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We propose a fast and accurate signal quality monitoring scheme that uses convolutional neural networks (CNN) for 

error vector magnitude (EVM) estimation in coherent optical communications. We build a regression model to 

extract EVM information from complex signal constellation diagrams using a small number of received symbols. For 

the additive white Gaussian noise (AWGN) impaired channel, the proposed EVM estimation scheme shows a 

normalized mean absolute estimation error of 3.7% for quadrature phase shift keying (QPSK), 2.2% for 16-ary 

quadrature amplitude modulation (16QAM), and 1.1% for 64QAM signals, requiring only 100 symbols per 

constellation cluster in each observation period. Therefore, it can be used as a low-complexity alternative to 

conventional bit-error-rate (BER) estimation, enabling solutions for intelligent optical performance monitoring. 
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1. INTRODUCTION 

Coherent optical communications are widely used in metro and long-

haul networks, where physical-layer impairments result in dynamically 

varying optical signal degradation. Advanced modulation formats, such 

as quadrature phase-shift keying (QPSK) and quadrature amplitude 

modulation (QAM) are now commonly used in coherent transceivers 

operating at 100 Gbps and beyond [1]. As optical networks become 

more heterogeneous and dynamic, accurate optical performance 

monitoring (OPM) characterized by, e.g. signal-to-noise ratio (SNR) or 

bit error rate (BER), is important to ensure reliable data transmission 

[2]. Error vector magnitude (EVM), as one of the commonly used 

performance metrics, contains signal quality information of high order 

modulated signals. For an additive white Gaussian noise (AWGN) 

channel, the EVM can be mapped to a BER and SNR [3]. Normally, 
millions of received symbols are used in EVM calculation [1],[3]. 

However, such a cumulative process is time-consuming and unsuitable 

to track fast network dynamics. Instead, a fast and accurate EVM 

monitoring scheme that requires only a small number of received 

symbols is needed. 

Deep learning is a promising technique for OPM thanks to its ability 

to extract knowledge from high-dimensional data [4]-[6]. Various 

neural network types have been exploited for OPM, such as deep neural 

networks (DNN), recurrent neural networks (RNN), and convolutional 

neural networks (CNN) [7]-[11]. For example, in [7], a DNN is used to 

estimate the optical signal-to-noise-ratio (OSNR) and perform 

modulation format recognition (MFR) based on signal amplitude 

histograms. In [8], an RNN architecture called long short-term memory 

(LSTM) is used to estimate the OSNR and nonlinear noise power in the 
frequency domain, achieving 1 dB test error both in OSNR and 

nonlinear noise power estimation. The LSTM capabilities in the 

monitoring of chromatic dispersion (CD) have also been demonstrated 

[9]. However, CNN attracts even more attention thanks to its powerful 

capabilities of extracting knowledge from graphical information [12], 

[13]. AlexNet [14], ResNet [15], and VGGNet [16] are well-known CNN 

structures that show high accuracy on pattern recognition tasks. CNNs 

have been used for MFR and OSNR estimation based on graphical 

information in [10],[11]. This method has been shown to extract signal 

features from complex signal constellation diagrams, with a 100 % MFR 

accuracy and less than 0.7 dB OSNR estimation error. However, to the 

best of our knowledge, CNN-based EVM estimation using constellation 

diagram images has not been studied. 
In this paper, we propose an EVM estimation scheme that uses a CNN 

together with complex signal constellation diagrams for fast and 

accurate OPM. In coherent optical communications, constellation 

diagrams are commonly used to qualitatively evaluate the received 

signal as they provide a human-friendly visualization format whose 
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observation provides insight into, e.g. the modulation format, OSNR, 

EVM, phase noise, etc. However, distilling exact values of, e.g., BER from 

the diagram requires complex calculations that demand improvements 

in terms of automation and scalability. To this end, we apply supervised 
learning to analyze the visual representation of the channel state. The 

CNN structure is designed in such a way that each convolutional layer is 

followed by a max-pooling operation for complexity reduction. The 

resulting CNN can be applied directly to the constellation images for 

EVM estimation. Additional conversions, e.g. amplitude histogram [7], 

transfer frequency domain [8], or two-tap delay sampling [17], are 

avoided, enabling simplified data acquisition directly from transceivers. 

Moreover, unlike the previous demonstrations of CNN-based OPM 

schemes (e.g., [10]), the proposed approach allows for utilizing only a 

small number of received symbols to estimate the EVM. The accuracy of 

the proposed EVM estimator is verified using 32 Gbaud QPSK, 16QAM 

and 64QAM signals across the OSNR range of interest for practical 

operations. While using only 100 symbols per cluster in the complex 

signal constellation diagram, we achieve the accurate EVM estimation 
with  a normalized mean absolute error (MAE) of 3.7% for QPSK (M = 4 

clusters), 2.2% for 16QAM (M = 16 clusters), and 1.1% for 64QAM (M = 

64 clusters).  

The rest of the paper is organized as follows. Section 2 gives an 

overview of the proposed technique and the methodology developed to 

obtain the constellation diagram dataset. Section 3 analyzes the CNN 

performance with respect to its architecture, i.e., the number and size of 

the convolutional layers, and the number of symbols/cluster. Section 4 

provides concluding remarks. 

2. OPERATION PRINCIPLE AND DATASET 

PREPARATION 

In this section, we introduce the main characteristics of CNNs and the 

key hyperparameters for model optimization. Moreover, we describe 

the simulation setup used to collect the dataset comprising images of 

complex signal constellation diagrams for QPSK, 16QAM and 64QAM at 

different OSNR levels.  

2.1 The employed CNN structures 

The proposed CNN structure used for EVM estimation is shown in Fig. 1. 

In general, a CNN consists of an input layer that receives an n-

dimensional array and a number of convolutional, pooling, and fully 

connected layers [18]. For instance, ordinary digital images (composed 

of red, blue and green components) are represented as a 3-dimensional 

array. Two of the dimensions represent the image in the vertical and 

horizontal directions, where each position in the array represents one 

pixel in the image. The third dimension contains the colors, where 

usually three positions represent the three color components (red, blue 

and green) of each pixel. In single-color images (e.g., grayscale), only two 

dimensions are needed (for the horizontal and vertical directions). 

CNNs have been successfully applied to image recognition problems 
in many research areas [16],[18]-[21] thanks to their excellent 

capabilities of capturing spatial correlations. Each convolutional layer 

contains multiple kernels, which are used to scan the entire image (or 

feature maps) from left to right and from top to bottom to obtain the 

output feature maps. Convolutional layers generate rich feature maps 

by convolving the input image (or feature maps from previous layers) 

and filters. Filter kernels are updated during the training process. The ith 

feature map in convolutional layer l calculation can be expressed as: 𝒙𝒊𝒍 =  𝒇 (∑ 𝒙𝒋𝒍−𝟏 ∗ 𝒌𝒊,𝒋𝒍𝒎𝒍−𝟏𝒋=𝟏 + 𝒃𝒊𝒍),  (1) 

where 𝑥𝑗𝑙−1 and 𝑥𝑖𝑙  are feature maps of previous layer l-1 and current 

layer l, 𝑘𝑖,𝑗𝑙  denotes the filter kernel connecting the jth feature map in the 

previous layer with the ith feature map in the current layer, 𝑏𝑖𝑙 

represents a bias matrix, and 𝑓(∙) is the activation function. The number 

of trainable parameters grows sharply as the number of convolutional 

layers increases.  

We add max-pooling layers to grasp the main features of a certain 

region, reducing the dimensions of the feature map passed to the 

following layer. This allows us to effectively reduce the number of 

trainable parameters in the network. After the series of convolutional 

layers, the resulting n-dimensional array is transformed into a one-

dimensional array (flattened) and passed to fully connected layers. 

Finally, the output layer outputs the estimated EVM value. In our case, 

we set one neuron in the output layer indicating an EVM value with a 

linear activation function. A rectified linear unit (ReLU) is selected as an 
activation function for the convolutional and fully connected layers. The 

ReLU operation for the input x of a neutron is given as [21]: 𝒇(𝒙) = 𝐦𝐚𝐱 (𝟎, 𝒙).   (2) 

It is well known that the estimation error of a defined estimator is 

related to the model complexity. A low complexity estimator may result 

in large prediction bias and poor generalization. Conversely, a high 

complexity model may adapt too closely to the training data, while 

estimation results on the test set have a high variance [22]. Therefore, it 

is important to adjust the model structure (the number of layers and 

filters) for the proposed signal quality monitoring scheme so that the 

model obtains a good balance between training and testing estimation 

error. 

One particularity of the EVM estimation is that even small estimation 

errors are relevant. Therefore, during training, small errors should have 

a relevant contribution to the CNN updates. For this purpose, we use the 

 

Fig. 1. Schematic diagram of the CNN structure (2 convolutional layers) for EVM estimation from constellation diagrams. K denotes the kernel size, 

F is the number of filters, and S is the stride step. 
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mean squared logarithmic error (MSLE) as the error function. The 

MSLE between the true EVM (EVMt) and the estimated EVM (EVMe) can 

be expressed as: 𝑴𝑺𝑳𝑬 = 𝟏𝒌 ∑ (𝐥𝐨𝐠(𝑬𝑽𝑴𝒕𝒊 + 𝟏) − 𝐥𝐨𝐠(𝑬𝑽𝑴𝒆𝒊 + 𝟏))𝟐𝒌𝒊=𝟏  (3) 

where k represents the total number of samples. 

2.2 Simulation setup for data collection 

 

Fig. 2. Simulation setup for data collection where PRBS—pseudo-

random binary sequence, CW—continuous wave, I/Q—in-

phase/quadrature, MZM—Mach-Zehnder modulator, B2B—back-to-

back, OBPF—optical bandpass filter, DSP—digital signal processing. 

To collect the data, we set up a 32 Gbaud coherent optical system in 

VPItransmissionMaker [23] as shown in Fig. 2. The transmitter includes 

a continuous wave (CW) laser and a dual-parallel Mach-Zehnder 

modulator (MZM) driven by an In-phase/Quadrature (I/Q) driver for 
symbol mapping and pulse shaping. The pulse shaper is a root-raised 

cosine filter with a 0.15 roll-off factor. We use QPSK, 16QAM and 64QAM 

modulation formats. For each format, we simulate 219 symbols choosing 

10 OSNR values to cover the EVM range of practical interest: OSNR = [12 : 

30] dB for QPSK, OSNR = [20 : 38] dB for 16QAM, and OSNR = [26 : 44] 

dB for 64QAM, as shown in Fig. 3. These selected values ensure a BER 

below the hard-decision forward error correction (HD-FEC) threshold 

of 3.8e–3 for QPSK and below the soft-decision FEC (SD-FEC) threshold 

of 1e–2 for 16QAM and 64QAM. Figure 3 shows the modulated signal 

EVM conditions with respect to their OSNR values and the 

corresponding constellation diagrams. The true EVM values are 

computed from received symbols using the k-means clustering to 

obtain the constellation cluster centroids, which allows achieving high 
accuracy while avoiding the use of pilot symbols [24]. 

Figure 4 illustrates the dataset preparation stages. First, we define a 

number of symbols per constellation cluster (N) to plot on a diagram. 

Next, we plot constellation diagrams without fixed elements (axis boxes, 

labels and ticks) as shown in Fig. 3 (a)-(f). Then, we save L = 100 such 

images during the training period T. Later, these input images are fed to 

a CNN scheme. A smaller N corresponds to a shorter training period T 

for signal quality monitoring. We train the CNN model over the 

constellation diagrams collected during the training period. The trained 
model is then applied to estimate the EVM by using data collected 

during the observation period. The monitoring interval shown in the 

figure is set by the network management system. 

 

Fig. 4. Schematic diagram of the dataset collection. N is the number of 

symbols per cluster, M is the number of clusters in a complex signal 
constellation diagram, L is the number of constellation diagrams used 

for training. 

To explore how many symbols are enough for accurate EVM 

estimation, we generate dataset options with N = 10, 100, 300, 500 

symbols per cluster in the complex signal constellation diagram. We 

refer to this as N-symbol/cluster dataset. Each N-symbol/cluster 

dataset consists of 30 simulation scenarios (three modulation formats 

and 10 different OSNR values), and each of them contains 100 images of 

constellation diagrams accumulated during the training period. 

Therefore, each N-symbol/cluster dataset contains 3000 images and 30 

EVM labels. The training period and the observation window are set 
such that 50% and 25% of the N-symbol/cluster datasets are divided 

for training and testing, respectively. The remaining 25% of the dataset 

is used for validation during training. 
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Fig. 3. The true EVM values of simulated QPSK, 16QAM, 64QAM signals  with respect to the OSNR. (a)-(f) are the 

corresponding constellation diagrams for the end-points of the considered OSNR ranges. 
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3. RESULTS AND DISCUSSION 

We first investigate the impact of the CNN structure on the EVM 

estimation accuracy. For this purpose, the proposed monitoring scheme 

is evaluated with the dataset containing constellation diagrams of 300 

symbols per constellation cluster. We use the Adam algorithm with a 

learning rate 1e–4 as the optimizer [25]. The CNN is built using Keras 

framework and TensorFlow library [26], [27]. The python code 

together with the entire dataset used to obtain the results presented in 

this paper is available for download [28]. 

Table 1 summarizes the configurations of the tested CNN structures. 

We vary the number of convolutional layers, the number of filters and 

their kernel size. The tested CNNs consist of up to 5 convolutional layers. 

The kernel size is 3 by 3 (3,3) for all structures except Structure 6, where 

it is set to 5 by 5 (5,5). As an example, Fig. 1 shows a schematic diagram 

of one of the CNN structures that we use for EVM estimation. It 
corresponds to Structure 2. The convolutional layers are followed by 

two fully connected layers with 500 and 100 nodes, respectively. 

 

Fig. 5. The validation loss across training epochs for different CNN 

structures.  

Figure 5 shows the validation loss for the tested configurations. From 

the figure, one can see that Structures 1 to 6 converge, whereas 

Structures 7 and 8 fail to learn EVM information. Further investigation 

indicates that training these structures with mean square error (MSE) 

as the loss function would enable the network to decrease the loss over 

the epochs. The MSE is defined as: 𝑴𝑺𝑬 = 𝟏𝒌 ∑ (𝑬𝑽𝑴𝒕𝒊 − 𝑬𝑽𝑴𝒆𝒊)𝟐𝒌𝒊=𝟏 ,  (4) 

Yet, after convergence, these structures still present the worst 

performance among the structures tested, i.e., structures 7 and 8 still 

have poorer performance than structures 1 to 6. Once converged, the 

loss performance does not improve over subsequent epochs. By 

comparing Structures 1 to 6, it is observed that the loss performance 

improves with the structure complexity up to a certain extent, while a 

further increase of complexity degrades the performance. Structures 4 

and 5 ensure similarly low validation losses. However, considering the 

computational complexity, Structure 4 is more favorable as it balances 

the trade-off between the model complexity and its EVM estimation 

accuracy.  

 

Fig. 6. Mean absolute error (MAE) of the estimated EVM values for the 
300-symbol/cluster dataset with different layer configurations. The 

black solid line is the reference (Ref.) of conventional method. 

Figure 6 illustrates the estimation mean absolute error (MAE) for the 

300-symbol/cluster dataset. The MAE is defined as: 𝑴𝑨𝑬 [%] =  𝟏𝒏 ∑ |𝑬𝑽𝑴𝒕𝒊  [%] − 𝑬𝑽𝑴𝒆𝒊  [%]|𝒏𝒊=𝟏 ,  (5) 

where n is the number of images in the test dataset. For Structures 1 to 

5, the estimation MAE steadily decreases with the increase of OSNR for 

Table 1. Configuration of convolutional layers for the considered CNN structures. 

Structure Structure info. Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

1 2+2 (3,3) 
2 filters 

size (3,3) 

2 filters 

size (3,3) 
   

2 4+2 (3,3) 
4 filters 

size (3,3) 

2 filters 

size (3,3) 
   

3 8+16+8 (3,3) 
8 filters 

size (3,3) 

16 filters 

size (3,3) 

8 filters 

size (3,3) 
  

4 8+16+16+8 (3,3) 
8 filters 

size (3,3) 

16 filters 

size (3,3) 

16 filters 

size (3,3) 

8 filters 

size (3,3) 
 

5 16+16+16+8 (3,3) 
16 filters 

size (3,3) 

16 filters 

size (3,3) 

16 filters 

size (3,3) 

8 filters 

size (3,3) 
 

6 
8+16+16+8+8 

(5,5) 

8 filters 

Size (5,5) 

16 filters 

Size (5,5) 

16 filters  

Size (5,5) 

8 filters  

Size (5,5) 

8 filters  

Size (5,5) 

7 
8+16+16+8+8 

(3,3) 

8 filters  

Size (3,3) 

16 filters 

Size (3,3) 

16 filters  

Size (3,3) 

8 filters  

Size (3,3) 

8 filters  

Size (3,3) 

8 
16+16+16+8+8 

(3,3) 

16 filters  

Size (3,3) 

16 filters 

Size (3,3) 

16 filters  

Size (3,3) 

8 filters  

Size (3,3) 

8 filters  

Size (3,3) 

 



all three modulation formats. Figure 6 also shows at which conditions 

Structure 6 performance worse than Structure 4 and 5. For OSNRs 

above 30 dB, EVM of 16QAM and 64QAM signals cannot be estimated 

as accurately with Structure 6 as using Structures 4 and 5. Therefore, 

these 4-layer structures balance out the trade-off between the model 

complexity and its EVM estimation accuracy. Besides, these results 

show that the conventional EVM estimation method, shown as “Ref.” 
curves in Fig. 6, provides comparable performance for QPSK signals. 
However, its accuracy is worse for 16QAM and 64QAM signals, which 

can be explained by the higher number of clusters. As the modulation 

order increases, the CNN-based estimation has more information 

available for feature extraction and thus more accurate EVM estimation. 

In contrast, this additional information might be averaged out when the 

conventional centroid based EVM estimation is used. 

We further evaluate the deviation of the EVM estimation for the 300-

symbol/cluster dataset. In Fig. 7, we show 2-layer (Structure 1) and 4-

layer (Structure 4 and 5) CNN performance for the test dataset in terms 

of EVM deviation and its normalized value. The normalized EVM 

deviation is calculated as follows:  𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 𝑬𝑽𝑴 𝒅𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏 [%] =  𝑬𝑽𝑴𝒆 −𝑬𝑽𝑴𝒕𝑬𝑽𝑴𝒕 × 𝟏𝟎𝟎. 

(6) 

The results in Fig. 7 show that all three structures ensure below 4% 

EVM deviation, which corresponds to the normalized EVM deviation of 

15%. Since in practice BER is a more commonly used measure for signal 

quality monitoring, we select Structure 4 and the 300-symbol/cluster 

dataset to quantify the estimation accuracy under the assumption of an 

AWGN channel. The distribution of BER calculated from the estimated 

EVM is shown in Fig. 8. The solid lines are BER calculated from the true 

EVM (EVMt). For each considered combination of OSNR and modulation 
format, 25 estimations are obtained. One can see that BER fluctuations, 

observed due to the accuracy of the EVM estimation, are not significant 

enough to trigger a false alarm, especially when operating close to the 

BER threshold of a certain FEC code. Therefore, the proposed scheme 

represents an accurate tool for signal quality monitoring relying on EVM 

estimation. 

To investigate how long the observation period should be for 

accurate EVM estimation, we numerically evaluate the proposed 

scheme using datasets with 10- to 1000-symbol/cluster. We use 

Structure 4 as the best-performing structure and show its estimation 

accuracy in Fig. 9 expressed with MAE and normalized MAE. The 

normalized MAE is defined as: 𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 𝑴𝑨𝑬 [%] =  𝑴𝑨𝑬𝑬𝑽𝑴𝒕 × 𝟏𝟎𝟎. (7) 

 

Fig. 7. Estimation performance for the test dataset of 300-symbol/cluster. 

QPSK

16QAM

64QAM

(a) Structure 1 (b) Structure 4 (c) Structure 5



The normalized MAE allows us to campare the performance of the 

proposed scheme across different modulation formats and their true 

EVM values. From Fig. 9, one can observe that the estimation is more 

accurate for higher OSNRs as the symbols are located closer to a 

reference point. Yet, we see that only 100-symbol/cluster is sufficient to 

ensure a normalized MAE of 3.7% for QPSK, 2.2% for 16QAM, and 1.1% 
for 64QAM signals. Considering the order of the estimated values, such 

small errors result in a negligible EVM fluctuation that does not impact 

the system status even when operating close to the FEC limint.  

 

Fig. 8. BER calculated from the true (solid line) and estimated (+) EVMs 

for a 300-symbol/cluster dataset using the proposed CNN scheme with 

Structure 4. 

To test the performance of the proposed EVM estimation scheme for 

signal quality monitoring after a long-haul transmission, we build an 

amplified fiber-optic link using 100 km long spans of the standard 

single-mode fiber (SSMF, chromatic dispersion coefficient D = 16e-6 

s/m2, attenuation coefficient α = 0.2 dB/km, and nonlinear refractive 
index n = 2.6e-20 m2/W). As previously, we set the OSNR at the 

transmitter to 45 dB and we control it after every two to four 100 km 

spans using an optical spectrum analyzer. In such a way, we know the 

exact OSNR value at a specific point of the link where we also collect 

constellation diagrams for EVM estimation and accuracy analysis. 

Figure 10 shows how the true EVM, estimated EVM, and MAE evolve 

with the transmission distance. The proposed scheme provides a 

normalized MAE below 6.2% (QPSK), 2.6% (16QAM), and 2.8% 
(64QAM) using Structure 4 and only 100 symbols per constellation 

cluster. These results indicate that the proposed scheme achieves good 

generalization capability. However, lower errors might be achieved by 

a structure that is specialized for long-haul transmission. This will be 

addressed in further research as it deserves special attention.  

The computation time is also evaluated for Structure 4 and 

conventional approach with a computer powered by an Intel Xeon E5-

2630-v3 processor running at 2.4 GHz, 64 GB of RAM, and GTX TITAN 

Black graphics card. For the 100-symbol/cluster dataset, the inference 

time of the conventional estimation method is 11.2 ms, 14.5 ms, and 

35.7 ms for QPSK, 16QAM and 64QAM, respectively. For the proposed 

EVM estimation scheme, the inference of a single constellation diagram 

takes approximately 2.7 ms regardless of the modulation type. Such a 
fast inference time makes the proposed scheme a viable candidate for 

real-time OPM. Note that the training time for 1500 training samples (constellations) is 1400 seconds or 7 seconds per epoch but it’s done 
offline. 

 

Fig. 9. Test performance of the proposed EVM monitoring scheme 

relying on the CNN Structure 4 and datasets containing constellation 

diagrams with 10- to 500-symbol/cluster. The Ref. curves are baselines 

obtained using the conventional method applied for the 100-

symbol/cluster dataset. (a): QPSK, (b): 16QAM, (c): 64QAM. 

4. CONCLUSIONS 

A CNN-based EVM estimation scheme is proposed for signal quality 

monitoring in coherent optical communication systems. It relies on 



 

Fig. 10. True versus estimated EVM with respect to transmission 

distance. (a) QPSK, (b) 16QAM, (c) 64QAM. M denotes MAE, N—
normalized MAE. 

images of complex signal constellation diagrams fed into the low-

complexity regression model that consists of interleaved convolutional 

layers and max-pooling layers. The performance of the proposed 

scheme is validated with 32 Gbaud QPSK, 16QAM, and 64QAM signals 

at different OSNR values of practical interest. Besides, two different 

transmission configurations are tested: an optical-back-to-back, 

representing an AWGN-impaired optical channel, and a long-haul 

(>1000 km) fiber transmission, including the AWGN and fiber 
nonlinearity induced noise. The estimation accuracy is investigated 

considering CNN architecture and the number of symbols in the 

constellation diagrams. The results show that CNN structures consisting 

of 2 to 5 convolutions layers ensure the best performance in terms of the 

computational complexity and EVM estimation accuracy. Further 

increase in complexity might be inadequate for the specific problem and 

thus lead to the degradation of estimation accuracy. The 4-layer CNN 

architecture with Structure 4 (8+16+16+8 filters per layer and (3,3) 

kernel) provides the most accurate EVM estimstion regardless to the 

OSNR values in the system. For the AWGN-impaired channel, the 

normalized mean absolute error of 3.7% for QPSK, 2.2% for 16QAM, 

and 1.1% for 64QAM is achieved with only 100 symbols per cluster in 

the complex signal constellation diagram. The corresponding values for 

a long-haul fiber transmission are 6.2% for QPSK after 2000 km, 2.6% 
for 16QAM after 1500 km, and 2.8% for 64QAM after 1000 km. Such 

accuracy together with a 2.7 ms short observation period allows 

considering the proposed scheme as an enabler for intelligent optical 

performance monitoring. 
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