

0 200 400 600 800 1000 1200 1400

Fast Shapelets: A Scalable Algorithm for Discovering

Time Series Shapelets

Thanawin Rakthanmanon
Department of Computer Engineering

Kasetsart University, Thailand
thanawin.r@ku.ac.th

Eamonn Keogh
Department of Computer Science & Engineering

University of California, Riverside, USA
eamonn@cs.ucr.edu

ABSTRACT

Time series shapelets are a recent promising concept in
time series data mining. Shapelets are time series
snippets that can be used to classify unlabeled time
series. Shapelets not only provide interpretable results,
which are useful for domain experts and developers
alike, but shapelet-based classifiers have been shown
by several independent research groups to have
superior accuracy on many datasets. Moreover,
shapelets can be seen as generalizing the lazy nearest
neighbor classifier to an eager classifier. Thus, as a
deployed classification tool, shapelets can be many
orders of magnitude faster than any rival with
comparable accuracy.

Although shapelets are a useful concept, the current
literature bemoans the fact that shapelet discovery is a
time-consuming task. In spite of several efforts to
speed up shapelet discovery algorithms, including the
use of specialist hardware, the current state-of-the-art
algorithms are still intractable on large datasets. In this
work, we propose a fast shapelet discovery algorithm
that outperforms the current state-of-the-art by two or
three orders of magnitude, while producing models
with accuracy that is not perceptibly different.

1 INTRODUCTION

Shapelets are a recently introduced concept in time
series data mining. In essence, shapelets are
prototypical time series “snippets” that can be used to
classify unlabeled time series that contain an
occurrence of the shapelet within some previously
learned distance threshold. The utility of shapelets has
been confirmed and extended by many independent
groups of researchers [1][6][9][10][13][15][16][29][30].
The exploding interest in shapelets can be attributed to
the following factors. First, they generalize the lazy
nearest neighbor algorithm, widely understood to be the
state-of-the-art technique for time series [27], to an
eager decision-tree-like classifier, allowing orders of
magnitude improvement in classification time. Second,
they are interpretable, and can give insights as to what
defines the differences between two classes [30].
Finally, on some problems, shapelets can be simply
more accurate than any known rival method [19][30].
Given these advantages, we have recently seen
shapelets (and very similar ideas) applied to creating
classifiers in various domains such as gesture
recognition [2][17], sensor networks [12], motion
capture [26], cardiology, climatology [18], robotics

[26], electrical power demand [1][9] and health care
[22]. In addition, we have begun to see several
generalizations of shapelets, such as logical shapelets
[19], which classify objects based on conjunctions/
disjunctions of shapelets, and local shapelets [29],
which impose constraints on where valid shapelets may
appear within an object.
Before continuing further, we will take time to develop
the reader’s intuition for shapelets. Figure 1 shows six
examples of reptile skulls [3] and their time series
representations. Three of them are horned lizards
(Phrynosoma coronatum, P. braconnieri and P.
mcallii), and the other three are turtles (Elseya dentate,
Glyptemys muhlenbergii, and Annemys sp).

Figure 1: left) Skulls of horned lizards and turtles. right)
The time series representing the images. The 2D shapes
are converted to time series using the technique in [14]

For more details on how shapes are converted to time
series, we refer the reader to [14][25]; however, Figure
1.top.right visually hints at how a shape can be
“unwound” into a time series.
As we can see from Figure 1, the two classes here have
a lot of intraclass variability, something that does not
bode well for traditional classifiers that consider the
entire time series [27]. Suppose instead we run the
shapelet discovery algorithm on this small dataset [30].
Doing so, we find the shapelet that can best distinguish
between the two types of reptiles. This shapelet is
presented in Figure 2, both in the time series space and
“brushed” back onto the original shape space.

Figure 2: left) The shapelet that best distinguishes
between skulls of horned lizards and turtles, shown as
the purple/bold subsequence. right) The shapelet
projected back onto the original 2D shape space

The discovered shapelet corresponds to two horns of
the horned lizard, an intuitive and interpretable result.
This toy example demonstrates the great strength of
shapelets. With zero parameters to tweak, we obtained
a shapelet that is visually intuitive and allows perfect
classification accuracy in this (admittedly contrived)
domain. However, this example also exhibits the
current weakness of shapelets it took several seconds to
find the shapelet in this tiny dataset.
The best-known running time for the shapelet discovery
algorithm is O(n2m3), where n is the number of objects
or time series in the dataset, and m is the length of the
longest time series. In this work, we propose an O(nm2)
algorithm for finding shapelets. Our algorithm is
heuristic; it is not guaranteed to find the same shapelet
as [19][30]. We exploit a random projection technique
[24][21] on the SAX representation [14][28] to find
potential shapelet candidates. However, our
experimental results in Section 5 demonstrate that the
classification accuracy of the proposed algorithm is not
significantly different from the accuracy obtained by
exact brute-force algorithms [19][30].
The rest of this paper is organized as follows. In
Section 2, we introduce definitions and notations. The
basic shapelet algorithm is discussed in [30] and the
current state-of-the-art algorithm [19] is reviewed in
Section 3. In Section 4, we explain our algorithm in
detail. Section 5 demonstrates the performance and
accuracy of our algorithm. Case studies showing the
advantage of our proposed algorithm are described in
Section 6 and we offer conclusions in Section 7.

2 DEFINITIONS AND NOTATION

We begin by introducing all necessary notation and
definitions. First, we define a time series:
Definition 1: A time series T is an ordered list of
numbers; T = t1, t2 ,...,tm. Each value ti can be any
finite number and m is the length of time series T.

A local subsection of a time series is called a time
series subsequence:
Definition 2: A time series subsequence S is a
contiguous sequence of a time series. Subsequence S
of length l of time series T starting at position i can

be written as S = = ti, ti+1 , ..., ti+l-1.
For the classification task, many time series are
grouped together with their corresponding class labels
in a container called a dataset:
Definition 3: A dataset D is a set of pairs of time
series, Ti, and its class label, ci. Formally, D =
<T1,c1>, <T2,c2>, <T3,c3>, ... , <Tn,cn>. For the rest of
this paper, we use n as the number of time series
inside the dataset D. Note that the lengths for each
time series are not necessarily equal.

To measure the similarity between subsequences, we
define the distance between two subsequences:
Definition 4: The distance between subsequence S
and Ŝ of the same length is the length-normalized
Euclidean distance between subsequences S and Ŝ. If
both subsequences are Z-normalized with mean=0
and std=1, the distance is defined as:

 dist(S, Ŝ) = ∑ ŝ

Shapelets can be of any length up to m. In order to
allow meaningful comparisons between candidate
shapelets of different lengths, length normalization
must be used.
We therefore define the distance between a time series
and a given subsequence:
Definition 5: The distance between subsequence S
of length l and time series T is defined as the
minimum distance between subsequence S and any
subsequence of T of the same length as subsequence
S. Formally, dist(S, T) = , .

Suppose that dataset D contains n time series from c
different classes. The number of time series in class i is
ni and we define class probability as pi = ni / n. Hence,
we define the entropy of the dataset as:
Definition 6: The entropy of the dataset D is defined
as E(D) = ∑ .

To divide the dataset into two smaller datasets, we
define a split:
Definition 7: A split is a tuple <s,d> of a
subsequence s and distance threshold d which can
separate the dataset into two smaller datasets, DL and
DR. The number of time series in DL and DR are nL
and nR, respectively.

We next define the information gain of the given split:
Definition 8: The information gain of a split sp is:

The distance between two different sides of the given
split is a separation gap:
Definition 9: A separation gap of a split sp is: 1 , 1 ,

The definition of shapelet will be explained briefly
here; however, for a more complete definition of
shapelet, please refer to [30].

Definition 10: A shapelet is a split that separates
the dataset into two smaller datasets with the
maximum information gain; ties are broken by
maximizing the separation gap.

We visually summarize the concept of shapelets with
our toy example shown in Figure 3. A candidate (e.g.,
the highlighted subsequence from Figure 2.left) is
shown in the box for reference. The distances between
the candidate subsequence (i.e., tentative shapelet) and
all time series are calculated; all corresponding objects
are placed on the orderline according to the calculated
distance. In Figure 3, three skulls from horned lizards,
whose distances to the shapelet are small, are shown as
red rectangles on the left-hand side of the orderline. In
contrast, the distances between three time series of
turtle skulls and the candidate subsequence are shown
as green triangles on the right-hand side of the
orderline, because their distances to the candidate
shapelet are larger. Note that, in this example, the
candidate shapelet corresponds to the horns of a lizard
(cf. Figure 2).

Orderline0 ∞
split

candidate

Figure 3: The orderline shows the distances between the
candidate subsequence and all time series as positions on
the x-axis. The three objects on the left-hand side of the
line correspond to horned lizards and the three objects
on the right correspond to turtles

After the orderline is created, we can calculate the split
point, the separation gap, and the information gain of
the candidate shapelet. When all candidates have been
processed in this manner, the best one will be reported
as the final shapelet [19][30].

3 RELATED AND BACKGROUND WORK
Our work extends the original work by Ye which
introduced the concept of shapelets and showed an
algorithm to allow their discovery [30]. However the
general intuition behind shapelets, the idea of using
small sub-patterns to identify the class of a larger
object, is known in other domains (especially.
bioinformatics), including class prototypes [6],
discriminative patterns [2][5][8], and predictive motifs
[18], etc.
In the next section, we briefly consider the current
state-of-the-art shapelet discovery algorithm.

3.1 Brute Force Shapelet Discovery

The brute force shapelet discovery algorithm shown in

Table 1 is a simple algorithm that generates and tests

all possible candidates and returns the best one.

Table 1. Brute Force Algorithm

Algorithm: BruteForceShapelet

Input: D : Dataset containing time series and class labels
Output: shapelet: the final shapelet

1
2
3
4
5
6
7
8
9
10
11
12
13

[TS,Label] = ReadData(D)
bsf_gain = 0
for len = 1 to m
 Candidates=GenerateAllCandidates(TS,len)
 for each cand in Candidates
 create a split sp from cand
 gain = ComputeInfoGain(D,sp)
 if (gain > bsf_gain)
 bsf_gain = gain
 shapelet = s
 end if

 end for

end for

The dataset D is a list of pairs of time series with their
labels; thus, in line 1, we extract the time series and
label from D. Because the final shapelet can be of any
length, all subsequences of every length in the dataset
will be generated as candidates in line 4.
Thereafter in line 6, each candidate is used to compute
a split, sp, as shown in Figure 3 in the previous section.
Finally, the information gain is computed in line 7. The
returned shapelet is the candidate with maximum
information gain.

If n is the number of time series in the dataset and m is

the length of the longest time series in the dataset, the

number of candidates in a time series is O(m2) and the

total number of all candidates in the dataset is O(nm2).

A distance computation from one candidate to all time

series takes time O(nm2) to compute. Hence, the total

running time of the brute force algorithm is O(n2m4).

3.2 Current State-of-the-Art Algorithm
The first improvement of the brute force algorithm was
introduced in [30]. They proposed a technique to
calculate a cheap-to-compute upper bound of the
information gain and use it to admissibly prune some
candidates.
The current state-of-the-art algorithm is given at [19].
This algorithm can also find the exact shapelet [30], but
does so more quickly. The speedup comes from using a
classic pruning technique — triangular inequality — to
prune some candidates, and from caching some tricks.
The latter idea trades speedup for memory, and may run
into space problems for large datasets.
Using the same notation as above, the worst-case
running time of the current state-of-the-art is O(n2m3)
and the algorithm requires a memory footprint as large
as O(nm2).
To concretely ground this analysis, on the Wafer dataset
[11], with n=1000 and m=152, the state-of-the-art takes
more than 12 hours to find the shapelet. However, the
algorithm we will introduce in the next section can find
essentially the same shapelet in just 23 seconds.

4 FAST SHAPELET DISCOVERY
We are finally in a position to explain our algorithm in
detail. First, we describe the key ideas using our reptile
toy example; then, we give formal details in Section 4.2.

4.1 Overview of the Algorithm
We propose to solve the shapelet discovery problem
with a change of representation. In particular, we will
transform the raw real-valued and high-dimensional
data into a discrete and low-dimensional representation.
Searching over a smaller representation is obviously
more efficient; more importantly, however, having a
discrete representation will allow us to hash our data,
and use the collision history to inform our search.

4.1.1 Generating SAX Words
For each object in the dataset, we transform the time
series into a symbolic representation using Symbolic
Aggregate approXimation (SAX) [14][28]. For brevity,
we assume the reader is familiar with SAX, and refer
the interested reader to [14] for additional details.
From our toy example in Section 1, a time series from
P.coronatum is shown once again in Figure 4. The top
part of the figure shows an example of a SAX word
adbacc, created by the first subsequence. Multiple
SAX words will be generated for a given time series
using the sliding window technique [14]. SAX has two
parameters, which are desired (reduced) dimensionality,
d, and cardinality, c. Although some techniques (e.g.,
[7]) could be applied for setting these parameters, for
simplicity, in our implementation we set the cardinality

SignaturesID

Obj 1

Obj 2

Obj 3

1

Object List

2

1 3

2

2

3

1 a d b a c

2 a c a a c

3 a c b a c

4 b c c c d

5 b d c d d

6 b b a c d

7 d c a a c

1 1 1

2 1 1

3 1 1

4 1

5 1

6 1

7 1 1

1 a d b a c

2 a c a a c

3 a c b a c

4 b c c c d

5 b d c d d

6 b b a c d

7 d c a a c

1

Object List

2

2 3

2

3

SignaturesID

Obj 1

Obj 2

Obj 3

1 2 2

2 2 1 1

3 2 2

4 2 1

5 2

6 1 2

7 1 2

A)

B)

-0.67
0

0.67
a a

d

b
c

c

to 4 and word length to 16 so we can represent a SAX
word with a simple 4-byte integer.

Figure 4: top.left) The SAX word adbacc created from a

subsequence of the time series corresponding to P.
coronatum. bottom) The sliding window technique

4.1.2 Random Masking

It is very important to recall that a single time series
creates multiple SAX words, which correspond to the
multiple subsequences we can obtain as we slide the
shorter subsequence length across the longer time
series. This is hinted at in Figure 4, and shown
explicitly in Figure 5.left, where each time series
(derived from a skull) creates two or three SAX words
of length five.

Figure 5: left) SAX words for each object. right) SAX
words after masking two symbols. Note that the masking
positions are randomly picked

Having created the SAX representation of our data, we
have an apparent solution to the shapelet discovery
problem. We could conduct a brute force search for the
shapelets in the SAX space. This would require only
slight modifications of the algorithm shown in Table 1,
and because of the reduced dimensionality of SAX it
would be faster than working with the raw data.
However, there are two problems with this idea. The
search would be faster, but still quadratic in the number
of SAX words. More importantly, we have the problem
of false dismissals.
The problem of false dismissals is caused by the fact
that two time series that differ only by a tiny epsilon
could produce two different SAX words1. Thus, it is
possible that the best shapelet in the raw data spaces
maps to slightly different SAX words, such as the SAX
words adbac and acbac, created by the lizard skulls
in Figure 5.left.
The solution to this problem is to exploit random
projection, a mature idea from bioinformatics [24]. The
idea is to project all SAX words of high dimensionality
to a smaller dimensionality. This is illustrated in Figure
5.right, where all SAX words of dimensionality five
have been randomly masked at two positions, reducing

1 This is of course true for any discretization method.

the dimensionally to three. Note that the first such
random projection does take our two different SAX
words, adbac and acbac, and makes them identical,

adbac and acbac.
The reader will appreciate two potential problems with
the idea of random projection. In our toy example we
contrived our “random” choice of a mask, but we
cannot generally be sure that a single projection helps
us. The second problem is that if we mask too many
locations, our decrease in the likelihood of false
dismissals comes at the cost of an explosion of false
positives, all of which must be checked. Again, we can
turn to the bioinformatics literature for the answer [24].
As hinted at by the multiple masks in Figure 5.right, if
we mask conservatively, but do multiple random
masks, we can make the probability of false dismissals
arbitrarily low while not incurring a measurable
increase in false positives [24]. The remainder of
Section 4 makes these ideas more concrete.

4.1.3 Counting Similar Objects
To avoid all-to-all distance computations, we apply
hashing (i.e., random masking) on all of our data
objects. The intuition is that two objects that are similar
in the original space have a very high probability of
collisions, even if they happen to have been mapped to
slightly different SAX words.
Figure 6.A shows that, after hashing, the SAX words
adbac and acbac share the same signature, **bac.

All SAX words that have the signature bac have their
counters incremented in the relevant table shown in
Figure 6.A.right. Similarly, in the second iteration the
words adbac and acbac once again randomly hash to

the same word, this time a**ac.

Figure 6: The first (A) and second (B) iterations of the
counting process. left) Hashing process to match all same
signatures. Signatures created by removing marked
symbols from SAX words. right) Collision tables showing
the number of matched objects by each words

Thus, after r iterations of random projection, we expect
the collision table shown in Figure 6.A.right to remain
mostly sparse, but to contain some locations that have
values that are a significant fraction of r. As we shall

Obj 1

Obj 2

Obj 3

SAX Words 1st Random Mask 2nd Random Mask

1 5 5

2 5 1 1 1

3 5 3

4 5 1 1

5 5 5

6 1 5 3

7 3 5 2

1 10 0

2 6 2

3 8 0

4 5 2

5 5 5

6 1 8

7 3 7

Close to Ref Far from RefClass1 Class2

1 0 10

2 4 8

3 2 10

4 5 8

5 5 5

6 9 2

7 7 3

Distinguishing

Power

A) B) C) D)

(10-0)+(10-0) = 20

(6-4)+(8-2)=8

(8-2)+(10-0)=16

(5-5)+(8-2)=6

(5-5)+(5-5)=0

(9-1)+(8-2)=14

(7-3)+(7-3)=8

show in the next section, this information can guide our
shapelet search.

4.1.4 Finding the Best Candidates
Continuing with our toy example, let us assume that we
have done random projections for five iterations and the
collision table is shown as in Figure 7.A.
As shown in Figure 7.B, we can condense the collision
table by summing all of the object-based counts to the
class-based counts, and create the complementary data
structure in Figure 7.C. From these two tables we can
calculate the distinguishing power of each SAX word
using the simple equation shown in Figure 7.D. Note
that the distinguishing power is high if the reference
words appear frequently in one class but rarely in
another class.
In this example, the highest score is from word1
because it is close to objects in class1 10 times (obj1 5
times and obj2 5 times) and far from objects in class2
10 times; hence, its distinguishing power is 10+10 = 20.
In contrast, SAX word5 receives a power score of zero
because this reference word is similar to objects from
class1 5 times but also far from objects in class1 5
times, and has the same distribution in class2; hence,
the score is (5-5)+(5-5) = 0. This suggests a pattern that
is equally frequent in both classes, rather like a “stop-
word” in text classification.

Figure 7: A) The collision table for all words after five
iterations. The scores in the table represent the number
of times an objects shares the same signature with the
reference words. B) Grouping scores from objects in the
same class. C) Complement of (B) to show that the
number of times objects in each class do not share the
same signature with the reference word. D) The
distinguishing power of each SAX word

This list of SAX words with high distinguishing power
is almost a solution to our problem, as it very highly
correlates with the quality of the corresponding
shapelets (i.e., their information gain) in the original
raw data space. Empirically we can be certain that the
best shapelet is near the top of this list. However, we do
need to spend some time searching the top candidates in
the original space to confirm we have a high-quality
shapelet.
This is the complete intuition behind our algorithm. In
the next section, we formalize these ideas.

4.2 Fast Shapelet Algorithm

Our shapelet discovery algorithm is shown in Table 2.
In line 1, we extract all time series with their class
labels from the current dataset D. Note that the dataset D

will be iteratively made smaller as we descend deeper
into the decision tree.

Table 2. Fast Shapelet Algorithm

Algorithm: FastShapelet

Input: D : Dataset containing time series and class labels
 r : number of random iterations
 k : number of SAX candidates
Output: shapelet: the final shapelet

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

[TS,Label] = ReadData(D)
for len = 1 to m
 SAXList = CreateSAXList(TS,len)
 Score = {}
 for i = 1 to r
 Count = RandProjection(SAXList,TS)
 Score = UpdateScore(Score,Count)
 end for

 SAXCand = FindTopKSAX(SList,Score,k,r)
 TSCand = Remap(SAXCand,TS)

 max_gain=inf, min_gap=0
 for i = 1 to |TSCand|
 cand = TSCand[i]
 DList = NearestNeighbor(TS,cand)
 [gain,gap] = CalInfoGain(DList)
 if (gain>max_gain) ||
 ((gain==max_gain)&&(gap>min_gap))
 max_gain = gain
 min_gap = gap
 shapelet = cand
 end if

 end for

end for

The process is split into two phases. In the first phase
(lines 3-10), we select potential subsequences after a
search in the SAX space (lines 12-23); this is the
process we informally discussed in detail in the
previous section. In the second phase, we measure the
quality of those potential candidates in the raw data
space and return the best candidate as the final shapelet.
To select the candidates, all subsequences of length len

from all time series are created using the sliding
window technique, and we create their corresponding
SAX word and keep them in SAXList (line 3/Figure
5.left). After the list of SAX words has been created, we
use these discrete representations to do hashing with
RandProjection() by creating a hash signature of
each SAX word, and give one count for each SAX
word based on its signature. Then, we update the total
score from multiple iterations (line 7/Figure 6).
Next, each SAX word is given a score to show how
many times each word occurs in each object. We then
calculate a distinguishing power for each SAX word,
and pick the top k subsequences that have the highest
score (line 9/Figure 7). We remapped these SAX words
back to their original raw data subsequences (line 10).
Note that we have two parameters, r and k, here.
However, according to our experiments in Section 5,
our algorithm is not sensitive to them; thus, we simply
fix r = 10 and k = 10.
We are now ready for the second phase (lines 12-23);
we calculate the information gain for each candidate in
the top k list and pick the best one as the shapelet.
More specifically, each candidate is considered one at a
time (line 13). The body of the loop calculates the
distance between the candidate subsequences and each
time series using the equation in Definition 5. After

Execution Time Comparison

10
0

10
1

10
2

10
3

10
4

10
5

Current state-of-the-art

10
-1

10
0

10
1

10
2

10
3

O
u
r

a
lg

o
ri
th

m

sec

sec

C
u
rr

e
n
t
s
ta

te
-o

f
th

e
-a

rt

Our algorithm

Classification Accuracy Comparison

In this area,

our algorithm

is better

In this area,

SOTA is

better

0 1

0

1

these calculations (lines 17-21), we pick the
subsequence which has the highest information gain as
the final shapelet, breaking ties (if any) by the
maximum gap (cf. Definition 9).
This explanation is necessarily terse. We refer the
interested reader to [31] for a more detailed line-by-line
explanation and the original (annotated) source code.

5 EXPERIMENTAL RESULTS
We begin by noting that all the code and data used in
this work are available on our supporting webpage [31],
in addition to numerous additional experiments.

5.1 UCR Time Series Dataset
We compared our algorithm with the current state-of-
the-art [19]. For fairness, we used the code provided by
the original authors and set the parameters as they had
recommended on their supporting webpage.
We begin by considering the accuracy on 32 datasets
from the UCR Time Series archives [11] in Figure 8.
Note that we attempted tests on all 45 datasets from the
UCR achieves; however, we abandoned the 13
experiments in which the state-of-the-art algorithm [19]
had not finished after 24 hours.

Figure 8: Classification accuracy of our algorithm and
the state-of-the-art on 32 datasets from the UCR archives

Visually it is difficult to say which algorithm is better,
and counting wins, ties, and losses produces similarly
ambivalent results. However, the results are strongly
consistent with our claim that our method is no worse
than the state-of-the-art. The only real difference
between two algorithms is scalability, as the time
comparison shown in Figure 9 illustrates.

Figure 9: Running time comparison between our
algorithm and the state-of-the-art on 32 datasets from
the UCR time series archives

The greatest speedup we achieve on these 32 datasets is
2,030X, and we gain a speedup exceeding 100X for at
least 12 other datasets. On the Wafer dataset, although
we gain the most speedup with 2,030X, our method still
achieves very high accuracy at 99.64%, which appears
to be the best known result on this dataset [11][27]. In
the next section we explore the issues affecting
scalability in more detail.

5.2 Scalability
To compare the scalability of our algorithm and the
current state-of-the-art in more detail, we tested on the
largest time series dataset in the UCR time series
archives, the StarlightCurves dataset. For all shapelet
discovery algorithms, there are two factors that strongly
determine the difficulty of the search, the number of
time series in the dataset and the length of the time
series; below we varied each one independently.
Figure 10.left shows the result when the number of time
series, n, is varied from 50 to 800 and the length of all
time series, m, is fixed at 100. Figure 10.right shows the
result when n is fixed at 100 and m is varied from 50 to
800. Note that the maximum size of the experiments we
consider here are constrained by the implementation of
the state-of-the-art algorithm that we received from the
original authors. For any experiments larger than the
one below we get an out-of-memory error.

Figure 10: Scalability of our algorithm and the current
state-of-the-art on StarlightCurves dataset. left) The
number of time series in the dataset is varied. right) The
length of time series is varied

The running time of the current state-of-the-art in
Figure 10.left increases from 16 seconds to 8.7 hours
from n=50 to n=800 (m is fixed at 100). However, our
algorithm is significantly faster; the running time is
0.76 seconds at the beginning and less than 16 seconds
when n=800. Thus, the speedup factor when n=800 is
1,970X. Figure 10.right shows that our algorithm
achieves similar speedups when m is increased.
These empirical results are not surprising given the time
complexity analyses of the algorithms. Recall that the
worst-case running time of the current-state-of-the-art is
O(n2m3) and, in the best case if the triangle inequality
can prune all candidates, the running time can be as low
as O(n2m2). However, our algorithm is just O(nm2).
We omit a detailed space complexity analysis for
brevity, except to note that here we are better by an
even greater margin.

5.3 When to Use Shapelets or 1NN
One of the classic questions faced by all data miners is
which algorithm to use for a given task. It is well
documented in the literature that the classification
performance of shapelets is highly variable in the sense

200 400 600 800

number of time sereis

s
e
c
c
o
n
d

Scalability on Number of Time Series

1

2

3
x104

50

0

state-of-the-art

our algorithm

length of time sereis

Scalability on Time Series Length

200 400 600 80050

2

4

6

8

x103

0

s
e
c
c
o
n
d

our algorithm

state-of-the-art

0.5 1 1.5
0.5

1

1.5

Expected Ratio

A
c

tu
a
l R

a
ti

o

FP

TPFN

TN

that it can be significantly better, or significantly worse
than the only other high-performing time series
classification method, the nearest neighbor algorithm
[9][10][15][30][30].
Many research papers “solve” this problem, or at least
bypass it, by only reporting the holdout error. However,
this ignores the question of whether we would have
known ahead of time which algorithm to use? We
answer this question below.
To answer this question, we tested on all 45 datasets
from the UCR archives using a method recommended
by Salzberg [23]. We split the train data from all 45
datasets in [11] to two equal parts, called A and B; the
test data from the archives is preserved as it is and used
as unseen data; we call this test data C.
For both algorithms, first A is used as the training data
for creating a classification model, and then B is used
as the test data for measuring the accuracy of the
model, which is created from A. Then, we swap the
roles of A and B (i.e., 2-cross validation). The expected
accuracy is the average between these two models.
To compare two classifiers: shapelet and the Euclidean
distance one nearest neighbor (1NN), we define an
expected ratio by: 1NN

The actual accuracy is measured by the accuracy of the
model created by the combination of A and B (the
original training data) on the test data C (the original
test data). Similar to the expected ratio, the actual ratio
is defined by: 1NN

If a ratio is larger than one, the accuracy of shapelets is
higher than the accuracy of 1NN. The plot in Figure 11
shows the comparison between the expected ratios and
actual ratios of shapelets and the 1NN algorithm.

Figure 11: Accuracy ratio between FastShapelet
algorithm and Euclidean distance-based one nearest
neighbor on 45 datasets from UCR archives

The TP (True Positive) area contains the datasets in
which we expected that the shapelet algorithm would
be better, and it was better.
Likewise, the TN (True Negative) area contains the
datasets in which we expected that the shapelet
algorithm would be worse, and it was worse.
Gratifyingly, most datasets fall into either TP or TN,

and even remain close to the diagonal. In other words,
we can generally correctly predict when shapelets are
going to be useful for a particular problem.
For the handful of other datasets, the eight points in the
area labeled FN (False Negative) represent a lost
opportunity. We would have been slightly better off
using shapelets over 1NN, but our cross validation did
not realize that. The single point (just barely) inside FP
(False Positive) represents the sole occasion where we
expected shapelets to do well, but found we would have
been (a tiny bit) better off with 1NN.

5.4 Parameter Effects

Our algorithm has two parameters that must be set by
the user. They are r, the number of iterations of random
projections, and k, the size of the set of potential
candidates that are “promoted” from the SAX space
back to the raw data space to be tested (lines 10 of
Table 2). Intuitively, when the number of iterations of
random projections is increased, the process should
make the set of potential candidates more tolerant to
noise and reduce over-fitting. Likewise, when the set of
potential candidates is larger, the quality of the final
shapelet should be better because we pick from a larger
set. These two parameters also (approximately) linearly
affect the running time of our algorithm.

As we can show empirically, these two parameters are
not sensitive in terms of the accuracy produced.

On the StarlightCurves dataset, when r is varied from 1
to 50 and k is fixed at 10, the running time increases
from 1,600 to 2,100 seconds and the accuracy changes
only in a narrow range of between 93.29% and 94.37%.
When r is fixed at 10 and k is varied from 1 to 50, the
running time is increased from 380 to 4,900 seconds;
however, once again the accuracy of the shapelet model
only ranges between 93.35% and 94.30%.

The effects of parameters r and k on all datasets from
the UCR archives are shown in Figure 12. In this
experiment, we vary one of the two parameters r and k
from 1 to 50 and fix another one to 10, and we run the
experiments 30 times on all 45 datasets. Although the
running time is increased linearly by both parameters,
the accuracy is not sensitive to the value of parameters,
as shown in Figure 12.top.

Figure 12: bottom) The accuracy of the algorithm is not
sensitive to both parameters r and k. top) The running
time of the algorithm is approximately linear by either
parameter. Note that when we vary r (k), we fix k (r) to
ten; thus, we are changing only one parameter at a time

Vary KVary R

1 10 20 30 40 50

0

20

40

60

80

100

1 10 20 30 40 50

0

20

40

60

80

100

A
c
c
u

ra
c

y
 (
%

)

1 10 20 30 40 50

0

100

200

300

400

1 10 20 30 40 50

0

100

200

300

400

T
im

e
 (

s
e
c

)

Vary KVary R

EB

RRCep

II

I

200 400 600 800 10240
-2

-1

0

1

2

-2

-1

0

1

2

200 400 600 800 10240

Shapelet I

Shapelet II

dist thres = 15.58

dist thres = 5.79

object from RR

object from Cep

200 4000 600 800 1000 1100

-3

0

3

Slow Walk

Normal Walk

Nordic Walk

Run

Cycle

Soccer

Rope

Jump

Outdoor Activities from PAMAP Dataset

10240

Eclipsed Binaries

10240

Cepheids
RR Lyrae

Variables

10240

6 CASE STUDIES
This section will demonstrate that shapelets are useful
in several real-world applications.

6.1 Starlight Dataset

The StarlightCurve dataset is the largest dataset in the
UCR time series archives. It contains 9,236 starlight
curve time series of length 1,024. Three types of star
objects are Eclipsed Binaries (EB), with 2,580 objects,
Cepheids (Cep), with 1,329 objects, and RR Lyrae
Variables (RR), with 5,236 objects. The dataset is
divided into training data and test data of size 1,000 and
8,236 objects, respectively. Examples of starlight
curves in each class are shown in Figure 13.

Figure 13: Examples of starlight curves in three classes:
Eclipsed Binaries, Cepheids, and RR Lyrae Variables

Because the objects in Cep and RR are globally similar,
these objects are difficult to separate. The accuracy of
the one nearest neighbor algorithm using the Euclidean
distance and DTW is 84.9% and 90.5%, respectively.
However, using a shapelet decision tree for
classification, our FastShapelet achieves an average
accuracy of 93.68% from 30 runs. Figure 14 shows a
decision tree with three leaf nodes.

Figure 14: left) Decision tree of StarlightCurve dataset
created by our algorithm. right) Two shapelets shown as
the red/bold part in the time series

To the best of our knowledge, this is the highest
accuracy ever reported on this dataset [4][11].
Moreover, of the hundred-plus papers that cited the
UCR archive in the last three years (when this
particular dataset was added to the archives) a
significant fraction of them do not report any results for
this dataset, because their algorithm ran out of memory
or time.
By interpolation, the current state-of-the-art is expected
to take 4.5 months; however, our fast shapelet
algorithm can create the decision tree in Figure 14 in
3,150 seconds (just under an hour). Thus, the speedup
is more than 3,000X on this dataset.

6.2 Physical Activity Dataset

This section demonstrates that shapelets also can be
used as a high accuracy classification tool for activity
recognition, an area drawing increasing attention due to
the increasing availably of inexpensive sensors. The
dataset considered is from the Physical Activity
Monitoring for Aging People (PAMAP) [20]. The
entire dataset contains 43 time series which are
collected from multiple sensors (e.g., accelerometers,
gyroscopes, magnetometers, etc.) on various parts of
the body (i.e., the hand, chest, and foot). The data
consists of eight subjects (seven males, one female)
taking part in various sporting activities.
For simplicity we choose to use only one sensor among
all 43 sensors of the original dataset to perform activity
classification. Figure 15 shows examples of time series
(from by z-accelerometer at hand position) of all seven
outdoor activities.

Figure 15: Examples of all outdoor activities from
PAMAP dataset. Note that the time series of each activity
are generally different lengths

In the original PAMAP dataset, all subjects perform all
activities in one long performance so the data is a long
time series that contains all (annotated) activities in
one sequence. We preprocessed the data using the
sliding window technique, as recommended by the
original authors [22].
The accuracy of one nearest neighbor classifiers on
this dataset using the Euclidean distance, DTW with
5% band size, and DTW with 10% band size are
61.16%, 81.73% and 82.03%, respectively. However,
in the same task, using our shapelet algorithm we
achieve an accuracy of 88.70%, which outperforms the
one nearest neighbor using either the Euclidean
distance or DTW.
The original authors of the dataset also created
classifiers by using multiple time series [22] from all
43 sensors. Beyond the fact that they used all 43
sensors and we only use one, we cannot directly
reproduce their experiments because of their lack of
explicitness about how the data was processed.
Nevertheless, they report that their specialist
algorithms can obtain the highest accuracy of around
80% to 90%. Thus, domain-agnostic shapelets using a
single time series can be at least competitive with
highly tuned, domain-informed specialist methods
using all 43 time series.

-8

-4

0

4

20 40 60 80 100 1200 136

-8

-4

0

4

20 40 60 80 100 1200 136

Time series of class1 and class 2

Original long time series when recorded

Shapelet shown in red/bold

dish threshold = 2.446

6.3 ECG Dataset

The ECG Five Days dataset from PhysioNet.Org [20] is
a long ECG time series recorded on two different days
with the same patient; a copy of this dataset can also be
found at [11]. The dataset contains 890 objects, with 23
objects as training data and 861 as test data. Examples
of the time series are shown in Figure 16. The main
challenges in classifying this dataset are that the data
exhibits linear drift (in medical domains, this is called
wandering baseline), as shown in Figure 16.top, and the
time series from two different classes are very similar,
at least globally.

Figure 16: top) ECG time series when first recorded. left)
Time series from the two classes are very similar, and it
is even hard to distinguish between them with the naked
eyes. right) The shaplet discovered by our algorithm
shown in red/bold

Using one nearest neighbor classification with either
Euclidean distance or DTW on this dataset, the
accuracy is only 79.7%. However, the shapelet
discovered by our proposed algorithm shown in Figure
16.right is able to obtain 99.4% accuracy from this
dataset. This is, by a large margin, the best result ever
reported for this dataset [4][11].
Moreover, the results are quite intuitive, according to
USC cardiologist Helga Van Herle, focusing our
attention on the delayed t-wave is the only medically
significant difference between the two classes, and our
algorithm can discover this part as the shapelet.

7 CONCLUSIONS

We proposed an algorithm for shapelet discovery that is
up to three orders of magnitudes faster than the current
state-of-the-art and yet has accuracy that does not
significantly differ. We have made all our code freely
available at [31], and as such hope to expand the scope
of problems to which shapelets can be applied.

8 ACKNOWLEDGEMENT
This research was funded by NSF awards 0803410,
0808770, and 1161997, and the Royal Thai Scholarship.

9 REFERENCES
[1] K.W. Chang, B. Deka, W. M. H. Hwu, and D. Roth. Efficient

Pattern-Based Time Series Classification on GPU ICDM. 2012.

[2] H. Cheng, X. Yan, J. Han and P. S. Yu. Direct Discriminative

Pattern Mining for Effective Classification. Data Engineering,

ICDE, 2008, 169-178.

[3] Digital Morphology 2012: http://www.digimorph.org/

[4] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. J.

Keogh. 2008. Querying and mining of time series data:

experimental comparison of representations and distance

measures. PVLDB 1, 2, 1542-52.

[5] G. D. Fatta, S. Leue, and E. Stegantova. Discriminative pattern

mining in software fault detection, ACM SOQUA, 2006, 62-6.

[6] B. Hartmann, Ingo Schwab, Norbert Link: Prototype

Optimization for Temporarily and Spatially Distorted Time

Series. AAAI Spring Symposium: It's All in the Timing, 2010.

[7] B. Hu, T. Rakthanmanon, Y. Hao, S. Evans, S. Lonardi, and E.

Keogh: Discovering the Intrinsic Cardinality and

Dimensionality of Time Series using MDL. ICDM, 2011.

[8] P. Geurts. Pattern Extraction for Time Series Classification. In

Proc of the 5th PKDD, 2001, 115–127.

[9] D. Gordon, D. Hendler, and L. Rokach. Fast Randomized

Model Generation for Shapelet-Based Time Series

Classification. arXiv:1209.5038. 23 Sep 2012

[10] Q. He, Z. Dong, F. Zhuang, and Z. Shi. Fast Time Series

Classification Based on Infrequent Shapelets. ICMLA. 2012.

[11] E. Keogh, Q. Zhu, B. Hu, Y. Hao, X. Xi, L. Wei, C.

Ratanamahatana, The UCR Time Series Classification/

Clustering Homepage 2012: www.cs.ucr.edu/~eamonn/

time_series_data

[12] M. H. Ko, G. West, S. Venkatesh, and M. Kumar. Online

context recognition in multisensor systems using dynamic time

warping. In Intelligent Sensors, Sensor Networks and

Information Processing Conference, 2005, 283 – 288.

[13] Z. Li, C. X. Lin, B. Ding, J. Han. Mining Significant Time

Intervals for Relationship Detection. SSTD, 2011, 386-403.

[14] J. Lin, Eamonn J. Keogh, Li Wei, Stefano Lonardi:

Experiencing SAX: a novel symbolic representation of time

series. DMKD, 15, 2, 2007, 107-144.

[15] J. Lines and A. Bagnall. Alternative Quality Measures for

Time Series Shapelets, IDEAL, 2012, 475-483.

[16] J. Lines, L. M. Davis, J. Hills, and A. Bagnall. A shapelet

transform for time series classification, KDD, 2012, 289-297.

[17] J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan.

uWave: Accelerometer-based personalized gesture recognition

and its applications. Pervasive and Mobile Computing, 2009.

[18] A. McGovern, D. Rosendahl, R. Brown, and K. Droegemeier.

Identifying predictive multi-dimensional time series motifs: an

application to severe weather prediction. DMKD, 22, 2011.

[19] A. Mueen, Eamonn J. Keogh, Neal Young: Logical-shapelets:

an expressive primitive for time series classification. KDD,

2011, 1154-1162.

[20] Physical Activity Monitoring for Aging People:

http://www.pamap.org

[21] T. Rakthanmanon, Q. Zhu, and E. Keogh: Mining Historical

Archives for Near-Duplicate Figures. ICDM, 2011, 557-566.

[22] A. Reiss, M. Weber and D. Stricker. Exploring and Extending

the Boundaries of Physical Activity Recognition. IEEE SMC

Workshop on Robust Machine Learning Techniques for Human

Activity Recognition, 2011.

[23] S. L. Salzberg, On comparing classifiers: Pitfalls to avoid and a

recommended approach. DMKD, 1, 1997, 317–328.

[24] M. Tompa. & J Buhler (2001). Finding motifs using random

projections. In proceedings of the 5th Int’l Conference on

Computational Molecular Biology. pp 67-74.

[25] P. J. Van Otterloo. A contour-oriented approach to shape

analysis. Prentice-Hall NJ, 1991, 90-108.

[26] D. Vail and M. Veloso. Learning from accelerometer data on a

legged robot. In Proc of the 5th IFAC/EURON Symposium on

Intelligent Autonomous Vehicles, 2004.

[27] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P.Scheuermann,

and E. Keogh, Experimental comparison of representation

methods and distance measures for time series data. to appear

in DMDK. 2012. (Online preview)

[28] L. Wei, Eamonn J. Keogh, Xiaopeng Xi: SAXually Explicit

Images: Finding Unusual Shapes. ICDM, 2006, 711-720.

[29] Z. Xing, J. Pei, P. S. Yu, K. Wang. Extracting Interpretable

Features for Early Classification on Time Series. SDM. 2011,

247-258.

[30] L. Ye, Eamonn J. Keogh: Time series shapelets: a novel

technique that allows accurate, interpretable and fast

classification. DMKD, 22, 1-2, 2011, 149-182.

[31] Supporting Webpage: www.cs.ucr.edu/~rakthant/FastShapelet

