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ABSTRACT 

Time series shapelets are a recent promising concept in 
time series data mining. Shapelets are time series 
snippets that can be used to classify unlabeled time 
series. Shapelets not only provide interpretable results, 
which are useful for domain experts and developers 
alike, but shapelet-based classifiers have been shown 
by several independent research groups to have 
superior accuracy on many datasets. Moreover, 
shapelets can be seen as generalizing the lazy nearest 
neighbor classifier to an eager classifier. Thus, as a 
deployed classification tool, shapelets can be many 
orders of magnitude faster than any rival with 
comparable accuracy. 

Although shapelets are a useful concept, the current 
literature bemoans the fact that shapelet discovery is a 
time-consuming task. In spite of several efforts to 
speed up shapelet discovery algorithms, including the 
use of specialist hardware, the current state-of-the-art 
algorithms are still intractable on large datasets. In this 
work, we propose a fast shapelet discovery algorithm 
that outperforms the current state-of-the-art by two or 
three orders of magnitude, while producing models 
with accuracy that is not perceptibly different. 

1 INTRODUCTION 

Shapelets are a recently introduced concept in time 
series data mining. In essence, shapelets are 
prototypical time series “snippets” that can be used to 
classify unlabeled time series that contain an 
occurrence of the shapelet within some previously 
learned distance threshold. The utility of shapelets has 
been confirmed and extended by many independent 
groups of researchers [1][6][9][10][13][15][16][29][30]. 
The exploding interest in shapelets can be attributed to 
the following factors. First, they generalize the lazy 
nearest neighbor algorithm, widely understood to be the 
state-of-the-art technique for time series [27], to an 
eager decision-tree-like classifier, allowing orders of 
magnitude improvement in classification time. Second, 
they are interpretable, and can give insights as to what 
defines the differences between two classes [30]. 
Finally, on some problems, shapelets can be simply 
more accurate than any known rival method [19][30]. 
Given these advantages, we have recently seen 
shapelets (and very similar ideas) applied to creating 
classifiers in various domains such as gesture 
recognition [2][17], sensor networks [12], motion 
capture [26], cardiology, climatology [18], robotics 

[26], electrical power demand [1][9] and health care 
[22]. In addition, we have begun to see several 
generalizations of shapelets, such as logical shapelets 
[19], which classify objects based on conjunctions/ 
disjunctions of shapelets, and local shapelets [29], 
which impose constraints on where valid shapelets may 
appear within an object. 
Before continuing further, we will take time to develop 
the reader’s intuition for shapelets. Figure 1 shows six 
examples of reptile skulls [3] and their time series 
representations. Three of them are horned lizards 
(Phrynosoma coronatum, P. braconnieri and P. 
mcallii), and the other three are turtles (Elseya dentate, 
Glyptemys muhlenbergii, and Annemys sp). 

 

Figure 1: left) Skulls of horned lizards and turtles. right) 
The time series representing the images. The 2D shapes 
are converted to time series using the technique in [14] 

For more details on how shapes are converted to time 
series, we refer the reader to [14][25]; however, Figure 
1.top.right visually hints at how a shape can be 
“unwound” into a time series. 
As we can see from Figure 1, the two classes here have 
a lot of intraclass variability, something that does not 
bode well for traditional classifiers that consider the 
entire time series [27]. Suppose instead we run the 
shapelet discovery algorithm on this small dataset [30]. 
Doing so, we find the shapelet that can best distinguish 
between the two types of reptiles. This shapelet is 
presented in Figure 2, both in the time series space and 
“brushed” back onto the original shape space. 

Figure 2: left) The shapelet that best distinguishes 
between skulls of horned lizards and turtles, shown as 
the purple/bold subsequence. right) The shapelet 
projected back onto the original 2D shape space 



 

 

The discovered shapelet corresponds to two horns of 
the horned lizard, an intuitive and interpretable result. 
This toy example demonstrates the great strength of 
shapelets. With zero parameters to tweak, we obtained 
a shapelet that is visually intuitive and allows perfect 
classification accuracy in this (admittedly contrived) 
domain. However, this example also exhibits the 
current weakness of shapelets it took several seconds to 
find the shapelet in this tiny dataset.   
The best-known running time for the shapelet discovery 
algorithm is O(n2m3), where n is the number of objects 
or time series in the dataset, and m is the length of the 
longest time series. In this work, we propose an O(nm2) 
algorithm for finding shapelets. Our algorithm is 
heuristic; it is not guaranteed to find the same shapelet 
as [19][30]. We exploit a random projection technique 
[24][21] on the SAX representation [14][28] to find 
potential shapelet candidates. However, our 
experimental results in Section 5 demonstrate that the 
classification accuracy of the proposed algorithm is not 
significantly different from the accuracy obtained by 
exact brute-force algorithms [19][30]. 
The rest of this paper is organized as follows. In 
Section 2, we introduce definitions and notations. The 
basic shapelet algorithm is discussed in [30] and the 
current state-of-the-art algorithm [19] is reviewed in 
Section 3. In Section 4, we explain our algorithm in 
detail. Section 5 demonstrates the performance and 
accuracy of our algorithm. Case studies showing the 
advantage of our proposed algorithm are described in 
Section 6 and we offer conclusions in Section 7. 

2 DEFINITIONS AND NOTATION 

We begin by introducing all necessary notation and 
definitions. First, we define a time series: 
Definition 1:  A time series T is an ordered list of 
numbers; T = t1, t2 ,...,tm. Each value ti can be any 
finite number and m is the length of time series T. 

A local subsection of a time series is called a time 
series subsequence: 
Definition 2:  A time series subsequence S is a 
contiguous sequence of a time series. Subsequence S 
of length l of time series T starting at position i can 

be written as S = = ti, ti+1 , ..., ti+l-1.  
For the classification task, many time series are 
grouped together with their corresponding class labels 
in a container called a dataset: 
Definition 3:  A dataset D is a set of pairs of time 
series, Ti, and its class label, ci. Formally, D = 
<T1,c1>, <T2,c2>, <T3,c3>, ... , <Tn,cn>. For the rest of 
this paper, we use n as the number of time series 
inside the dataset D. Note that the lengths for each 
time series are not necessarily equal.  

To measure the similarity between subsequences, we 
define the distance between two subsequences: 
Definition 4:  The distance between subsequence S 
and Ŝ of the same length is the length-normalized 
Euclidean distance between subsequences S and Ŝ. If 
both subsequences are Z-normalized with mean=0 
and std=1, the distance is defined as: 

  dist(S, Ŝ) =  ∑ ŝ  

Shapelets can be of any length up to m. In order to 
allow meaningful comparisons between candidate 
shapelets of different lengths, length normalization 
must be used.  
We therefore define the distance between a time series 
and a given subsequence: 
Definition 5:  The distance between subsequence S 
of length l and time series T is defined as the 
minimum distance between subsequence S and any 
subsequence of T of the same length as subsequence 
S. Formally, dist(S, T) =  , . 

Suppose that dataset D contains n time series from c 
different classes. The number of time series in class i is 
ni and we define class probability as pi = ni / n. Hence, 
we define the entropy of the dataset as: 
Definition 6:  The entropy of the dataset D is defined 
as E(D) = ∑ . 

To divide the dataset into two smaller datasets, we 
define a split: 
Definition 7:  A split is a tuple <s,d> of a 
subsequence s and distance threshold d which can 
separate the dataset into two smaller datasets, DL and 
DR. The number of time series in DL and DR are nL 
and nR, respectively. 

We next define the information gain of the given split: 
Definition 8:  The information gain of a split sp is:    

The distance between two different sides of the given 
split is a separation gap: 
Definition 9: A separation gap of a split sp is: 1 , 1 ,  

The definition of shapelet will be explained briefly 
here; however, for a more complete definition of 
shapelet, please refer to [30]. 

Definition 10:  A shapelet is a split that separates 
the dataset into two smaller datasets with the 
maximum information gain; ties are broken by 
maximizing the separation gap. 

We visually summarize the concept of shapelets with 
our toy example shown in Figure 3. A candidate (e.g., 
the highlighted subsequence from Figure 2.left) is 
shown in the box for reference. The distances between 
the candidate subsequence (i.e., tentative shapelet) and 
all time series are calculated; all corresponding objects 
are placed on the orderline according to the calculated 
distance. In Figure 3, three skulls from horned lizards, 
whose distances to the shapelet are small, are shown as 
red rectangles on the left-hand side of the orderline. In 
contrast, the distances between three time series of 
turtle skulls and the candidate subsequence are shown 
as green triangles on the right-hand side of the 
orderline, because their distances to the  candidate 
shapelet  are larger. Note that, in this example, the 
candidate shapelet corresponds to the horns of a lizard 
(cf. Figure 2). 
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Figure 3: The orderline shows the distances between the 
candidate subsequence and all time series as positions on 
the x-axis. The three objects on the left-hand side of the 
line correspond to horned lizards and the three objects 
on the right correspond to turtles 

After the orderline is created, we can calculate the split 
point, the separation gap, and the information gain of 
the candidate shapelet. When all candidates have been 
processed in this manner, the best one will be reported 
as the final shapelet [19][30]. 

3 RELATED AND BACKGROUND WORK 
Our work extends the original work by Ye which 
introduced the concept of shapelets and showed an 
algorithm to allow their discovery [30]. However the 
general intuition behind shapelets, the idea of using 
small sub-patterns to identify the class of a larger 
object, is known in other domains (especially. 
bioinformatics), including class prototypes [6], 
discriminative patterns [2][5][8], and predictive motifs 
[18], etc. 
In the next section, we briefly consider the current 
state-of-the-art shapelet discovery algorithm. 

3.1 Brute Force Shapelet Discovery 

The brute force shapelet discovery algorithm shown in 

Table 1 is a simple algorithm that generates and tests 

all possible candidates and returns the best one. 

Table 1.  Brute Force Algorithm 

Algorithm: BruteForceShapelet 

Input:  D : Dataset containing time series and class labels
Output: shapelet: the final shapelet 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

[TS,Label] = ReadData(D) 
bsf_gain = 0 
for len = 1 to m   
 Candidates=GenerateAllCandidates(TS,len) 
 for each cand in Candidates 
  create a split sp from cand 
  gain = ComputeInfoGain(D,sp) 
  if (gain > bsf_gain) 
   bsf_gain = gain 
   shapelet = s 
  end if 

 end for 

end for 

The dataset D is a list of pairs of time series with their 
labels; thus, in line 1, we extract the time series and 
label from D. Because the final shapelet can be of any 
length, all subsequences of every length in the dataset 
will be generated as candidates in line 4.  
Thereafter in line 6, each candidate is used to compute 
a split, sp, as shown in Figure 3 in the previous section. 
Finally, the information gain is computed in line 7. The 
returned shapelet is the candidate with maximum 
information gain.  

If n is the number of time series in the dataset and m is 

the length of the longest time series in the dataset, the 

number of candidates in a time series is O(m2) and the 

total number of all candidates in the dataset is O(nm2). 

A distance computation from one candidate to all time 

series takes time O(nm2) to compute. Hence, the total 

running time of the brute force algorithm is O(n2m4). 

3.2 Current State-of-the-Art Algorithm 
The first improvement of the brute force algorithm was 
introduced in [30]. They proposed a technique to 
calculate a cheap-to-compute upper bound of the 
information gain and use it to admissibly prune some 
candidates. 
The current state-of-the-art algorithm is given at [19]. 
This algorithm can also find the exact shapelet [30], but 
does so more quickly. The speedup comes from using a 
classic pruning technique — triangular inequality — to 
prune some candidates, and from caching some tricks. 
The latter idea trades speedup for memory, and may run 
into space problems for large datasets. 
Using the same notation as above, the worst-case 
running time of the current state-of-the-art is O(n2m3) 
and the algorithm requires a memory footprint as large 
as O(nm2). 
To concretely ground this analysis, on the Wafer dataset 
[11], with n=1000 and m=152, the state-of-the-art takes 
more than 12 hours to find the shapelet. However, the 
algorithm we will introduce in the next section can find 
essentially the same shapelet in just 23 seconds.  

4 FAST SHAPELET DISCOVERY  
We are finally in a position to explain our algorithm in 
detail. First, we describe the key ideas using our reptile 
toy example; then, we give formal details in Section 4.2. 

4.1 Overview of the Algorithm 
We propose to solve the shapelet discovery problem 
with a change of representation. In particular, we will 
transform the raw real-valued and high-dimensional 
data into a discrete and low-dimensional representation. 
Searching over a smaller representation is obviously 
more efficient; more importantly, however, having a 
discrete representation will allow us to hash our data, 
and use the collision history to inform our search.  

4.1.1 Generating SAX Words 
For each object in the dataset, we transform the time 
series into a symbolic representation using Symbolic 
Aggregate approXimation (SAX) [14][28]. For brevity, 
we assume the reader is familiar with SAX, and refer 
the interested reader to [14] for additional details. 
From our toy example in Section 1, a time series from 
P.coronatum is shown once again in Figure 4. The top 
part of the figure shows an example of a SAX word 
adbacc, created by the first subsequence. Multiple 
SAX words will be generated for a given time series 
using the sliding window technique [14].  SAX has two 
parameters, which are desired (reduced) dimensionality, 
d, and cardinality, c. Although some techniques (e.g., 
[7]) could be applied for setting these parameters, for 
simplicity, in our implementation we set the cardinality 
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to 4 and word length to 16 so we can represent a SAX 
word with a simple 4-byte integer. 

 

Figure 4: top.left) The SAX word adbacc created from a 

subsequence of the time series corresponding to P. 
coronatum. bottom) The sliding window technique 

4.1.2 Random Masking 

It is very important to recall that a single time series 
creates multiple SAX words, which correspond to the 
multiple subsequences we can obtain as we slide the 
shorter subsequence length across the longer time 
series. This is hinted at in Figure 4, and shown 
explicitly in Figure 5.left, where each time series 
(derived from a skull) creates two or three SAX words 
of length five.  

 

Figure 5: left) SAX words for each object. right) SAX 
words after masking two symbols. Note that the masking 
positions are randomly picked 

Having created the SAX representation of our data, we 
have an apparent solution to the shapelet discovery 
problem. We could conduct a brute force search for the 
shapelets in the SAX space. This would require only 
slight modifications of the algorithm shown in Table 1, 
and because of the reduced dimensionality of SAX it 
would be faster than working with the raw data. 
However, there are two problems with this idea. The 
search would be faster, but still quadratic in the number 
of SAX words. More importantly, we have the problem 
of false dismissals. 
The problem of false dismissals is caused by the fact 
that two time series that differ only by a tiny epsilon 
could produce two different SAX words1. Thus, it is 
possible that the best shapelet in the raw data spaces 
maps to slightly different SAX words, such as the SAX 
words adbac and acbac, created by the lizard skulls 
in Figure 5.left.  
The solution to this problem is to exploit random 
projection, a mature idea from bioinformatics [24]. The 
idea is to project all SAX words of high dimensionality 
to a smaller dimensionality. This is illustrated in Figure 
5.right, where all SAX words of dimensionality five 
have been randomly masked at two positions, reducing 

                                                                 
1 This is of course true for any discretization method.  

the dimensionally to three. Note that the first such 
random projection does take our two different SAX 
words, adbac and acbac, and makes them identical, 

adbac and acbac. 
The reader will appreciate two potential problems with 
the idea of random projection. In our toy example we 
contrived our “random” choice of a mask, but we 
cannot generally be sure that a single projection helps 
us. The second problem is that if we mask too many 
locations, our decrease in the likelihood of false 
dismissals comes at the cost of an explosion of false 
positives, all of which must be checked.  Again, we can 
turn to the bioinformatics literature for the answer [24]. 
As hinted at by the multiple masks in Figure 5.right, if 
we mask conservatively, but do multiple random 
masks, we can make the probability of false dismissals 
arbitrarily low while not incurring a measurable 
increase in false positives [24]. The remainder of 
Section 4 makes these ideas more concrete.   

4.1.3 Counting Similar Objects 
To avoid all-to-all distance computations, we apply 
hashing (i.e., random masking) on all of our data 
objects. The intuition is that two objects that are similar 
in the original space have a very high probability of 
collisions, even if they happen to have been mapped to 
slightly different SAX words. 
Figure 6.A shows that, after hashing, the SAX words 
adbac and acbac share the same signature, **bac. 

All SAX words that have the signature bac have their 
counters incremented in the relevant table shown in 
Figure 6.A.right. Similarly, in the second iteration the 
words adbac and acbac once again randomly hash to 

the same word, this time a**ac. 

 

Figure 6: The first (A) and second (B) iterations of the 
counting process. left) Hashing process to match all same 
signatures. Signatures created by removing marked 
symbols from SAX words. right) Collision tables showing 
the number of matched objects by each  words 

Thus, after r iterations of random projection, we expect 
the collision table shown in Figure 6.A.right to remain 
mostly sparse, but to contain some locations that have 
values that are a significant fraction of r. As we shall 
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show in the next section, this information can guide our 
shapelet search. 

4.1.4 Finding the Best Candidates 
Continuing with our toy example, let us assume that we 
have done random projections for five iterations and the 
collision table is shown as in Figure 7.A.  
As shown in Figure 7.B, we can condense the collision 
table by summing all of the object-based counts to the 
class-based counts, and create the complementary data 
structure in Figure 7.C. From these two tables we can 
calculate the distinguishing power of each SAX word 
using the simple equation shown in Figure 7.D. Note 
that the distinguishing power is high if the reference 
words appear frequently in one class but rarely in 
another class.  
In this example, the highest score is from word1 
because it is close to objects in class1 10 times (obj1 5 
times and obj2 5 times) and far from objects in class2 
10 times; hence, its distinguishing power is 10+10 = 20. 
In contrast, SAX word5 receives a power score of zero 
because this reference word is similar to objects from 
class1 5 times but also far from objects in class1 5 
times, and has the same distribution in class2; hence, 
the score is (5-5)+(5-5) = 0. This suggests a pattern that 
is equally frequent in both classes, rather like a “stop-
word” in text classification.  
 

Figure 7: A) The collision table for all words after five 
iterations. The scores in the table represent the number 
of times an objects shares the same signature with the 
reference words. B) Grouping scores from objects in the 
same class. C) Complement of (B) to show that the 
number of times objects in each class do not share the 
same signature with the reference word. D) The 
distinguishing power of each SAX word 

This list of SAX words with high distinguishing power 
is almost a solution to our problem, as it very highly 
correlates with the quality of the corresponding 
shapelets (i.e., their information gain) in the original 
raw data space. Empirically we can be certain that the 
best shapelet is near the top of this list. However, we do 
need to spend some time searching the top candidates in 
the original space to confirm we have a high-quality 
shapelet.  
This is the complete intuition behind our algorithm. In 
the next section, we formalize these ideas.  

4.2 Fast Shapelet Algorithm 

Our shapelet discovery algorithm is shown in Table 2. 
In line 1, we extract all time series with their class 
labels from the current dataset D. Note that the dataset D 

will be iteratively made smaller as we descend deeper 
into the decision tree.  

Table 2.  Fast Shapelet Algorithm 

Algorithm: FastShapelet 

Input: D : Dataset containing time series and class labels
 r : number of random iterations 
 k : number of SAX candidates 
Output: shapelet: the final shapelet 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24

[TS,Label] = ReadData(D) 
for len = 1 to m 
 SAXList = CreateSAXList(TS,len) 
 Score = {} 
 for i = 1 to r 
  Count = RandProjection(SAXList,TS) 
  Score = UpdateScore(Score,Count) 
 end for 

 SAXCand = FindTopKSAX(SList,Score,k,r) 
 TSCand = Remap(SAXCand,TS) 
 
 max_gain=inf, min_gap=0 
 for i = 1 to |TSCand| 
  cand = TSCand[i] 
  DList = NearestNeighbor(TS,cand) 
  [gain,gap] = CalInfoGain(DList)  
  if (gain>max_gain) ||  
   ((gain==max_gain)&&(gap>min_gap)) 
    max_gain = gain 
    min_gap = gap 
    shapelet = cand 
  end if 

 end for 

end for

The process is split into two phases. In the first phase 
(lines 3-10), we select potential subsequences after a 
search in the SAX space (lines 12-23); this is the 
process we informally discussed in detail in the 
previous section. In the second phase, we measure the 
quality of those potential candidates in the raw data 
space and return the best candidate as the final shapelet. 
To select the candidates, all subsequences of length len 

from all time series are created using the sliding 
window technique, and we create their corresponding 
SAX word and keep them in SAXList (line 3/Figure 
5.left). After the list of SAX words has been created, we 
use these discrete representations to do hashing with 
RandProjection() by creating a hash signature of 
each SAX word, and give one count for each SAX 
word based on its signature. Then, we update the total 
score from multiple iterations (line 7/Figure 6).  
Next, each SAX word is given a score to show how 
many times each word occurs in each object. We then 
calculate a distinguishing power for each SAX word, 
and pick the top k subsequences that have the highest 
score (line 9/Figure 7). We remapped these SAX words 
back to their original raw data subsequences (line 10).  
Note that we have two parameters, r and k, here. 
However, according to our experiments in Section 5, 
our algorithm is not sensitive to them; thus, we simply 
fix r = 10 and  k = 10. 
We are now ready for the second phase (lines 12-23); 
we calculate the information gain for each candidate in 
the top k list and pick the best one as the shapelet. 
More specifically, each candidate is considered one at a 
time (line 13). The body of the loop calculates the 
distance between the candidate subsequences and each 
time series using the equation in Definition 5. After 
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these calculations (lines 17-21), we pick the 
subsequence which has the highest information gain as 
the final shapelet, breaking ties (if any) by the 
maximum gap (cf. Definition 9). 
This explanation is necessarily terse. We refer the 
interested reader to [31] for a more detailed line-by-line 
explanation and the original (annotated) source code.  

5 EXPERIMENTAL RESULTS 
We begin by noting that all the code and data used in 
this work are available on our supporting webpage [31], 
in addition to numerous additional experiments.  

5.1 UCR Time Series Dataset 
We compared our algorithm with the current state-of-
the-art [19]. For fairness, we used the code provided by 
the original authors and set the parameters as they had 
recommended on their supporting webpage.  
We begin by considering the accuracy on 32 datasets 
from the UCR Time Series archives [11] in Figure 8. 
Note that we attempted tests on all 45 datasets from the 
UCR achieves; however, we abandoned the 13 
experiments in which the state-of-the-art algorithm [19] 
had not finished after 24 hours. 
 

Figure 8: Classification accuracy of our algorithm and 
the state-of-the-art on 32 datasets from the UCR archives 

Visually it is difficult to say which algorithm is better, 
and counting wins, ties, and losses produces similarly 
ambivalent results. However, the results are strongly 
consistent with our claim that our method is no worse 
than the state-of-the-art. The only real difference 
between two algorithms is scalability, as the time 
comparison shown in Figure 9 illustrates. 
 
 
 

Figure 9: Running time comparison between our 
algorithm and the state-of-the-art on 32 datasets from 
the UCR time series archives 

The greatest speedup we achieve on these 32 datasets is 
2,030X, and we gain a speedup exceeding 100X for at 
least 12 other datasets. On the Wafer dataset, although 
we gain the most speedup with 2,030X, our method still 
achieves very high accuracy at 99.64%, which appears 
to be the best known result on this dataset [11][27]. In 
the next section we explore the issues affecting 
scalability in more detail. 

5.2 Scalability  
To compare the scalability of our algorithm and the 
current state-of-the-art in more detail, we tested on the 
largest time series dataset in the UCR time series 
archives, the StarlightCurves dataset. For all shapelet 
discovery algorithms, there are two factors that strongly 
determine the difficulty of the search, the number of 
time series in the dataset and the length of the time 
series; below we varied each one independently. 
Figure 10.left shows the result when the number of time 
series, n, is varied from 50 to 800 and the length of all 
time series, m, is fixed at 100. Figure 10.right shows the 
result when n is fixed at 100 and m is varied from 50 to 
800. Note that the maximum size of the experiments we 
consider here are constrained by the implementation of 
the state-of-the-art algorithm that we received from the 
original authors. For any experiments larger than the 
one below we get an out-of-memory error. 

Figure 10: Scalability of our algorithm and the current 
state-of-the-art on StarlightCurves dataset. left) The 
number of time series in the dataset is varied. right) The 
length of time series is varied 

The running time of the current state-of-the-art in 
Figure 10.left increases from 16 seconds to 8.7 hours 
from n=50 to n=800 (m is fixed at 100). However, our 
algorithm is significantly faster; the running time is 
0.76 seconds at the beginning and less than 16 seconds 
when n=800. Thus, the speedup factor when n=800 is 
1,970X. Figure 10.right shows that our algorithm 
achieves similar speedups when m is increased.  
These empirical results are not surprising given the time 
complexity analyses of the algorithms. Recall that the 
worst-case running time of the current-state-of-the-art is 
O(n2m3) and, in the best case if the triangle inequality 
can prune all candidates, the running time can be as low 
as O(n2m2). However, our algorithm is just O(nm2). 
We omit a detailed space complexity analysis for 
brevity, except to note that here we are better by an 
even greater margin. 

5.3 When to Use Shapelets or 1NN 
One of the classic questions faced by all data miners is 
which algorithm to use for a given task. It is well 
documented in the literature that the classification 
performance of shapelets is highly variable in the sense 
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that it can be significantly better, or significantly worse 
than the only other high-performing time series 
classification method, the nearest neighbor algorithm 
[9][10][15][30][30]. 
Many research papers “solve” this problem, or at least 
bypass it, by only reporting the holdout error. However, 
this ignores the question of whether we would have 
known ahead of time which algorithm to use? We 
answer this question below.  
To answer this question, we tested on all 45 datasets 
from the UCR archives using a method recommended 
by Salzberg [23]. We split the train data from all 45 
datasets in [11] to two equal parts, called A and B; the 
test data from the archives is preserved as it is and used 
as unseen data; we call this test data C.  
For both algorithms, first A is used as the training data 
for creating a classification model, and then B is used 
as the test data for measuring the accuracy of the 
model, which is created from A. Then, we swap the 
roles of A and B (i.e., 2-cross validation). The expected 
accuracy is the average between these two models.  
To compare two classifiers: shapelet and the Euclidean 
distance one nearest neighbor (1NN), we define an 
expected ratio by:          1NN  

The actual accuracy is measured by the accuracy of the 
model created by the combination of A and B (the 
original training data) on the test data C (the original 
test data). Similar to the expected ratio, the actual ratio 
is defined by:          1NN  

If a ratio is larger than one, the accuracy of shapelets is 
higher than the accuracy of 1NN. The plot in Figure 11 
shows the comparison between the expected ratios and 
actual ratios of shapelets and the 1NN algorithm. 
 

Figure 11: Accuracy ratio between FastShapelet 
algorithm and Euclidean distance-based one nearest 
neighbor on 45 datasets from UCR archives  

The TP (True Positive) area contains the datasets in 
which we expected that the shapelet algorithm would 
be better, and it was better.  
Likewise, the TN (True Negative) area contains the 
datasets in which we expected that the shapelet 
algorithm would be worse, and it was worse. 
Gratifyingly, most datasets fall into either TP or TN, 

and even remain close to the diagonal. In other words, 
we can generally correctly predict when shapelets are 
going to be useful for a particular problem.  
For the handful of other datasets, the eight points in the 
area labeled FN (False Negative) represent a lost 
opportunity. We would have been slightly better off 
using shapelets over 1NN, but our cross validation did 
not realize that. The single point (just barely) inside FP 
(False Positive) represents the sole occasion where we 
expected shapelets to do well, but found we would have 
been (a tiny bit) better off with 1NN. 

5.4 Parameter Effects 

Our algorithm has two parameters that must be set by 
the user. They are r, the number of iterations of random 
projections, and k, the size of the set of potential 
candidates that are “promoted” from the SAX space 
back to the raw data space to be tested (lines 10 of 
Table 2). Intuitively, when the number of iterations of 
random projections is increased, the process should 
make the set of potential candidates more tolerant to 
noise and reduce over-fitting. Likewise, when the set of 
potential candidates is larger, the quality of the final 
shapelet should be better because we pick from a larger 
set. These two parameters also (approximately) linearly 
affect the running time of our algorithm.  

As we can show empirically, these two parameters are 
not sensitive in terms of the accuracy produced.  

On the StarlightCurves dataset, when r is varied from 1 
to 50 and k is fixed at 10, the running time increases 
from 1,600 to 2,100 seconds and the accuracy changes 
only in a narrow range of between 93.29% and 94.37%. 
When r is fixed at 10 and k is varied from 1 to 50, the 
running time is increased from 380 to 4,900 seconds; 
however, once again the accuracy of the shapelet model 
only ranges between 93.35% and 94.30%. 

The effects of parameters r and k on all datasets from 
the UCR archives are shown in Figure 12. In this 
experiment, we vary one of the two parameters r and k 
from 1 to 50 and fix another one to 10,  and we run the 
experiments 30 times on all 45 datasets. Although the 
running time is increased linearly by both parameters, 
the accuracy is not sensitive to the value of parameters, 
as shown in Figure 12.top. 

Figure 12: bottom) The accuracy of the algorithm is not 
sensitive to both parameters r and k. top) The running 
time of the algorithm is approximately linear by either 
parameter. Note that when we vary r (k), we fix k (r) to 
ten; thus, we are changing only one parameter at a time 
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6 CASE STUDIES 
This section will demonstrate that shapelets are useful 
in several real-world applications.  

6.1 Starlight Dataset 

The StarlightCurve dataset is the largest dataset in the 
UCR time series archives.  It contains 9,236 starlight 
curve time series of length 1,024. Three types of star 
objects are Eclipsed Binaries (EB), with 2,580 objects, 
Cepheids (Cep), with 1,329 objects, and RR Lyrae 
Variables (RR), with 5,236 objects. The dataset is 
divided into training data and test data of size 1,000 and 
8,236 objects, respectively. Examples of starlight 
curves in each class are shown in Figure 13. 

 

Figure 13: Examples of starlight curves in three classes: 
Eclipsed Binaries, Cepheids, and RR Lyrae Variables  

Because the objects in Cep and RR are globally similar, 
these objects are difficult to separate. The accuracy of 
the one nearest neighbor algorithm using the Euclidean 
distance and DTW is 84.9% and 90.5%, respectively. 
However, using a shapelet decision tree for 
classification, our FastShapelet achieves  an average 
accuracy of 93.68% from 30 runs. Figure 14 shows a 
decision tree with three leaf nodes. 
 

Figure 14: left) Decision tree of StarlightCurve dataset 
created by our algorithm. right) Two shapelets shown as 
the red/bold part in the time series 

To the best of our knowledge, this is the highest 
accuracy ever reported on this dataset [4][11]. 
Moreover, of the hundred-plus papers that cited the 
UCR archive in the last three years (when this 
particular dataset was added to the archives) a 
significant fraction of them do not report any results for 
this dataset, because their algorithm ran out of memory 
or time.  
By interpolation, the current state-of-the-art is expected 
to take 4.5 months; however, our fast shapelet 
algorithm can create the decision tree in Figure 14 in 
3,150 seconds (just under an hour). Thus, the speedup 
is more than 3,000X on this dataset. 

6.2 Physical Activity Dataset  

This section demonstrates that shapelets also can be 
used as a high accuracy classification tool for activity 
recognition, an area drawing increasing attention due to 
the increasing availably of inexpensive sensors. The 
dataset considered is from the Physical Activity 
Monitoring for Aging People (PAMAP) [20]. The 
entire dataset contains 43 time series which are 
collected from multiple sensors (e.g., accelerometers, 
gyroscopes, magnetometers, etc.) on various parts of 
the body (i.e., the hand, chest, and foot). The data 
consists of eight subjects (seven males, one female) 
taking part in various sporting activities.  
For simplicity we choose to use only one sensor among 
all 43 sensors of the original dataset to perform activity 
classification. Figure 15 shows examples of time series 
(from by z-accelerometer at hand position) of all seven 
outdoor activities.  

 

Figure 15: Examples of all outdoor activities from 
PAMAP dataset. Note that the time series of each activity 
are generally different lengths  

In the original PAMAP dataset, all subjects perform all 
activities in one long performance so the data is a long 
time series that contains all (annotated) activities in 
one sequence. We preprocessed the data using the 
sliding window technique, as recommended by the 
original authors [22].  
The accuracy of one nearest neighbor classifiers on 
this dataset using the Euclidean distance, DTW with 
5% band size, and DTW with 10% band size are 
61.16%, 81.73% and 82.03%, respectively.  However, 
in the same task, using our shapelet algorithm we 
achieve an accuracy of 88.70%, which outperforms the 
one nearest neighbor using either the Euclidean 
distance or DTW.  
The original authors of the dataset also created 
classifiers by using multiple time series [22] from all 
43 sensors. Beyond the fact that they used all 43 
sensors and we only use one, we cannot directly 
reproduce their experiments because of their lack of 
explicitness about how the data was processed. 
Nevertheless, they report that their specialist 
algorithms can obtain the highest accuracy of around 
80% to 90%. Thus, domain-agnostic shapelets using a 
single time series can be at least competitive with 
highly tuned, domain-informed specialist methods 
using all 43 time series.  
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6.3 ECG Dataset 

The ECG Five Days dataset from PhysioNet.Org [20] is 
a long ECG time series recorded on two different days 
with the same patient; a copy of this dataset can also be 
found at [11]. The dataset contains 890 objects, with 23 
objects as training data and 861 as test data. Examples 
of the time series are shown in Figure 16. The main 
challenges in classifying this dataset are that the data 
exhibits linear drift (in medical domains, this is called 
wandering baseline), as shown in Figure 16.top, and the 
time series from two different classes are very similar, 
at least globally.  

 
Figure 16: top) ECG time series when first recorded. left) 
Time series from the two classes are very similar, and it 
is even hard to distinguish between them with the naked 
eyes. right) The shaplet discovered by our algorithm 
shown in red/bold 

Using one nearest neighbor classification with either 
Euclidean distance or DTW on this dataset, the 
accuracy is only 79.7%. However, the shapelet 
discovered by our proposed algorithm shown in Figure 
16.right is able to obtain 99.4% accuracy from this 
dataset. This is, by a large margin, the best result ever 
reported for this dataset [4][11]. 
Moreover, the results are quite intuitive, according to 
USC cardiologist Helga Van Herle, focusing our 
attention on the delayed t-wave is the only medically 
significant difference between the two classes, and our 
algorithm can discover this part as the shapelet.   

7 CONCLUSIONS 

We proposed an algorithm for shapelet discovery that is 
up to three orders of magnitudes faster than the current 
state-of-the-art and yet has accuracy that does not 
significantly differ. We have made all our code freely 
available at [31], and as such hope to expand the scope 
of problems to which shapelets can be applied.  
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