the keys and the priorities are unique, there is a unique
treap for them, regardless of the order the nodes are added
to or deleted from the treap.

The code shown in this section and used in our experi-
ments implements persistent versions of the operations. That
is, rather than modifying the input trees, the code makes
copies of nodes that need to be modified using the function
new_node. This function fills a new node with the key and
priority data given in its arguments. All code in this section
along with nonpersistent and parallel versions are available
at http://www.cs.cmu.edu/"scandal/treaps.html.

2.1 Sequential algorithms

Seidel and Aragon showed how to perform many operations
on treaps [26]. We quickly review the operations split and
join, which we use to manipulating pairs of treaps.

(L, z, G) = split(T, key) Split T into two trees, L with
key values less than key and G with key values greater
than key. If T has a node = with key value equal to
key then x is also returned.

T = join(T1, T2) Join T1 and T2 into a single tree T,
where the largest key value in 7'1 is less than the small-
est key value in T2.

Below we give the recursive top-down C code for per-
sistent split and join. The split and join we use in our
experiments are the slightly more efficient iterative versions.
In addition, there are bottom-up algorithms that use rota-
tions for these operations [26].

Split To split a tree rooted at r by key value a split
follows the in-order access path with respect to the key value
a until either it reaches a node with key value a or a leaf
node. When the root key is less than a the root becomes
the root of the “less-than” tree. Recursively, split splits the
right child of the root by a, and then makes the resulting
tree with keys less than a the new right child of the root
and makes the resulting tree with keys greater then a the
“greater-than” tree. Similarly, if the root key is greater than
a split recursively splits the left child of the root. If the
root key is equal to a split returns the root and the left and
right children as the “less-than” and “greater-than” trees,
respectively. Figure 1 shows the result of a split on a treap.
The expected time to split two treaps into treaps of size n
and m is O(lgn + lgm) [26]. The following code returns
the less and greater results by side effecting the first two
argument. It returns an equal key, if present, as the result.

node split(node *less, node *gtr, node r, key_t key)
{

node root;

if (r == NULL) {*less = *gtr = NULL; return NULL;}

root = new_node(r->key, r->priority);
if (r->key < key) {
*less = root;
return split(&(root->right), gtr, r->right, key);
} else if (r->key > key) {
*gtr = root;
return split(less, &(root->left), r->left, key);
} else {
*less = r->left;
*gtr = r->right;
return root;
}
}

Join To join two treaps T'1 with keys less than a and T2
with keys greater than a join traverses the right spine of
T'1 and the left spine of T2. A left (right) spine is defined
recursively as the root plus the left (right) spine of the left
(right) subtree. To maintain the heap order join interleaves
pieces of the spines so that the priorities descend all the way
to a leaf. The expected time to join two treaps of size n and
m is O(Ign +1gm) [26].



Figure 1: Figure a shows split’s input tree with each node’s
(key,priority) values. When splitting by the key v, the un-
shaded region becomes the less-than tree and the shaded re-
gion becomes the greater-than tree. The double links show
the path split follows. Figure b shows the result trees; the
striped nodes are the new nodes that the persistent version
of split creates.

node join(node ril, node r2)

{
node root;
if (rl1 == NULL) {return r2;}
if (r2 == NULL) {return ri;}

if (ri->priority < r2->priority) {
root = new_node(rl->key, ri->priority);
root->left = ri->left;
root->right = join(ri->right, r2);

} else {
root = new_node(r2->key, r2->priority);
root->left = join(rl, r2->left);
root->right = ril->right;

}

return root;

}

2.2 Parallel Algorithms

In the parallel setting we view each treap as an ordered set
of its keys and we consider the following operations:

T = union(T'1, T2) Find the union of treaps T'1 and T2
to form a new treap T'.

T = intersect(7'1,72) Find the intersection of treaps T'1
and T2 to form a new treap 7.

T = diff(T1,72) Remove from 71 nodes that have the same
key values as node in T2, returning its new root T'.

All three algorithms have a similar divide-and-conquer
structure in which we use the key from the larger priority
root to split the tree with the smaller priority root, and then
make two recursive calls (which can be parallel) on the values
less and greater than the key. The algorithms differ in how
they combine the results. The code we show below is for
the sequential C versions. To make them parallel using Cilk

one needs only put the cilk keyword before each function
definition, the spawn keyword before each recursive call, and
a sync after both of them. As discussed in 3.2 the versions
used in the experiments also terminate the parallel calls at a
given depth in the tree to reduce the overhead of spawning.

Union: To maintain the heap order, union makes 7, the
root with the largest priority, the root of the result treap. If
the key of r is k then, to maintain the key in-order, union
splits the other treap by k into a “less-than” tree with key
values less than k and “greater-than” tree with key values
greater than k, and possibly a duplicate node with a key
equal to k. Then, recursively (and in parallel) it finds the
union of the left child of r and the less-than tree and the
union of the right child of r and the greater-than tree. The
result of the two union operations become the left and right
subtrees of r, respectively. The following C code implements
the algorithm.

node union(node rl, node r2)
{

node root, less, gtr, duplicate;

if (r1 =
if (r2 =

NULL)
NULL)

return r2;
return ri;

if (ril->priority < r2->priority) swap(&rl, &r2);
duplicate = split(&less, &gtr, r2, ri->key);

root = new_node(ril->key, rl->priority);
root->left = union(ri->left, less);
root->right = union(ri->right, gtr);
return root;

}

Intersection: Aswith union, intersection starts by split-
ting the treap with the smaller priority root by k, the key
of the root with the greater priority. It then finds the inter-
section of the two left subtrees, which have keys less than
k, and the intersection of the two right subtrees, which have
keys greater than k. If k appeared in both trees then these
results become the left and right children of root used to
split. Otherwise it returns the join of the two recursive call
results.

node intersect(node rl, node r2)
{
node root, less, gtr, left, right, duplicate;

if ((r1 == NULL) || (r2 == NULL)) return NULL;

if (ril->priority < r2->priority) swap(&rl, &r2);
duplicate = split(&less, &gtr, r2, ri->key);

left intersect(ri->left, less);
right = intersect(ril->right, gtr);

if (duplicate == NULL) {
return destruct_join(left, right);
} else {
root = new_node(ri->key, ril->priority);
root->left = left;
root->right = right;
return root;



Notice that because the nodes returned by the intersection
are all copies of input tree nodes, intersect can use a de-
structive version of join, one that modifies the nodes of the
tree.

Difference: To find the difference of two treaps T'1 and T2
diff splits the treap with the smaller priority root by k, the
key of the root of the other treap. Then it finds the difference
of the two left subtrees, which have keys less than k, and the
difference of the two right subtrees, which have keys greater
than k. Because difference is not symmetric diff considers
two cases: when T2 is the subtrahend (the set specifying
what should be removed) and when T2 is not, as specified
by the boolean r2_is_subtr. If T2 is the subtrahend and it
did not contain k, then it sets the left and right children of
the root of T'1 to the results of the recursive calls and returns
this root. Otherwise it returns the join of the results of the
recursive calls.

node diff(node r1, node r2, bool r2_is_subtr)
{
node root, less, gtr, left, right, duplicate;

if ((r1 == NULL) || (r2 == NULL))
return r2_is_subtr ? rl1 : r2;

if (ri->priority < r2->priority) {
r2_is_subtr = !r2_is_subtr;
swap(&rl, &r2);

}

duplicate = split(&less, &gtr, r2, ri->key);

left = diff(ri->left, less, r2_is_subtr);
right = diff(ri->right, gtr, r2_is_subtr);

/* Keep rl if no dupl. and subtracting r2 */

if ((duplicate == NULL) && r2_is_subtr) {
root = new_node(rl->key, ri->priority);
root->left = left;
root->right = right;
return root;

} else {
return join(left, right);

/* Delete rl1 */

}
}

2.3 Extensions

Using Fast Split and Join: The versions of split and
join we use can split a treap into two treaps of size m and
n or join two treaps of size m and n with O(lgmax(n, m))
expected work. Seidel and Aragon also describe “fast” ver-
sions of split and join that use O(lgmin(n,m)) expected
work. These versions use parent pointers for quick access
from the two ends of a set, and are similar to finger search-
ing. The use of such fast versions of join and split does not
effect our asymptotic work bounds assuming a general or-
dering of the input sets, but they do allow us to generate a
parallel algorithm that is optimal with respect to the block
measure. As described in the introduction if set A is di-
vided into blocks of A1, A, ..., A and set B is divided into
blocks of elements B, Bs, ..., B; such that the merged set
is an alternation of these blocks from A and B, then A and
B can be merged in O(klg((n + m)/k)) time. This bound
also applies to union, although k is defined as the minimum

number of blocks of A such that no value of B lies within a
block. These times are optimal but previous algorithms are
all sequential.

Section 2.5 shows that our parallel union algorithm achieves
the same work bounds if it uses fast splits and joints. The
modified algorithm also requires another change, at least in
the version for which we prove bounds. In this change if
split(&less,&grt,r2,ri->key) returns an empty tree in
less then the algorithm executes the following instead of
making the two recursive calls

km = minkey(r2);
dup = split(&ll,&rr,rl,km);
root = join(ll,union(rr,r2);

where minkey (r2) returns the minimum key in the set rep-
resented by r2. A symmetric case is used if grt is empty.

We note that although we use the fast splits and joins

to prove the bounds, the algorithm with the slow versions
still seem to work very well experimentally with respect to
number blocks. Some experimental results are given in Sec-
tion 3.
Nonpersistent versions: All the code we show and use in
our experiments is fully persistent in that it does not modify
the input treaps. Persistence is important in any application
where the input sets or intermediate results might be reused
in future set operations. Certainly in the application of in-
dex searching we do not want to destroy the sets specifying
the documents when manipulating them. In other applica-
tions, such as updating a single dictionary kept as a treap,
nonpersistent versions are adequate. In such applications we
typically view one of the treaps as the treap to be modified
and the other as the set of modifications to make. The only
changes that need to be made to our code to make such non-
persistent versions is to have them modify the nodes rather
than create new ones, and to explicitly delete nodes that are
being removed.

The relative performance of the persistent and nonper-
sistent versions are discussed in Section 3.2. We note that
our persistent code is not as space efficient as the more so-
phisticated method of Driscoll et al. [10], but their solution
is much more complex and can only be applied to a tree of
changes.

2.4 Analysis

In this section we first analyze the expected work to find
the union of two treaps t, and t,, of size n and m, respec-
tively and m < n. The expected work to find intersection
and difference of two treaps follows. Then we analyze the
expected depth of these operations. The proof of some of
the lemmas in this section and a more detailed discussion is
given in [24].

Without loss of generality, assume that the key values
for the two trees are 1,2,3,...,n+ m. Let N and M be the
sets of keys for t,, and t,,, respectively, such that N UM =
1,2,3,...,.n+mand NNM = 0. (f NN M # 0 the
expected work for union is less because the expected work
for the split operation in union is less than when NNM = §.)

Since the priorities for the two treaps are chosen at ran-
dom, arranging the keys so that their priorities are in de-
creasing order results in a random permutation o € Sy 4m,
where S+, is the set of all permutations on n + m items.
Along with N and M this permutation defines the result
treap and the parallel work and depth required to find it.
Therefore, we define W(N, M, o) to be the work required



to take the union of two specific treaps, which depends both
on the interleaving of the key values in N and M and on
the permutation o defined by their priorities. We define
E[W (N, M)] to be the expected work to take the union
of N and M averaged over all permutations (i.e., 1/(n +
m)! Zaes"er W(N, M, 0)). Even when the sizes of N and

M are fixed this expected work can depend significantly on
the interleaving of N and M. We define E[W(n,m)] =
max{E [W (N, M)],|N| = n,|M| = m}. This is the worst
case work over the interleavings and expected case over the
permutations, and is what we are interested in.

The work for a permutation o = (a1 = 4,a2,a3, ..., Gntrm)
is the time to split one treap by 7 plus the work to take the
union of the treaps with keys less than ¢ and the union of
the treaps with keys greater than i. We use the notation
N < i to indicate all keys in the set N which are less than 1.
Since it is equally likely that any 7 will have highest priority,
we can write the following recurrence for the expected work
for a given N and M averaged over all permutations

(n+m)E[W(N,M)] =

n+m

D (EBIW(N <i, M <i)]+E[W(N > i, M>i))+

ST E[Tapie(M, )] + Y E[Tapis (N, 0)] + (n + m)d,

i€EN i€ M

where d is a constant. From [26] we know that E [T (N, )] =

O(lgn). These lead to the following lemma, proven in [24].

Lemma 2.1 The expected work to take the union of two
treaps of size n and m is bound by

(n+m)E[W(n,m)] < (n+m)d+ 2W(0,0)
n+m—1
+ ax{E [W (p;,i — pi)] +
ij max{E (W (pi,i - p:)]
E[W(n —pi,m —i+pi)|}
+nO(lgm) + mO(lgn), (1)
where 0 < p; <n, 0 <i—p; <m, and p; < piy1.

Now we apply induction on the recurrence to show the
bound on the expected work. If we assume E[W (n,m)] =
alg ("Zm) —blg(n+m) and W(n,0) = W(0, m) = ¢, where
a,b, and ¢ are constants, and substitute in Equation 1 we
get

(n+m)E[W(n,m)] < (n+m)d+2c

n+m—1 . .
+a E max | lg ¢ +lg ntm-—1
Py Pi Dpi n—pi

n+m—1
—b > {lgi+lgn+m—i)}
+ nO(Ig m) + mO(lgn). (2)

Consider the expression containing the maximum. First
we find the integral p; values that maximizes the sum with
the a constant preceding it. Then we will place an upper
bound on this expression by using a nonintegral approxima-
tions to p; and Sterling’s approximation for factorials.

n+m—1i

Lemma 2.2 The expression lg (p:) + lg( n—p;

(n+1)(i+1) J
n+m-+2 :

) 1S Maxi-

mized when p; = p;, where p; = L

Figure 2: The shaded region is the region of possible values
for (pi,7 — p;). The points (squares) on step function max-
imizes (;) + ("erfZ

n—p;
line is the continuous approximation to the points on the

step function.

). The points (circles) on the straight

Lemma 2.3 When p; is an integer for alli and 0 < p; < n,
0<i—pi <m, and p; < piy1

n+m—1 . .
T efe() (17
P Pi Di n—pi
n—+m
a(n+m) {lg( n >+21gn+5}. (3)

Proof.  (Sketch) Because floor values are hard to work with
we use p; = ni/(n-+m) as a continuous approximation to p;.
Figure 2 graphically shows the relationship between the p;,
which lies on a straight line between (0,0) and (n,m), and
Pi, which is on a step function that follows this line. In the
following expressions we use (;) to denote i!/T'(p + 1)I'(¢ —

p+ 1), when p is not an integer. Then

o)) =) C )]

When we use v+ (n+1/2)lgn —nlge <lgl'(n+1) <
v+ (n+1/2)1gn—nlge+lge/12n, where v = lg+/2x, for n
real (see [17] exercise 1.2.11.2-6) to substitute for the choose
expressions we get Equation 3. u

Next we consider the second summation in Equation 2.

<lg

n+m-—1
b Y lgitlgntm—i)]>
i=1
2b[y + (n+m —1/2)1g(n +m) — (n +m)lge](4)
Theorem 2.4 The expected work to take the union of two

treaps tn, and t. of size n and m, respectively, and m < n
8

E[W(n, m)] = O(mlg(n/m))
Proof.  Substituting Equations 3 and 4 in Equation 2 gives
the stated bounds. =

Corollary 2.5 The expected work to take the intersection
of two treaps t, and t., of size n and m, respectively, and
m < n is:

E [W(n,m)] = O(mlg(n/m))



Proof. The only additional work that intersection does
that union does not is a join when there is no duplicate
key. But since the join must be on trees that are no larger
than the result trees of the split prior to the recursive calls,
the additional join only changes the constants in the work
bound. -

Corollary 2.6 The expected work to take the difference of
two treaps tn, and t,, of size n and m, respectively, and m <
n 8:

E[W(n,m)] = O(mlg(n/m))

Proof.  (Sketch) As with intersection the only additional
work difference does that union does not is a join. When
a subtree of t,, was split this join takes no more work than
the split preceding it. When a subtree of t,, was split the
join may take work proportional to the lg of the size of the
corresponding subtree of t,,. However, as this join only takes
place when the key occurs in both t¢,, and t,,, the work over
all permutations associated with the join is mO(lgn). Thus,
the work bound for difference is same as for union. -

Theorem 2.7 When p = m/lgm the expected depth to take
the union, intersection, or difference of two treaps t, and t,
of size n and m, respectively, and m <n is

E [D(n,m)] = O(lgmlgn)

Proof.  (Sketch) Let h,, and hp, is the height of ¢, and t,,
respectively. Every time t,, is split it takes no more than
O(hym) time. Although the heights of the resulting trees
may not be smaller than the original tree, the height of the
subtrees from t,, are reduced by one. Similarly, when ¢, is
split the heights of the subtrees from t,, are reduced by one.
Thus, after O(hmhr) steps the algorithms complete. Since
the expected heights of ¢, and ¢, are O(lgm) and O(lgn),
the expected depth of the operations are O(lgmlgn). -
In [3] the authors show that the depths of the operations
can be reduced to O(lgm + lgn) using pipelining. Further-
more since the recursive calls in the algorithms are indepen-
dent (never access the same parts of the trees) the algorithms
run with exclusive reads and writes. Using Brent’s schedul-
ing principle these results together with the work bounds
imply the algorithms will run in O(W + Tclgn) time
on an EREW PRAM, where T, is the time for a compaction,
which is needed for scheduling the tasks to the processors.
Such a compaction can easily be implemented with a parallel
prefix (scan) operation, giving 7. = lgp on a plain EREW
PRAM or T, = 1 in a PRAM with scan operations [4].

2.5 Analysis of Union with Fast Splits

Here we prove bounds on the work for Union using fast splits
when using the block metric. We do not know, however, how
to pipeline this version so the depth of the algorithm on two
sets of size n and m is O(lgnlgm).

Lemma 2.8 Assuming the expected cost to cut a sequence

into two sequences of nonzero lengthn and m is 14+1g(min(n, m)),

then any set of cuts that partitions a sequence of length n
into k blocks will have a total expected cost T, < 2k(1 +

lg(n/k))

Proof. For a sequence of blocks N we will denote the
lengths of the blocks as {n1,nz,...,nxt} and the sum of the
lengths as n. We define Ts(N) = Z’f(l +1gn;). Since the
logarithm is concave downward, for a fixed k£ and n this sum
is maximized when all the blocks are the same length, giving
Ts(N) < k(1 +1g[n/k]). We can model a set of cuts that
partitions a sequence into blocks as a tree with the blocks
at the leaves and each internal node representing one of the
cuts. We use Tp(v) to denote the total expected cost of the
cuts for a tree rooted at v. We use Ts(v) to refer to Ts(N)
where N are the blocks at the leaves of the tree rooted at
v. By our assumption of the cost of a cut we can write the
recurrence

v a leaf

0
Tp(v) = { Tp,(1(v)) + Tp(r(v)) + 1 otherwise (5)

+lg(min([i(v)], |r(v)])

where [(v) and r(v) are the left and right children of v, and
|v] is the sum of the sizes of the blocks in the tree rooted at
v. The following is also true, by definition

1+ lg(|v])
Ts(v) = { Ts(1(v)) + Ts(r(v))

Now we prove by induction on the tree that Tp(v) <
2T, (v) —lg(|v]) — 2. In the base case it is true for the leaves
since 0 < 2(1 +1g|v|) —lg|v| — 2. For the induction case we
substitute T into the right hand side of Equation 5 giving

Tp(v) < 2Ts(U(v)) —lg(|i(v)]) — 2
+2Ts(r(v)) = lg(|r(v)]) — 2
+1 + lg(min([l(v)], [r(v)]))
2T (v) —lg(n) — 3

2Ts(v) —lg(n +m) — 2

= 2Ts(v) —lg(lv]) — 2,

v a leaf
otherwise

IN

where n = max(|l(v)],|r(v)]) and m = min(|i(v)], |r(v)]).
Since Ts(N) < k(1 +1g([n/k])) we have for any set of cuts
Tp(N) < 2k(1 +1g([n/k1)). -

Theorem 2.9 The parallel union algorithm using fast splits
and joins on two ordered sets A and B runs in O(klg((n +
m)/k)) expected work where |A| =n, |B| = m, and k is the
minimum number of blocks in a partitioning of A such that
no value of B lies within a block.

Proof.  We count all the work of the algorithm against the
cost of cutting A into k blocks, cutting B into k + 1 blocks,
and joining the 2k 4 1 blocks.? Since the fast versions of
split and join take work bounded by what is required by
Lemma 2.8, the total expected work of cutting and joining
is bound by O(klg((n +m)/k)).

We consider two cases. First, when the split in the union
returns two nonempty sets. In this case we count the cost
of the split and the constant overhead of the union against
the partitioning of either A or B (whichever is being split).
Note that on either input set there can be at most k cuts
due to calls to the split function. Union can make addi-
tional cuts within a block when it removes the root of the
tree (when it has the higher priority) and divides the tree
into its left and right branches. But these trivial cuts will

2To be precise, we count against a constant multiple of the plain
split and join times since we include some constant-work overheads
in the union function in their times.



only reduce the cost of the split cuts and are charged against
a split in the other tree. Second, consider when the split in
the union returns an empty set. In this case, even though
the split only takes constant work, we cannot count it or
the union overhead against the k cuts of A or B. Assume
that (0,7>) = split(T,71) (i.e., T» is being split by the
root of T1). Recall, that when the fast-split version of union
gets an empty set, it then splits 71 by the first value in T3
giving T11 and Ti2 and executes join(7h1,union(T12,7%)).
Finding the minimum value of 7% takes constant time us-
ing a finger search. We count the cost of the split against
the partitioning of the set corresponding to 71 (unless 112 is
empty, in which case we count the constant cost against the
join). Since minkey(72) < minkey(Ti2), the join is along
one of the cuts between blocks of the result. We can there-
fore count the cost of the join and the constant overhead
in the union against joining the 2k 4 1 result blocks. The
constant work of any calls to union with an empty set (base
of the recursion) are counted against their parent’s split or
join. =

3 Implementation

To evaluate the performance of these set-based operations,
we implemented the serial treap algorithms in Gnu C and
the parallel ones in Cilk 5.1 [5]. Cilk is a language for mul-
tithreaded parallel programs based on ANSI C, and is de-
signed for computations with dynamic, highly asynchronous
parallelism, such as divide-and-conquer algorithms. It in-
cludes a runtime system that schedules the multithreaded
computation using work-stealing and provides dag-consistent
distributed shared memory. We ran our experiments on an
SGI Power Challenge with 16 195MHz R10000 processors
and 4 Gbytes of memory running the IRIX 6.2 operating sys-
tem, and on a Sun Ultra Enterprise 3000 with six 248MHz
UltraSPARC II processors and 1.5Gbytes of memory run-
ning the SunOS 5.5.1 operating system.

3.1 Sequential experiments

Since speedup is a common measure of the performance of
parallel algorithms, it is important that we compare the par-
allel performance with a good sequential algorithm. Our
first step is to verify that sequential treaps compare rea-
sonably well with other good sequential balanced tree algo-
rithms. We implemented and compared the performance of
red/black trees [25], splay trees [27] (Sleator’s code), skip
lists [21] (Pugh’s code) and treaps on an SGI Power Chal-
lenge and Sun Ultra Enterprise 3000.

To evaluate the performance of the algorithms we per-
formed a series of tests that create a tree of size n, and in-
sert, delete and search for k keys in a tree of size n. For each
test we also used four data distributions. One distribution
inserts, searches, and deletes random keys. The remaining
distributions insert, search, and delete consecutive keys in
various orders. Figure 3 shows the time to create a tree from
random keys. The union version for treaps creates the tree
using recursive calls to union organized as in mergesort, in-
stead of inserting one at a time. Our other experiments give
similar results and in all cases all four data structure give
running times that are within a factor of 2 of each other.

Next we show the results of union on one processor. Fig-
ure 4 shows the runtime for the union operation on treaps of
various input sizes n and m, where the keys are random in-
tegers over the same range of values. Notice that the x-axis
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Figure 3: The running time to create various data struc-
tures from random keys on a single processor of a Sun Ultra
Enterprise 3000.

specifies the sum of the treap sizes n + m and each curve
is for unions where one tree size stays fixed. As the graphs
show the lines rise rapidly until m = n and then rise more
slowly. This change reflects the symmetry of the changing
roles as the one tree switches from being the smaller to the
larger. The envelope of the lines give the linear union times
when n = m. Thus, one can see the sublinear times when
the tree sizes are unequal.
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Figure 4: Time on one processor of a Sun Ultra Enterprise
3000 to find the union of two treaps of various sizes. Each
line specifies the times when one treap is of the size indicated
and the other treap size varies.

Another advantage to our treap algorithms is that they
take advantage of the “easiness” of the data distributions.
Union, intersection and difference take less time on sets that
do not have finely interleaving keys than sets that do, even
when they are not the versions using fast splits and joins.
Figure 5 shows the runtimes on one processor to take the
union (without fast splist and joins) of a tree with a mil-
lion nodes and a tree with 16 thousand nodes for a varying
number of blocks. Each tree has equal size blocks such that
the k blocks from each tree interleave in the set union. The
maximum number of blocks is the size of the smaller tree.
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Figure 5: Time on one processor of a Sun Ultra Enterprise
3000 to find the union of a 1M node treap and 16K treap
for a varying number of blocks.

Finally, Figure 6 shows the time on one processor for
union, intersection and difference. The keys are from two
uniform random distributions of the same range. Again we
see the sublinear times similar to those for union.
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Figure 6: Time on one processor of a Sun Ultra Enterprise
3000 to take the union of a 1M node treap with a treap
of various sizes and the intersection and difference of the
result with the second treap in the union. Each treap has
keys drawn randomly from the same range of values.

3.2 Parallel experiments

Our parallel versions of the treap operations are simple ex-
tensions to the C code in which we spawn threads for the
two recursive calls. In Cilk this requires adding the cilk
keyword before each function definition, the spawn keyword
before each recursive call and the sync keyword after the
pair of calls to wait for both calls to complete before con-
tinuing. As discussed below, we also use our own memory
management and stop making parallel calls when reaching
a given depth in the tree.

In our first effort to implement the parallel algorithms in
Cilk, we used nonpersistent versions and relied on the Cilk

memory management system to allocate and deallocate the
nodes of the trees. The results were disappointing, especially
for the difference operation where times were worse on more
processors than on fewer processors. The slow down was
due to two factors. One factor was that the granularity of
memory allocation/deallocation is quite small, the size of
a treap node. To ensure that the memory operations are
atomic and independent, Cilk uses a memory lock. Because
the granularity is small, there was high contention for the
memory lock. The second factor was that the cache lines on
the SGI are long, 128 bytes (32 words), so that 8 treap nodes
share the same cache line. In the nonpersistent version of
the code when two processors write to different nodes on the
same cache line, called “false sharing”, the processors need
to exchange the cache line even though they are not sharing
nodes. The treap operations result in a large amount of false
sharing.

To solve the first problem, we wrote our own memory
management system for the tree nodes on top of Cilk’s. It
allocates tree nodes from a large area of memory allocated
by Cilk. It divides this memory into smaller blocks of con-
secutive memory and gives each processor one block from
which to allocate tree nodes. Every time a processor runs
out of nodes in its block it gets a new block. In this way,
a processor only acquires a lock when it needs a new block.
This assumes some form of copying garbage collection (ei-
ther automatic or explicitly called by the user) since memory
is allocated consecutively and never explicitly deallocated.
We did not implement a garbage collector for the experi-
ments but we did measure the time to copy a treap and it
is very much less than the time to create it.

To solve the false sharing problem we converted our ini-
tial nonpersistent implementations into persistent versions.
These versions write only to newly allocated nodes within
a processor’s own block of memory (they never modify an
existing node). The cost of persistence varied on a single
processor. For union, which allocates the O(m1g(n/m)) new
nodes, the persistent version was slower than the nonpersis-
tent version by a modest 9%, when m is small compared to
n, and 50%, when m = n. When the result of an intersec-
tion was small relative to the input sizes, the persistent ver-
sion was 35% faster than the nonpersistent version. When
the result was large the persistent version was 30% slower.
For set difference the persistent version was 23%—12% faster
than the nonpersistent version. For multiple processors the
speedup was consistently better for the persistent version.
For example, for intersection on 8 processors of the SGI
Power Challenge the speedup is about 6.5 for the persistent
version, and 5.0 for the nonpersistent version.

Another improvement we made was to revert to sequen-
tial code after spawning threads to a certain depth. That
is, every time we applied another recursive call, we decre-
mented a counter. Once the counter reached zero we made a
recursive call to a non-Cilk procedure which only made calls
to C procedures. The C procedure was exactly like the Cilk
one except it did not use Spawn and Sync. In this way, in
the C procedure we avoid the overhead of the Cilk function
call, which is about three times the overhead of a C function
call [28]. In Figure 7 we show the times for union when we
vary the depth at which we revert to C. Notice that as the
depth decreases the times improve and then get worse. If we
revert to C too soon, the problem size on which the threads
have to work can vary greatly and there are not enough
threads to get sufficient load balancing. The run times for
different data sets, therefore, vary quite widely. For larger



depths, the execution incurs more Cilk overhead; the run
times, however, are more consistent over different data sets.
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Figure 7: Times on four processors a Sun Ultra Enterprise
3000 to find the union of a million node treap with a treap
of various sizes. Each line shows a different call depth at
which the Cilk run reverted to sequential code.

Finally, Figure 8 shows speedups for up to 5 processors
on the Sun Ultra Enterprise 3000 and up to 8 processors
of the SGI Power Challenge. The times are for finding the
union of two 1-million node treaps, and finding the inter-
section and difference of the result treap with one of the
input treaps to union. The speedups are between a factor
of 4.1 and 4.4 on 5 processors of the Sun and a factor of
6.3 and 6.8 on 8 processors of the SGI, which is quite rea-
sonable considering the high bandwidth requirements of the
operations.

4 Discussion

We considered parallelizing a variety of balanced trees (and
skip lists) for operations on ordered sets. We selected treaps
because they are simple, fully persistent (if implemented ap-
propriately), and easy to parallelize. It is hard to make a
definitive argument, however, that one data structure is sim-
pler than another or that the “constant factors” in runtime
are less since it can be very implementation and machine
dependent. We therefore supply the code and experiments
as data points. In terms of asymptotic bounds we believe we
present the first parallel algorithms for set operations that
run in O(mlg((n+m)/m))) expected work and polylogarith-
mic depth, and similarly for the block metric with & blocks
the first parallel algorithm that runs in O(klg((n+m)/k)))
expected work.

We finish by briefly describing a parallel union algorithm
for skip-lists that uses an approach similar to our algorithm
on treaps. Recall that in a skip list every element is assigned
a height h > 1 with probability 27", and has h pointers
pi,1 < i < h which point to the next element in sorted
order with height > i.®> To merge two sets represented as
skip lists, pick the set with the greater maximum height (or
an arbitrary one if the heights are the same) and call this A
and the other set B. Split A and B using the elements of
height h in A, recurse in parallel on the split regions, and

3More generally for a parameter 0 < p < 1, the probability of
being assigned height h is (1 — p)p"~".
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Figure 8: Speedup for the union of a 1M node treap with
a 1M node treap, and the intersection and difference of the
result with the same second 1M node treap.

join the results. For two sets of size n and m this algorithm
will have expected parallel depth O(lgnlgm). With the
appropriate extensions (including back pointers) splits and
joins can be implemented to run with the same bounds as
fast joins and splits in treaps. Using a similar argument as
used in Theorem 2.9 we conjecture that the total expected
work for this union with skip lists is O(klg((n + m)/k))
with k£ being the number of blocks. The main disadvantage
with skip lists are that they are much more difficult to make
persistent.
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