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Abstract—Peer-to-peer (P2P) systems show numerous advan-

tages over centralized systems, such as load balancing, scalabil-
ity, and fault tolerance, and they require certain functionality,
such as search, repair, and message and data transfer. In particu-
lar, structured P2P networks perform an exact search in loga-
rithmic time proportional to the number of peers. However,
keyword similarity search in a structured P2P network remains a
challenge. Similarity search for service discovery can signifi-
cantly improve service management in a distributed environ-
ment. As services are often described informally in text form,
keyword similarity search can find the required services or data
items more reliably.
This paper presents a fast similarity search algorithm for struc-
tured P2P systems. The new algorithm, called P2P Fast Similar-
ity Search (P2PFastSS), finds similar keys in any distributed hash
table (DHT) using the edit distance metric, and is independent of
the underlying P2P routing algorithm. Performance analysis
shows that P2PFastSS carries out a similarity search in time pro-
portional to the logarithm of the number of peers. Simulations on
PlanetLab confirm these results and show that a similarity search
with 34,000 peers performs in less than three seconds on average.
Thus, P2PFastSS is suitable for similarity search in large-scale
network infrastructures, such as service description matching in
service discovery or searching for similar terms in P2P storage
networks.
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1. INTRODUCTION

Peer-to-peer (P2P) systems have evolved from unstructured
systems like Gnutella to structured systems like Chord [21],
CAN [17], Pastry [18], or Kademlia [15], which form the basis
for distributed hash tables (DHTs). P2P systems can be used to
overcome limitations present in centralized systems. Such lim-
itations include low scalability, weak fault tolerance, and poor
load balancing. With respect to the service discovery applica-
tion domain, a key limitation is the low efficiency of service
discovery procedures for text-based service descriptions. New
algorithms and protocols in a P2P settings have to be designed
to provide functionality normally found in centralized sys-
tems.

The most basic operations in a DHT are get(key) and
put(key, value). Data is stored in a DHT by applying a hash
function to the key and calling the put method. A search is
performed using the get method. The same hash function is
applied to the query. The benefit of using a structured P2P

system is that a key lookup typically requires O(log n) routing
steps, where 7 is the number of peers in the system. However,
DHTs have limited support for similarity search, because cal-
culating a hash function on similar keys results in different
hash values. DHT-based systems lack support for similarity
search using the edit distance metric. Existing solutions are
limited to n-gram based substring searches [2] and IR-type
ranking based on the Jaccard coefficient [5].

The main contribution of this paper is a content-based full-
text fast similarity search algorithm, called P2PFastSS, which
uses the edit distance metric and is applicable to the service
discovery domain. The edit distance [13] is the minimum
number of operations required to transform one string into
another, using the operations: deletion, insertion, and replace-
ment. The proposed algorithm can be used on top of any DHT,
since it uses only the basic operations get and put. Thus,
P2PFastSS enables a peer to search for a similar keyword in
any text-based content, such as texts, service descriptions, or
abstracts. In the following, the term document refers to a ser-
vice or data description. It is assumed that these documents are
stored randomly on peers and are indexed either by the peer
storing the document or by the peer sending the document for
storage. This holds especially true for a distributed service dis-
covery environment in which multiple decentralized services
are offered independently to various service users.

P2PFastSS returns documents that contain similar key-
words, with ranking based on the edit distance. This means
that documents, such as textual service or data descriptions
containing an exact occurrence of a word, are returned first,
then the documents containing the keyword with one insert,
delete or replacement, and then other documents, ordered by
the edit distance of the search term and words in the docu-
ment. Such searches can be applied to a variety of documents,
where the spelling of the query term is not known, or may
have been changed due to poor transcription or multilingual
context.

A potential example of use is, as mentioned, service discov-
ery based on service descriptions. Beside using a centralized
architecture, UDDI [23], RMI [11], or Corba [8] use a method
name lookup for service discovery. However, if this method
name is only known approximately or if it is misspelled, the



service is not found. The key benefit of using P2PFastSS is
that services can also be found by searching in service descrip-
tions, e.g., in the documentation tag defined in WSDL [7],
even in the case of misspelled search queries.

With respect to related work in similarity search, several
recent papers propose to change the routing scheme or to build
a new topology in order to support similarity searches, see [3],
[4], and [22]. In contrast, P2PFastSS does not need to change
the topology or the routing to search for similar keys using the
edit distance metric. Therefore, P2PFastSS can be applied to
any DHT.

Performance analysis and experimental evaluations show
that the approximate keyword search P2PFastSS, which is
based on text indexing, requires O(log n) time and communi-
cation messages where n is the number of peers, while the
indexing of a word requires O(log n) time and communication
messages. Time measurements on PlanetLab show that both
the similarity indexing and similarity search perform in less
than three seconds on average.

The remainder of the paper is structured as follows. Section
2 presents related work and Section 3 introduces P2PFastSS.
While Section 4 provides the theoretical analysis, Section 5
shows the implementation and experimental evaluation. Sec-
tion 6 presents a discussion and conclusion.

II. RELATED WORK

A naive approach to similarity searching is to use broadcast-
ing or flooding based P2P networks. Each peer in the network
will receive the query and can locally execute a pattern match-
ing algorithm. However, broadcasting or flooding typically do
not scale well. This section describes the algorithms related to
similarity search and related work that addresses scalability
issues.

A. Similarity Search Algorithms

The edit distance [13] is the minimum number of opera-
tions required to transform one string into another. An opera-
tion is either an insertion, a deletion, or a replacement. The
edit distance is calculated using dynamic programming (DP)
in O(pq) time where p and g are the lengths of strings being
compared. For example, the edit distance between house and
mouse is 1 because the minimum operation to transform Aouse
into mouse is to replace s with m.

N-grams [14] are created by sliding a window of length n
over the data and storing the content and position of all win-
dows. N-grams can be used in similarity searching based on
matching grams. A high number of matching grams suggests
high similarity. It is possible to use the edit distance metric
with n-grams. However, if the edit distance is large and the
word length is short, n-grams fail to efficiently find similar
data. N-grams can be used with a global metric, such as cosine
similarity, which finds similar terms in a very efficient man-
ner. However, as the metric is global in the cosine similarity,
the edit distance metric cannot be applied.

FastSS [6] performs a similarity search using the edit dis-
tance metric and is faster than DP. However, the data has to be
indexed beforehand. Given a constant word length and edit

distance, FastSS finds similar words in O(log d), where d is
the dictionary size. FastSS uses a deletion neighborhood to
lookup similar data. In contrast to n-grams, FastSS performs
well if the word length is small. Fig. 1 shows an example of
FastSS. The deletion neighborhood of the right hand side word
(fest) has been indexed beforehand, while on the left hand side
the deletion neighborhood of fest, which is the query, is
shown. The algorithm will return an edit distance of 1 as the
neighbor est is shared.

1234 1234
testE%f st
Deletion of position 1 es t‘H S t‘
Deletion of position 2 t S t f S t
Deletion of position 3 te t fe t

Deletion of position 4 teS feS

FastSS example, transformation from test to fest

Positions:

Fig. 1.

B. P2P Algorithms: Distributed Hash Table

Distributed hash tables (DHTs) as in Chord [21], CAN [17],
Pastry [18], and Kademlia [15] introduce structures into a P2P
network. In a structured network, a query is not forwarded to
all peers as in a broadcasting or flooding based P2P system,
but to a selected set of peers. This selection process uses an
overlay structure which defines a closeness metric. A DHT
provides the operations get(key) and put(key,value), and typi-
cally performs in O(log n) routing steps. However, DHTs do
not support exhaustive similarity searching.

C. P2P Similarity Search Algorithms

Table I summarizes the related work with regard to the fol-
lowing three dimensions: structuring, search paradigm, and the
type of indexing. EK stands for exact keyword, TK for top-k
(or k nearest neighbor), RQ for range queries, SUB for sub-
string, AK for approximate keyword, IR for information
retrieval based on variants of the Jaccard coefficient, and PT
for prefix tree.

TABLE I
RELATED WORK CATEGORIZATION
Structure Search Indexing
Gnutella 0.6 [10] Ultra peers EK on none
several terms
Pier [9] DHT EK, RQ PT
P-Grid [1], DHT EK, SUB, PT
AlvisP2P [20] RQ, IR
LSH forest [5] DHT (P- IR PT
Grid)
pSearch [22] DHT (CAN) IR Rolling index
Aekaterinidis et DHT EK, SUB, None/n-
al. [2] AK grams
SWAM [4] SWAM-V EK, RQ, TK SWAM-V




TABLE I
RELATED WORK CATEGORIZATION

Structure Search Indexing
Karnstedt et al. DHT EK, SUB, N-grams,
[12] RQ, AK vertical
partition
Litwin et al. [14] none EK none
Batko et al. [19] DHT Metric space VPT, GHT,
search MCAN, M-
Chord
Ahmed et al. [3] Lattice Pattern Bloom filter
Pattern matching,
matching AK, SUB
P2PFastSS DHT AK Deletion
neighborhood

Gnutella 0.6 [10] is a file sharing system which uses a hier-
archy of leaves and ultra peers who hold knowledge required
for searching on sets of keywords. It is known to be unable to
find rare data items, and other approaches like Pier [9] rem-
edy this by combining DHT with prefix trees which index
keys of varying length and can support range queries by either
walking along the leaves in a range, using leaf pointers, or by
first finding a prefix shared by a range and then finding all
children reachable via the prefix. A special path query primi-
tive is used by Pier to locate nodes based on a prefix string.
Similarly, P-Grid [1] uses prefix trees and, later, AlvisP2P [20]
offers full IR functionality, based on selected posting lists.
LSH Forest [5] uses P-Grid and focuses on optimizing the per-
formance of text indexing by developing further the locally-
sensitive hashing technique, particularly for skewed data dis-
tributions. The actual solution includes using several overlays
with various hash function combinations, treated as a forest.
pSearch [22] uses latent semantic indexing to cluster nodes in
the network and deliver better IR searching via a better local-
ity of similar answers.

Beside IR type matching, keyword, range, top-k, and sub-
string matching are relevant in P2P. Recent work by Aekater-
inidis and Triantafillou [2] extends their previous solutions
and examines the use of PastryStrings and DHTs in substring
matching, based on a subdivision of a query into all possible
substrings and querying for those, or, alternatively, querying
for n-grams which are substrings of length » which can be
indexed in a DHT. N-grams lead to lots of network traffic
while query splitting methods offer tradeoffs between space
and traffic, with no method being a clear winner. SWAM [4]
focuses on EK, RQ and TK queries, and uses a Voronoi-dia-
gram based graph network overlay (SWAM-V) to express
similarity between items held in the network. It appears that in
networks with high churn SWAM-V might not be as effective
as in more static scenarios. Karnstedt et al. [12] address the
issue of complex queries (EK, SUB, RQ) in the P-Grid based
DHT. They split relational tables vertically, to support richer
predicates including attribute values, and index those in a

DHT. They also use an n-gram index to provide approximate
string search. The authors find that n-grams are appropriate for
searching in long descriptions, but not in short words, which
results from the fact that to assess similarity, one compares the
number of shared n-grams between the query and target, and
takes into account both target and query lengths. Thus, for
short strings and short targets this approach is not effective.
Litwin and colleagues [14] offer a new string searching
approach which uses no indexing, but encodes strings using
algebraic signatures on n-grams. This ensures data privacy,
but still incurs a large cost in string searching, which is faster
than other approaches, but will be slower than indexing. Batko
et al. [19] analyze the performance of multidimensional index-
ing in P2P. As this type of indexing incurs cost linear in the
size of the data set, distributed search offers performance
gains via parallelization. They test the performance of search
in several scenarios, and conclude that none of the methods
they tested is a clear winner. Ahmed et al. [3] describe a dis-
tributed pattern matching technique. They support flexible
queries such as partial keywords and multiple keywords. The
routing algorithm is based on Bloom filters. The search speed
is comparable to a DHT and its time is logarithmic in the num-
ber of peers.

D.Comparison with other Approaches

Apart from P2PFastSS, a P2P search based on the edit dis-
tance can be built using concepts presented in Ahmed et al.,
Karnstedt et al., and Aekaterinidis et al. However, the later
two approaches do not work efficiently with small words in
distributed systems, as pointed out by [12] and studied by [6]
in centralized systems. The first approach has defined its own
routing based on Bloom filters. The advantage of P2PFastSS
is the independence of the routing algorithm, as P2PFastSS
can use any DHT.

III. DESIGN OF P2PFASTSS

P2PFastSS finds text documents containing keywords simi-
lar to the ones included in the search query. Similarity in
P2PFastSS is defined as the edit distance k& between key-
words. In the following sections the term node is used in the
context of P2PFastSS synonymously with the term peer.

The key requirements of the design are as follows.

(A) The insertion of a keyword location tuple in O(log n) time
and communication messages, where n is the number of
nodes.

(B) The removal of a keyword location tuple in O(log n) time
and communication messages.

(C) The retrieval of similar keywords under the edit distance
metric in O(log n) time and communication messages.

P2PFastSS is built on top of a structured P2P network in
order to achieve a lookup time logarithmic in the number of
nodes. The algorithm is split into two phases. In the first phase
the document is stored and indexed, while in the second phase
the similarity search is performed.



A. Indexing and Storing (First Phase)

In the first phase documents in P2PFastSS are stored using
the DHT operation put(key, value). The key of the document is
the hash of the document title. The value of such an entry is
the document itself (see Table II).

All words included in the document need to be indexed
before a similarity search can be performed. Indexing is per-
formed using the following steps.

1) All words in the document are identified.

2) A deletion neighborhood is generated for all words in the
document.

3) All neighbors are stored with a reference to the docu-
ment IDs in which the word appears, using the operation
put(key, value). As words may appear in many documents, a
key can hold multiple values (a list of references).

The method P2PFastSS index in Fig. 2 shows this index-
ing procedure in pseudo code. The deletion neighborhood is
generated by the method precalculate which takes the edit dis-
tance k as an argument..

P2PFastSS index(String text)
StringList words=split (text)
DHT.put (genkey (text) , text)
StringList pVariants = precalculate (words, k)
for pMatch in (pVariants) ({

DHT.put (getkey (pMatch) , (pMatch, genkey (text))

}

}

Fig. 2. P2PFastSS pseudo code for indexing

In the following example, keys and values of index entries
are shown. Table II shows the keys and values of a node’s doc-
ument table. Table III shows keys and values of a node’s key-

TABLE 11
DOCUMENT INDEX EXCERPT OF NODE 0X1235

Title (Key) Document (Text)

Albedo (Doc ID: 0x123) The albedo of an object ...

Achilles (Doc ID: 0x132) In Greek mythology, Achilles ...

Paper (Doc ID: 0x238) Paper is a commodity of thin ...

Testing (Doc ID: 0x321) This test aims to ...

word index, and Table IV neighborhood entries for test with
k=1. The key is determined by the hash of the document title
(Table II) or keyword (Table III). The value contains the text
(Table II), or the keyword and a reference that points to the
document (Table III). If a word appears in several documents,
it is mapped to a list of locations.

During the indexing phase P2PFastSS generates a deletion
neighborhood by using the method precalculate (see Fig. 2)
and will index all neighbors of word fest (Table IV). The mes-
sages sent by the searching node in the process of indexing
and storing a neighbor in a distributed environment are shown
in Fig. 3. Node 0x1 wants to index the deletion neighborhood
of the word test (hash 0x563), which points to the document

TABLE III
KEYWORD INDEX EXCERPT OF NODE 0x1235

Keyword (Key) Resource and Location
object (hash 0x424) object, Doc ID: 0x123...
pper (hash 0x927) paper, Doc ID: 0x238...
piper, Doc ID: 0x641...
wter (hash 0x149) water, Doc ID: 0x583...

tes (hash 0x123) test, Doc ID: 0x321...

with ID 0x321. In messages 1 and 2, it finds the locations
appropriate for placing the index entries for the first neighbor
tes, which involves two routing queries. Then fes is stored
redundantly in message 3. Messages 1 and 2 are sent sequen-
tially, while messages 3 can be sent in parallel. This process
continues until all neighbors and the keyword are stored.

Node 0x12

&
Node 0x124 .-~

'
Node 0x1
Fig. 3. Message diagram of the indexing phase of tes (hash:0x123)
TABLE IV
DELETION NEIGHBORHOOD OF TEST, K=1
Neighbors Resource Location
tes (hash: 0x123, DocID: 0x321)
tet (hash: 0x374, DocID: 0x321)
tst (hash: 0x967, DocID: 0x321)
est (hash: 0x368, DocID: 0x321)

B. Searching (Second Phase)

The similarity search is performed in the second phase
using the following steps.

1) A node generates a deletion neighborhood from the
search keyword.

2) Every neighbor is searched for using get(key). The result
contains a document ID and the keyword. For a given &£,



neighbors with an edit distance & or larger (up to 2k) are found
[6]. Before the document is retrieved using get(key), potential
matches are confirmed using DP (see Section II) to check if
they do not exceed the given edit distance (cf. Fig. 4). This
algorithm is known as FastSSwC [6], developed by these
authors.

3) The document is retrieved with get(key) using the match-
ing document IDs found in step 2.

P2PFastSS_search(String keyword) ({
StringList result = new StringList ()
StringList pVariants = precalculate(p, k)
for pMatch in (pvVariants) ({

candidate, key=DHT.get (pMatch)
if (DP (candidate, keyword) <= 1) {
result.add (DHT.get (key))

}
}
}

Fig. 4. P2PFastSS pseudo code for searching

The message diagram for the search in a distributed envi-
ronment is shown in Fig. 5. Node 0x1 searches for the word
tesa. Before searching, P2PFastSS generates a deletion
neighborhood from fesa: (tes,tea,tsa,esa) and starts by
searching for the first neighbor fes.

The key for tes is 0x123. First, the node address is found
via messages 1 and 2. In message 3, the node containing
tes is looked up. Messages 1, 2, and 3 are sent sequen-
tially. Finally, node 0x122 returns the Doc ID, which can
then be used to retrieve the document containing the term
tes which is similar to tesa (edit distance 1).

Node 0x122
Lo -
Node 0x124 .- ..
’ ‘ Node 0x24

»
H vl
' E '
'- o :
= .

w

’ Node 0x4

Node 0x1
Message diagram of the searching phase of tes (hash:0x123)

Fig. 5.

IV. THEORETICAL ANALYSIS

The complexity of the new algorithm remains within highly
practical limits, which makes it applicable in the service dis-
covery domain with full text service descriptions. The com-
plexity of P2PFastSS is analyzed below, with respect to the

indexing, storing, and search phases. As shown below, the
complexity of P2PFastSS satisfies the requirements (A), (B),
and (C) defined in Section III.

A key driver for the complexity is the neighborhood
generation. Neighborhood generation based on deletions
has complexity O(mk) , where m is the length of a word and
k is the edit distance [6]. As P2PFastSS uses a deletion
neighborhood, a factor of m" is considered during search-
ing and indexing. As P2PFastSS is based on a DHT, the
complexity of the DHT operations get and put are typi-
cally O(log n), where n is the number of nodes in the net-
work.

A. Indexing and Storing Complexity

The index is distributed in the DHT. Let w be the number of
words in a document, and each word be stored in O(log n)
time, using the put(key, value) method. Storing all neighbors
requires m* put operations. Adding redundancy r, the storage
time and communication message complexity per word is
O(r(m*ylogn) . Thus, for all words in a document the storage
time and communication message complexity is
O(wr(m*)logn). With constant r, m, and k, indexing is per-
formed in O(log n) for each word w. Thus, requirement (A), to
insert a keyword location tuple in O(log n) time, has been met.
As the remove operation can be seen as an insert storing a null
value, requirement (B), to remove a keyword location tuple in
O(log n) time, has been met as well.

B. Search Complexity

Since the similarity search generates a deletion neighbor-
hood, O(mk) neighbors have to found in the DHT. As exact
search takes O(log n) time and communication messages in a
DHT, similarity search time and communication message
complexity is O(mklogn). So, for constant m and £, the simi-
larity search is performed in time proportional to the loga-
rithm of the number of nodes. Therefore, the requirement (C),
to retrieve all similar keywords in O(log n) time, has been met.

C. Complexity Discussion

Typically, in distributed systems operations are performed
in parallel. If indexing executes w-r-m operations in paral-
lel and the similarity search executes m" operations in paral-
lel, the similarity search and exact search perform similarly.

V. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

The implementation of P2PFastSS described below shows
that the theoretical analysis presented above is a strong predic-
tor of the experimental results produced in a distributed envi-
ronment. P2PFastSS was implemented in Java and uses a
DHT based on the Kademlia routing algorithm. The simula-
tion was run with Java HotSpot(TM) Client VM (build
1.6.0_02-b05). The tests were run on approximately 360 Plan-
etLab hosts with a controller host located at the University of
Zurich (UZH). The controller host has an Intel(R) Pentium(R)
4 CPU 3.60 GHz with 1 GB RAM.

In the experimental evaluation the edit distance & is set to 1,
as a higher value of &£ would result in a much higher overhead.
For example, if £=2, the overhead would increase by a factor



of 3.625 [6]. For language-based texts, m is constant. Words in
this experiment are defined by the regular expression [a-zA-
Z 0-9]{3,16}, which means that a word has a length between
3 and 16 characters. Such words may be textual descriptions
of a service attribute. The message time-out, necessary for
determining the maximal waiting time for message replies in a
distributed environment, was set to 4 seconds.

The implementation has been tested and validated with the
setup shown in Fig. 6. The controller host (UZH) runs a sin-
gle bootstrap node which handles the bootstrapping of all
other nodes, performs the tests, and collects measurements.

PlanetLab Host
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Fig. 6. Test-bed setup

Each PlanetLab host included up to 100 nodes, running in
parallel and totalling in up to 34,200 nodes. The architecture
of a single node is shown in Fig. 7.

Node Node

Application:
Service Discovery /
Document Search

index / search

P2PFastSS

DHT (Kademlia)

socket operations

Network

Application:
Service Discovery /
Document Search

index / search

P2PFastSS

DHT (Kademlia)

socket operations

Network

TCP/IP or UDP/IP

Node architecture in a distributed environment

Fig. 7.

In the experiments, 100 Wikipedia abstracts were indexed.
These abstracts contain in total 2,392 words with an average
word length of 7 characters. Some of these words appear mul-
tiple times, such as “the ”, while other words are unique. These
experiments produced measurements, categorized as message,
time, and storage.

A. Message Measurements

All messages exchanged (see example in Fig.3) were
counted for P2PFastSS similarity search and for exact search
for a keyword with an average word length. All searches were

carried out 50 times and an average was taken. As shown in
the theoretical analysis, the overhead introduced by
P2PFastSS is m" , which for the average word length m=7 and
k=1 produces the expected factor of 7. Fig. 8 shows the mean
number of messages and standard deviation for a keyword and
confirms the overhead factor of 7. In addition, the graph
clearly shows the logarithmic behavior of search as the num-
ber of nodes grows.
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Fig. 8. Mean number of messages for a similarity and exact search, word

length 7
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Fig. 9. Mean number of messages per keyword for similarity and exact

indexing

All messages exchanged in the indexing phase were
counted for P2PFastSS similarity indexing and exact index-
ing. Fig. 9 shows the mean number of messages and standard
deviation for indexing a keyword. As all words were indexed,
m is between 3 and 16, which explains the high value for the
standard deviation, as short words require fewer messages.
The average is based on 2,392 indexed keywords. With a
lower redundancy factor for similarity indexing (r=4), and
r=>5 for exact search, the overhead here is lower. For a word of
length m=7, the overhead is 5.6 (7 times 4/5). This graph con-



firms the relationship between the predicted and observed
message levels.

B. Time Measurements

As mentioned in the complexity discussion, in a perfect sys-
tem using parallel execution, the exact search and similarity
search perform similarly with respect to the search time. How-
ever, in PlanetLab this is not exactly the case, since real-world
factors, such as the current load on the host, availability, and
latency, have to be considered. Fig. 10 shows execution times
and the standard deviation for similarity search and exact
search. Lookup times lie between 0.55 and 11.62 s for the sim-
ilarity search, and for the exact search they range from 0.20 to
4.54 s, which shows high variability due to real-world condi-
tions.
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Fig. 10.

The indexing time and standard deviation show a similar
picture in Fig. 11. The values lie between 0.67 and 16.99 s for
similarity indexing, and for exact indexing they range from
0.18 to 15.94 s. This shows that the storage operation is slower
than searching, since keywords are stored with the redun-
dancy factor , which increases the number of messages that
have to be exchanged
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Fig. 11.

During all experiments PlanetLab hosts had a load average
of 9.9, which means that 9.9 processes requested 100% of the
CPU time at any given time. Host availability decreased dur-
ing the experiment. At the beginning 382 hosts participated,
while towards the end there were only 342 hosts available. As
a consequence, time measurements were higher, because
unavailable hosts are detected by time-outs only. The differ-
ence in these time measurements between the similarity search
and indexing as well as exact search and indexing is a result of
the high average load, lack of availability, or high latency.

C. Storage Measurements

Storage usage is shown in Fig. 12. The number of key-
words per node decreases as more nodes participate in the P2P
network. This is expected, since the data is distributed on an
increasing amount of nodes with a constant redundancy
factor r.
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Fig. 12. Storage usage for similarity and exact indexing

VI. DISCUSSION, CONCLUSION, AND FUTRE WORK

P2PFastSS offers similarity search based on the edit dis-
tance model, a type of search which is not efficiently sup-
ported by other solutions which are based on n-grams and
cannot support queries on short keywords, as pointed out by
[12]. P2PFastSS uses the Kademlia routing algorithm, how-
ever, it can be used on top of any P2P network, as it is inde-
pendent of the DHT. This type of search provides a valuable
alternative in service discovery, since full text-based discover-
ies for service descriptions will become more and more impor-
tant in the future.

The experimental results show that a similarity search in a
P2P network using the edit distance 1 is only 1.5 times slower
than an exact search, while the message overhead is about
seven times that of exact search. This difference is due to the
benefits of distributed parallel computation. As P2PFastSS
uses DHT operations in parallel, the measurements do not
reflect isolated DHT operations. In effect, P2PFastSS per-
forms a similarity search in less than 3 s with more than
34,000 nodes. The indexing process was carried out by a boot-
strap node, to enable the collection of statistics, but in practice



it can be performed in a distributed manner, to improve perfor-
mance.

All experiments described here used a set of Wikipedia
abstracts, but similar results are expected with service descrip-
tions in a service discovery scenario, if service descriptions
and the abstracts have similar text length. Current results show
that searches with edit distance 1 can be efficiently supported
with P2PFastSS, since larger edit distances introduce a higher
overhead. For example, storing a word with average word
length of 7 and edit distance 2 would produce 3.625 times
more messages than using edit distance 1. Further work will
examine the performance of other FastSS variants and com-
pression in data storage, as well as the use of other DHT over-
lay networks.

In summary, this paper demonstrates that P2PFastSS pro-
vides effective similarity search for text-based content in a
timely and scalable manner, and warrants further investiga-
tion.

Future work will address the distribution of the load during
the indexing process, which will improve the indexing time.
Another important issue for future work is multiple keyword
search and ranking. While a multiple keyword search can be
implemented as multiple similarity searches, the ranking may
be done based on service popularity or some other criteria,
chosen dynamically. P2PFastSS will soon be deployed for
service discovery with XML based service description, and the
indexing framework will be integrated with other P2P
networks.
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