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Abstract Bringing a Brain–Computer Interface (BCI) out

of the lab one of the main problems has to be solved: to

shorten the training time. Finding a solution for this

problem, the use of a BCI will be open not only for people

who have no choice, e.g., persons in a locked-in state, or

suffering from a degenerating nerve disease. By reducing

the training time to a minimum, also healthy persons will

make use of the system, e.g., for using this kind of control

for games. For realizing such a control, the post-movement

beta rebound occurring after brisk feet movement was used

to set up a classifier. This classifier was then used in a cue-

based motor imagery system. After classifier adaptation, a

self-paced brain-switch based on brisk foot motor imagery

(MI) was evaluated. Four out of six subjects showed that a

post-movement beta rebound after feet MI and succeeded

with a true positive rate between 69 and 89%, while the

positive predictive value was between 75 and 93%.
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1 Introduction

Bringing a Brain–Computer Interface (BCI) out of the lab

represents a challenging task due to the number of prob-

lems that have not yet been solved. Two of these problems

are to shorten the training time and to reduce the numbers

of EEG channels. Solving these problems, the use of a BCI

will be open not only for people who need the BCI for

communication, e.g., persons in a locked-in state or suf-

fering from a degenerative nerve disease. By reducing the

training time, as well as the number of EEG channels to a

minimum, also healthy people will make use of the system,

for example, as an innovative controller for games.

In order to realize such a system, a brain pattern has to

be found which occurs strong and stable without any

subject training. Such a brain pattern is the post-movement

beta rebound.

A number of electroencephalographic (EEG) studies

reported on motor event-related desynchronization and

synchronization (ERD/ERS) in the beta band, i.e., a

decrease and increase of spectral amplitudes of central beta

rhythms in the range from 13 to 35 Hz [1, 10, 16, 20].

Following an ERD that occurs shortly before and during

the movement, bursts of beta oscillations (beta ERS, beta

rebound) appear within a 1 s interval after movement offset

[12]. Such a post-movement beta ERS has been shown

after voluntary hand movements [8, 10, 14, 20], passive

movements [2, 8], movement imagery [17], and also after

movements induced by functional electrical stimulation

[8]. Nevertheless, the functional meaning of the beta ERS

is still an open question. There is strong evidence that

cortical deactivation or inhibition of the motor cortex

coincides with the beta ERS [12, 18]), but also the pro-

cessing of somatosensory afferent stimuli [2] plays an

important role. Interesting in this context is the finding of

Schnitzler et al. [19]. He showed that the beta rebound

(20 Hz) after median nerve stimulation could be blocked

by attempted manipulatory finger movement in tourniquet-

induced ischemia experiments. However, the overall goal

of our study is not only to investigate the functional
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meaning of the beta rebound but also to use it for control

purposes.

The hypothesis for the following study is that a classifier

can be set up on the post-movement beta rebound found

after the termination of a brisk (foot) movement, and that

such a classifier can be used to detect imagined foot

movements. This type of BCI is also known as brain-switch

[7] because it offers only an on/off control. If this

hypothesis is confirmed, the use of this classifier should be

evaluated in a self-paced procedure.

2 Methodology

2.1 Participants, EEG recording, and experimental

paradigm

Initially, seven healthy subjects (six male, one female)

participated in this study. They were aged between 24 and

29 years. All of them had prior experience with BCI

experiments.

Five Ag/AgCl electrodes were used to derive the EEG

signal from Cz and four orthogonal positions 2.5 cm to Cz

forming a Laplacian derivation. Reference was placed at

the left mastoid and ground at the right mastoid. A bipolar

amplifier (g.tec, Guger Technologies, Austria) was con-

figured in a way that it served as monopolar amplifier. The

filters were set to 0.5 and 100 Hz, the notch filter (50 Hz)

was on and sampling rate was 250 Hz.

The experiment was organized in three different para-

digms: (i) cue-based foot motor execution (ME), (ii) cue-

based foot motor imagery (MI), and (iii) self-paced foot

motor imagery.

2.1.1 Cue-based foot motor execution

An initial screening was performed with the following

paradigm: subjects sat in a comfortable armchair 1.2 m in

front of a computer screen. They were instructed to perform

foot movements according to a cue presented on a screen.

The paradigm was on a black screen a green cross appeared

at second 0. A beep at second 2 caught the subject’s attention

and at second 3 a cue appeared for 1.25 s pointing either to

the bottom of the screen indicating a foot movement or to the

top border of the screen indicating no movement. In case of a

movement indication, subjects were expected to perform a

brisk dorsiflexion of both feet. This movement should last

less than 1 s. After second 6 the cross disappeared and a

black screen was shown for random time duration between

0.5 and 2.0 s. Three runs were performed containing 40

trials each, whereby 20 trials with motor execution and 20

trials with no movement were randomly recorded. Duration

of this screening was about 15 min.

2.1.2 Cue-based foot motor imagery with feedback bar

The same paradigm as presented for the foot motor exe-

cution was used for the foot motor imagery task. However,

two things were different. First, in this paradigm, all sub-

jects were asked to imagine the same dorsiflexion they

executed in the screening task and second, a feedback bar

was presented to the subjects indicating the result of the

online classification (for more details, see next section).

Whenever a beta rebound was detected, the bar moved

from the middle to the bottom of the screen. Therefore, the

subjects could see the behavior of the online system. For

this paradigm, six runs with 30 trials each were performed.

Duration was about 20 min. All subjects showing no beta

rebound in the MI task were excluded from further

investigations.

2.1.3 Self-paced motor imagery

On a separate day, the self-paced paradigm was performed

to verify the feasibility of this brain-switch. Here, one trial

lasted 180 s and the subjects were free to perform brisk

dorsiflexion imagery to activate a brain-switch. Whenever

the beta rebound was detected, a high beep tone indicated

the subject that the switch was triggered. A low beep tone

thereafter indicated the subject that the system was ready

for the next switch-action. For later analysis, subjects were

asked to press a button with the right thumb some seconds

prior the brisk foot motor imagination to indicate that the

beta ERS following the button press was intended by the

subject. Therefore, a true positive (TP) was counted, when

the button was pressed and the high beep tone appeared. A

false negative (FN) occurred, when the button was pressed,

but no confirmation tone appeared, and whenever the

switch-action was triggered without pressing the button in

advance, it was counted as false positive (FP). In total, five

runs were performed, and the task was to switch eight -

times during each run.

2.2 Data analyses

2.2.1 ERD/ERS maps

In order to obtain a time–frequency map of the Laplacian

channel, an ERD/ERS analysis [11] was performed for

frequency bands between 1 and 40 Hz with respect to a

specific reference interval (0.5–1.5 s). In order to that end,

sinusoidal wavelets were used to assess changes in the

frequency domain by calculating the spectrum within a

sliding window, squaring, and subsequent averaging over

the trials [6]. The statistical significance of the ERD/ERS

values was determined by applying a t-percentile bootstrap

algorithm [3] with a significance level of a = 0.05. For all
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subjects, the significant frequency range of the beta

rebound was selected and used for classifier calculation.

2.2.2 Classification

One logarithmic band power feature, obtained by band pass

filtering, squaring, and averaging over 1 s in a sample by

sample way, was used to calculate the weight vector for

Fisher’s linear discriminant analyzes to distinguish between

the two classes, such as foot motor execution and no

movement. A 10 times 10-fold cross validation was used to

estimate the classification accuracy for each 0.5 s from

second 0 to second 6. The classifier resulting in the highest

accuracy was used for the cue-based online feedback para-

digm. Data obtained from this experiments were used to

recalibrate the classifier by calculating new ERD/ERS maps

and redefining the frequency band of the beta rebound. This

classifier was then used in the self-paced paradigm with an

additional threshold in the foot class. The threshold was

defined at the mean of the simulated LDA output for the foot

class, and is needed to increase the probability that only real

beta rebounds are detected and therefore FPs are minimized.

However, in a first test run, this threshold was recalibrated to

the final setting.

The values of TP, FP, and FN, as well as the true positive

rate (TPR) and the positive predictive value (PPV) were

used to measure the performance of the on-line self-paced

paradigm. The definitions of TPR and PPV are given in (1)

and (2), respectively. The TPR indicates the ratio between

correctly detected (by the system) commands and all com-

mands intended by the subject, through the button press. The

PPV indicates the ratio between correctly detected com-

mands and all commands detected (all activations of the

switch, with or without a previous button press). Both values

are in the range [0,1] and a TPR = 1 means that all the

commands intended by the subject were successfully

detected by the system, while a PPV = 1 indicates that all

(positive) commands were intended by the subject.

TPR ¼ TP

TPþ FN
ð1Þ

PPV ¼ TP

TPþ FP
ð2Þ

3 Results

Figure 1 shows the ERD/ERS maps of one representative

subject during motor execution and motor imagery, as well as

the LDA distance during the self-paced experiment. The pat-

terns displayed on top of this figure correspond to the specific

frequency band of the beta rebound used for classification.

In Table 1, the results of the initial cue-based foot motor

execution and imagery and tasks are summarized. Besides

the selected frequency bands also the offline classification

accuracy is presented for ME as well as for those partici-

pants who showed a beta rebound after foot MI. The

accuracy from the offline training (ME) of the classifier

dropped from 91.7 to 68.8% during cue-based MI. Four

subjects participated in the self-paced experiment, the

results of this test are shown in Table 2. After calibration

with the new MI data with feedback, the offline (MI)

accuracy was 80.8% and, during self-paced MI the PPV

was 0.84 (Table 2). Accordingly, the TPR was 0.79 and

false positives were kept low (less than 2 per run).

4 Discussion

The main question to be answered in this study was,

whether it is possible to set up a classifier on data of

executed brisk foot movements and to use this classifier

for the online single trial detection of imagined foot

Fig. 1 ERD/ERS map of one subject (al10) during foot motor

execution (ME). Below the ERD/ERS map for the motor imagery

(MI) task is drawn. In the lowest row, the classifier output over time

during self-paced control is presented. True positives (TPs), false

negatives (FNs), as well as false positives (FPs) are marked,

accordingly

Med Biol Eng Comput

123



movements. As, we could show with our results, this is

possible. Subjects participating in this study showed a

post-movement beta rebound in the mean range from 17.3

to 29.7 Hz. Classification accuracy (cross validated) was

91.8% on average. Using this classifier, gained from motor

execution, cue-based online detection of foot movement

imagination was performed with a mean average of 68.8%.

Having the new data, the classifier was updated and led to

an accuracy of 80.8%. For this update, the frequency bands

were slightly changed according to the beta rebound after

movement imagination (21.0–29.8 Hz), and the frequency

band width of the beta rebound decreased. After the MI, the

beta rebound has a smaller amplitude value, compared with

ME, and the significant ERS values belong to a narrower

band (see [9]). For the evaluation of the newly calculated

classifier, the self-paced paradigm was carried out. Here,

the performances, measured in TPR, vary from 0.69 to

0.89. Important here to discuss is the number of FPs. They

range from 0.6 FP to 2.6 per run. Minimizing this number

is one of the most important goals, because an FP means a

wrong decision, whereas an FN results in a longer duration

until the next correct switch could be released.

However, in self-paced paradigms, there is always the

problem how to measure the performance. In off-line self-

paced simulation studies the performance can be easily

defined by calculating of TP, TN, FP, and FN rates (e.g.,

[4]), but it can only be evaluated with some special para-

digms in on-line self-paced BCI experiments with feed-

back. One possibility is to introduce experimenter cued

activity periods during self-paced intentional control and

rest periods during no intentional control. In the former

periods, the TP can be defined and in the latter the FP (e.g.,

[5]). A different strategy was used in our study. The user

always pressed a button whenever he or she intended to

switch using the foot MI. In this way, it is only possible to

obtain estimates for TP, FP, and FN rates, but the TN

remain unknown. Since the truly important events are the

positive commands, completely obtained from our mea-

surements, the lack of information due to the TN does not

represent a problem.

The mean TPR of 0.79 from the online results (Table 2)

is similar to the TPR about 0.60 (false positive rate = 0.10)

obtained in the simulated self-paced BCI study with brisk

foot motor imagery [13].

Another goal of this study was to shorten the training

time and using only one Laplacian channel, but is one

channel enough to realize a reliable foot MI detection in

ongoing EEG? Recently, it was shown that the foot motor

imagery ERD could be detected with a TPR of about 28%,

while the TPR for the post-imagery ERS was 59% [13].

From this follows that only 1 EEG channel is enough, when

the target signal is a frequency band specific, mentally

induced amplitude increase (beta ERS). More EEG chan-

nels and a higher number of features are not always a

guarantee to achieve a high classification accuracy. For

example, only about 56% of executed finger movements

could be detected with a highly complex self-paced BCI

system using 18 bipolar EEG signals and 6 features for

classification [4].

An interesting finding, beyond the scope of this study, is

the brief occurrence of a beta rebound phenomena before

the actual MI. It can be seen from Fig. 1 (lower part) that

every time a TP was counted that was preceded by a small

rebound probably related to the activation of the supple-

mentary motor area (SMA) after the button press. Usually,

the SMA is activated when a motor command is executed

(see e.g., [15]). As reported in [9], the beta ERS after brisk

foot motor imagery has the same frequency range than the

beta ERS after foot movement.

It can be concluded that setting up a first classifier by

motor execution and using it for motor imagery leads to a

very fast setup of an online and self-paced BCI. A new user

does not has to go through a training, which could be

intensive, because the pattern (post-movement beta ERS)

used for classification is already defined by the specific

Table 1 Summarized results of the cue-based screening (ME) and

cue-based online MI experiment

ME MI

Subject acc (%) f (Hz) OL (%) acc (%) f (Hz)

ap4 88 15–28 57 80 24–31

an7 98 12–24 65 81 10–22

ao10 89 15–30 59 75 26–31

al10 92 20–36 78 87 24–35

an8 92 20–30 – – –

ah3 92 22–30 – – –

Mean 91.8 17.3–29.7 68.8 80.8 21.0–29.8

Band width 12.3 8.3

Offline accuracy (acc) and the corresponding frequency band (f) is

given for ME and MI. In addition, the online results (OL) are

presented

Table 2 Summarized results of the self-paced brain-switch actuated

with brisk foot MI

ID TP FP FN TPR PPV

ap4 37/7.4 6 1.2 12/2.4 0.75 0.86

an7 40/8 8/1.6 18/3.6 0.69 0.83

ao10 38/7.6 13/2.6 7/1.4 0.84 0.75

al10 39/7.8 3/0.6 5/1.0 0.89 0.93

Mean 38.5/7.7 7.5/1.5 10.5/2.1 0.79 0.84

In each column the total number of five runs as well as the mean over

five runs is presented for TP, FP, and FN. Further TPR and PPV are

shown
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neural networks in the primary motor areas, and has to be

measured during ME first. Having these parameters, the

only work to be done is the adjustment of a threshold, and

easily a self-paced BCI is created.
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