
Fast Similarity Search in the Presence of Noise, Scaling, and

Translation in Time-Series Databases

Rake& Agrawal King-lp Lin* Harpreet S. Sawhney Kyuseok Shim

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120

Abstract

We introduce a new model of similarity of time se-

quences that captures the intuitive notion that two
sequences should be considered similar if they have
enough non-overlapping time-ordered pairs of subse-

quences thar are similar. The model allows the am-

plitude of one of the two sequences to be scaled by any
suitable amount and its offset adjusted appropriately.
Two subsequences are considered similar if one can be

enclosed within an envelope of a specified width drawn

around the other. The model also allows non-matching

gaps in the matching subsequences. The matching sub-

sequences need not be aligned along the time axis.

Given this model of similarity, we present fast search

techniques for discovering all similar sequences in a set

of sequences. These techniques can also be used to

find all (sub)sequences similar to a given sequence. We

applied this matching system to the U.S. mutual funds
data and discovered interesting matches.

1 Introduction

Time-series databases naturally arise in business as
well as scientific decision-support applications. The

capability to find time-sequences (or subsequences)

that are “similar” to a given sequence or to be able
to find all pairs of similar sequences has several

applications, including [l] [lo]:

‘Current Address: Department of Computer Science,
University of Maryland, College Park, Maryland.

Permiasion to copy without fee all 01 part of this ma-
terial is granted provided that the copies are not made OT

distributed for direct commercial advantage, the VLDB copy-
right notice and the title of the publication and its date ap-
pear, and notice is given that copying is by permission of the

Very Large Data Base Endowment. To copy otherwise, OT

to republish, requires a fee and/or special permission jTom
the Endowment.

Proceedings of the 2lst VLDB Conference
Ziiricb, Switzerland 1995

l Identify companies with similar pattern of growth.

l Determine products with similar selling pat-
terns.

l Discover stocks with similar price movements.

l Find portions of seismic waves that are not
similar to spot geological irregularities.

In [l], an indexing structure was proposed for
fast similarity searches over time-series databases,

assuming that the data aa well as query sequences
were of the same length. They use the Discrete
Fourier Transform (DFT) to map a time sequence

to the frequency domain, drop all but the first few
frequencies, and then use the remaining ones to in-
dex the sequence using a R*-tree [3] structure. This
work was generalized in [lo] to allow subsequence
matching. Data sequences could now be of differ-
ent lengths and the query sequence could be smaller
than any of the data sequences. They use a sliding
window over the data sequence, map each window
to the frequency domain, and save first few frequen-

cies. Thus, a data sequence is mapped into a trail in
the feature space. The trails are divided into sub-

trails, which are then represented by their minimum

bounding rectangles, which in turn are stored in a
R*-tree to answer queries.

This earlier work, while pioneering, has the
following limitations for employing it in practical

applications:

l The similarity measure used is the Euclidean

distance between the subject sequences. This

distance measure can be quite sensitive to a few
outliers.

l The problems of amplitude scaling and offset
translation have not been addressed. Consider

490

(1) Original Sequences
Sequo”eD s

(3) Offset Translation

seq--s Y---l

(2) Removing Gap

(4) Amplitude Scaling

Figure 1: Illustration of sequence matching

the price history of two stocks: one fluctuating sequences thar are similar. We allow the amplitude
around $10 and the other around $75. Proper of one of the two sequences to be scaled by any suit-
amplitude scaling and offset translation is nec- able amount and its offset adjusted appropriately.
essary before determining if the two sequences For testing the similarity of two subsequences, we
are similar. A straightforward global scaling check if one lies within an envelope of a specified

will make the method very sensitive to the scale width around the other, ignoring outliers. The

points used, particularly if they happen to be matching subsequences need not be aligned along

outliers. the time axis.

l The problem of ignoring unspecified portions
of sequences while matching sequences is not

addressed.

Our contribution We propose a new model of
similarity of time sequences that addresses the

above concerns and present fast search techniques
for discovering similar sequences. Informally, we

consider two sequences to be similar if they have
enough non-overlapping time-ordered pairs of sub-

Figure 1 captures the intuition underlying our

similarity model. To determine whether two
sequences S and T (1) are similar, we ignore small
non-matching regions (called gaps) in S and T (2),
translate the offset of T to align it vertically with

S (3), scale the amplitude of T (4) so that each of
the two subsequences of T lie within an envelope

of a specified width around the two corresponding

subsequences of S. Since, this condition holds (5)
and the total length of gaps is small compared to the
total length of sequences, S and T are considered

491

similar.

We wish to handle a large number of long (say, 5
years of daily data) sequences. Our primary focus
is a data mining environment [2] in which the user
wishes to find all similar time sequences in a given
set of sequences. We would also like to be able
to find all similar subsequences that match a given
sequence. The user should be able to vary at run-
time various similarity parameters such as the width
of the envelope, tolerance to outliers, etc., while
maintaining efficiency of matching.

Our matching system consists of three main
parts: (i) “atomic” subsequence matching, (ii) long
subsequence matching, and (iii) sequence matching.
The basic idea is to create a fast, indexable
data structure using small, atomic subsequences
that represents all the sequences up to amplitude
scaling and offset. We have chosen the R-tree
[12] family of structures for this representation
because arbitrary precision can be maintained
for the sequence values while still allowing for
similarities to be defined with respect to a user-
defined 6 distance in L, norm1 between the atomic
subsequences. Therefore, all atomic subsequences
matches within a distance c can be efficiently

computed. The second stage employs a fast
algorithm for stitching atomic matches to form
long subsequence matches, allowing non-matching
gaps to exist between the atomic matches. The
third stage linearly orders the subsequence matches
found in the second stage to determine if enough
similar pieces exist in the two sequences. In
every stage, the system allows for the flexibility of

user/system-defined dynamic parameters without
sacrificing efficiency.

Related Work There has been work on finding

text subsequences that approximately match a

given string [7] [17] [20] [21] [22]. Text sequences
normally consist of a few discrete symbols as
opposed to continuous numbers that makes the
similarity measures and the search methods quite

different.

Efficient indexing based matching of two and
three dimensional (2D/3D) models to their views

in images has been addressed in computer vision
and pattern recognition. Geometric hashing [14]
has been proposed aa a technique for fast indexing.

Two key features of this technique are matching

‘L, = max Ipi - qi 1 for vectors p and 4.

that is invariant with respect to certain geometric
transformations, and indexing to generate initial

hypothesis. In classical geometric hashing, typically
affine invariant coordinates for each feature in a
model shape/pattern are generated for each possible
base coordinate system. The invariant coordinates
are represented as a cell in a 2D/3D index table.
Matching repeats this process of index generation
and is based on collecting high votes for matching
indices between patterns.

However, for the application of sequence match-
ing, this classical hashing scheme is not appropriate.
Consider a typical case of 1000 sequences each of
length lOOO-10,000. In order to allow for any global
offset and scale changes a similarity invariant index
is chosen. For M sequences each with N points,
this leads to O(MN2) indices. If each dimension is
quantized into r buckets, the number of indices per

cell is of the order of w which in our example
could be anywhere between lOOO-100,000 for a r of
1000. In real situations with relatively smooth se-
quences, the indices will cluster even more in each
cell. Therefore, the matching efficiency suffers be-
cause a lot of potentially false matches may be gen-
erated. Furthermore, the quantization needs to be

fixed at the time of index generation, thus making
it hard to vary the tolerance allowed in the defini-
tion of similarity at match time. Alternatively, if
the index table is populated to take into account
the variance allowed in the definition of similarity,
the influence of each index is even more spread out
in the index table, thus further decreasing the effi-

ciency [ll].

In [6] and [7], multidimensional indexing has been
proposed as an alternative to the classical 2D/3D

geometric hashing in the context of DNA sequence
matching and visual shape matching, respectively.
The problem of inefficiency due to high saturation

of index table and false matches are alleviated

to some extent. However, the need for a fixed
quantization at table compile time is a drawback
that makes this technique inappropriate for our
application. Furthermore, the multidimensional
indexing scheme works well when the alphabet size

is small, for instance only 4 in the context of DNA

sequence matching, but the index table becomes
prohibitively large even for moderate alphabet size.

We expect large alphabet sizes in our application.
For instance, sequences with amplitude ranges from

0 to 500 will result in an alphabet size of 50 even
with a coarse quantization of 10 levels per alphabet

492

symbol.

Dynamic time warping based matching has been

another popular technique in the context of speech
processing [18], sequence comparison [9], and shape
matching [15]. This method has been used in [4]
to match a given pattern in time-series data. The

essential idea is to match one dimensional patterns
while allowing for local stretching of the time
parameterization. However, the matching process
is compute intensive at match time and cannot be
speeded up by indexing; the complexity of matching
is O(MN) given two sequences of lengths M and N.

Organization of the‘Paper The organization of
the rest of the paper is as follows. In Section 2,
we formally present our model of similarity of
time-sequences. We give our overall approach to
finding similar time-sequences using this model in
Section 3. We give detailed algorithms in Section 4.
In Section 5, we present some sample results of
similarity matches from applying the proposed

model and algorithms on the U.S. mutual funds
data. We conclude with a summary in Section 6.

2 Similarity Model

Two time sequences are said to be similar if they
have enough non-overlapping time-ordered pairs of
subsequences thar are similar. One of the two

sequences can be scaled by any suitable amount
and translated appropriately before determining its

subsequences that match the subsequences in the
other sequence. Two subsequences are considered
similar if one lies within an envelope of 6 width

around the other, ignoring outliers. These notions
are formalized below.

Notation A time sequence is an ordered set of

real values. The ith’element of a sequence S is

S[i], and a subsequence of S consisting of elements i
through j is S[a, j]. The-first element of S is referred
to as first(S) and the last element as last(S). The

length of the sequence S[i, j] is equal to j-i+l. The

relationship < defines a total order on the elements
of S with S[i] < SE] iff i < j. Two subsequences S
and T overlap iff either first(S) < first(T) 5 last(S)

or first(T) 5 first(S) < last(T). We use throughout

the L, norm as the distance measure. We assume

that the unit of time is the same across all sequences
in the database.

Sequence Similarity Time sequences S and
T are said to be t-similar if they contain non-

overlapping subsequences Sr . . . S,,, and TI . . . T,
respectively such that:

Si<SjandT~~Tj,IIi<jIm.

3 some scale A and some translation 0 so that

where N is the subsequence similarity operator
defined below. e(A(Si)) represents a scaled (A)
and translated (by 0) version of the subsequence

Si.

XL, length(si)+y‘” I length(Ti))
length(s)+length(T) 1 c.

That is, the fraction of match length to the total

length of the two sequences is above the specified
threshold [.

Depending upon the application, some changes
can be made in the above definition of similarity.
For example:

If the sequences in the database are of widely
varying lengths, one may use only the length
of the smaller sequence to test if the fractional
match length constraint is satisfied. That is,
change the condition 3 above to:

Cy=“=, length($) + Cr=“=, length(E))

2 x min(length(S), length(T)) ’ ‘*

Additional constraints may be placed on the
subsequence pairs that can contribute to the
match length of the two sequences. An example
of such a constraint could be that VT& Si and

Ti must overlap.

Subsequence Similarity The subsequence sim-

ilarity operator satisfies the following desiderata:

l Two subsequences are similar if one lies within
an envelope of a specified width e drawn around

the other.

l We should be able to ignore noise (outliers).
The atomic unit for matching is a subsequence

of length w (a windoio) in which no outlier is

allowed. After matching a window, however, a

subsequence of length up to 7 (maximum gap

size) may be ignored.

493

Figure 2: (w, y)-projection

We say that ST is a y-projection of a sequence
S if it satisfies the following two conditions: i) all
the elements in Sy are also in S and they are in
the same order; and ii) if S[i] and Sb] are the two
elements in S corresponding to the two consecutive
elements Sy[k] and Sy[k + l] in Sy , then j - i < y.

We say that SW,? is a (w, y)-projection of a se-
quence S if it is a y-projection of S and addi-
tionally if Su,y[i] and Sw,y[i + l] are such that
their corresponding elements in S are not consec-
utive, then the elements of S corresponding to

SW ,y ii - w + l] . . . SW ,r [i - l] are indeed consec-
utive. Figure 2 shows graphically the concept of
(w, y)-projection.

We say that two subsequences S and T are
(c, w, y)-similar if there exist some (w, y)-projections
?ri, 7rz such that

Vi, IT~+.‘J - ?~2T[i]l 5 E

and we write SET.

It is easy to add further application-dependent
constraints to subsequence similarity defined above.
For example, we may require that the corresponding
gaps of outliers be of equal size. It can be accommo-
dated by changing somewhat the definition of the
y-projection.

3 Approach

Our overall approach to the problem of determining
similarity of two sequences S and T is to decompose
the problem into three subproblems:

1. Atomic Matching: Find all pairs of gap-free
subsequences of length w, called windows, in S
and T that are similar.

To account for amplitude scaling and offset
translation, we normalize the sequence values
within each window W to a range (-1, +l), and

2.

form a new window i?l using the formula:

where Wmin and Wmax are the minimum and
maximum values in the window IV. Now two
normalized windows F);vr , I@2 are e-similar if

vi, lIvl[i] - W2[zg 5 E

We give in Section 4.1 a fast algorithm for this
subproblem.

Window stitching: Stitch similar windows to
form pairs of large similar subsequences.

Let S I...& and ?I... ?m be m normalized
windows of two sequences S and T, such that
i) Vi, Si and *i are similar; and ii) Vj > i, the
starting point of window j is later than that of
window i.

We can stitch Si . . . S, and ?i . . .?,,, into a
pair of similar subsequences if the following two
conditions are satisfied:

l For all windows i > 1, one of the following is
true:

- Si does not overlap S’i-i and gap between
them in S is 5 7. The same also holds for
rl;i.

- $i overlaps ;i-i with the same length d as
Ti overlaps Ti- 1.

l For all S windows, the normalization scale is
roughly equa12. The same also holds for all
windows in T.

Figure 3 shows the stitching possibilities, assum-
ing that the scaling constraint is satisfied. A
match is denoted by two bold horizontal lines
connected with a dotted line. The top diagram
shows two pairs of windows with the same over-
lap length. The middle diagram shows two pairs
of windows having gaps less than y. The bottom
diagram shows a stitched pair of similar sub-
sequences formed by combining the two condi-
tions.

Section 4.2 gives a fast stitching algorithm.

2This condition is somewhat weaker than requiring one
global scale for the whole sequence, but goes well with the
spirit of similarity. Moreover, it makes it possible to have a
fast window-stitching algorithm.

494

Figure 3: Illustration of the stitching possibilities

3. Subsequence Ordering: Find a non-overlapping
ordering of subsequence matches having the
longest match length.

Let S = (Si,Ti)...(&,Tk) be k pairs of
subsequences of S and T determined simi-
lar in the previous step. We find a subset
($1, T,I) . . . (SI,, T,,) of S such that

l Sli < Slj and Tli < Tlj, 1 5 i < j 5 m.

l The scaling used in the matching of each of
,S’li is roughly equal. The same also holds for

each of Tli.

l The total match length of this subset is
maximal in S. That is, X:1 length(&) +

CL1 length(G) is > the match length for

any other subset of S.

Section 4.3 gives a fast algorithm for this task.

4 Algorithms

We now give algorithms for the three subproblems

identified in the previous section.

4.1 Atomic Matching

In this step, we need to find all pairs of gap-
free subsequences of length w, windows, that are

similar. A straightforward brute-force approach
that compares a window with all other windows to

determine similarity will take O(N2i2) time, where
N is the number of sequences and 1 is the length of
each one. We present a better solution.

We can consider each window as a point in a w-
dimensional space and reformulate this problem as:

Given a set of points in a w-dimensional

space, find all pairs of points within a
distance of E from each other, where the

distance is defined as L, norm.

We can now use a multi-dimensional indexing

structure to store the points, and then use a self-join
algorithm to retrieve all pairs of matching windows.

For building this index, we scan each sequence
from beginning to end, extracting and normalizing
the w-dimension point corresponding to each win-
dow, and insert the normalized point in the the in-
dex. Attached with each point are i) its coordinates,
ii) the sequence-id of the corresponding sequence,
iii) the starting point of the window, and iv) the
scale and translation used to arrive at the coordi-
nate (needed at the time of window-stitching).

Considerations in choosing the index struc-
ture The following characteristics of our problem
influenced the choice of the index structure:

Dimensionality. The window sizes are typically
5-20. The index structure should be capable of

handling dimensions in this range.

Self-join. We want to be able to primarily do
self-joins over this structure, as opposed to join
between two different structures.

Data values. Since all windows are normalized

to a range (-1, +l), any point will always

have a -1 and a +l value for two of its

coordinates. Thus, many points will lie on the

same hyperplane.

We first considered using hashing, borrowing
ideas from the geometric hashing techniques for

recognizing shapes [S] [7]. Unfortunately, a static
hashing scheme, where all the hash table boundaries
have been pre-set, has the following disadvantages:

l Hashing means quantization, which implies er-

rors in precision.

495

l No matter what the interval is, for each hash
region the join algorithm will have to look
into “adjacent” hash table entries to avoid false

dismissals.

l The number of hash table entries can become
very large, making the hash table unmanage-
able.

We also considered using a grid-based index
structure (such as grid-file [13]), but decided against
it. Since our points typically have a high dimension,
the growth in the size of such a structure can
become intolerable. Moreover, because the grid-
based methods partition the space into adjacent
regions and we are doing a self-join with a non-zero
value for distance, many joins of adjacent grids will

have to be performed.

We finally settled on the R-tree3 [12] family of
multi-dimensional structures because they tend to
be more resilient to higher dimensionalities [16].
Moreover, since the R-tree based methods do not
store “dead space”, regions can have a larger
separation. This can result in fewer pages to be
joined, speeding up the join-time.

Specifically, we implemented two R-tree variants:
P-tree [3] and R+-tree [19], and specialized them

to better fit our problem. We discuss them next,
emphasizing the customizations we made in their
implementation.

R*-tree The P-tree [3] enhanced the original
R-tree in two major ways. First, ,it added the
perimeter of the bounding regions as an important

factor to the heuristics for node splitting. Second,

it introduced the notion of forced reinsert to make

the shape of the tree less dependent on the order

of the insertion. When a node becomes full, it is
not slitted immediately, but a portion of the node

is reinserted from the top level again.

Because of our definition of a window, many data

points will be lying on lower dimension hytierplanes

and these hyperplanes will have zero volume in

w-dimension. In our E-tree implementation,
therefore, we defined a new measure for deciding

which branch to take during the insertion and for

3The R-tree [12] can be viewed as an extension of the
B-tree to multi-dimensions. The R-tree is a balanced tree,
in which each node represents a region in the space. For
each parent-child pair in the tree, all the children’s regions
are within that of parent’s. The tree achieves its balance by
splitting and propagating the split upwards.

determining splits. This measure takes into account
volumes of lower dimension hyper-surfaces. For
each w-dimensional region in the tree, the measure
of the region is defined to be a w-dimensional vector
with the following values:

(w-dimension volume, sum of all w-l dimen-
sional regions’ volume, sum of all w-2 dimen-
sional regions’ volume, . . ., perimeter)

Lexicographical ordering is used to order the mea-
sures. Components of the measure are computed
on a when-needed basis.

R+-tree The R+-tree [19] imposes the constraint
that no two bounding regions of a non-leaf node
can overlap. Thus, except for the boundary
surfaces, there will be only one path to every leaf

region, which can reduce search and join costs.
However, the drawback is that when splitting an
internal node, no split axis may be found that
completely divides the bounding regions into two
non-overlapping regions, causing the split to be
propagated downwards as well as upwards. Thus,
no minimum space utilization can be guaranteed
as a downward split has to be made on a certain

coordinate, leading to uneven distribution. This in
turn leads to under-filled internal and leaf nodes,
and the tree grows faster. In range searching,
this problem may not be too significant as the

tree height grow logarithmically. However, in the
case of the similarity self-join, this problem can be
troubling as more nodes will lead to more pairs of
nodes getting joined.

We attack this problem by adopting the P-tree

reinsertion idea. Whenever a downward split results

in an under-filled leaf node (40% of the leaf), the
node is released from the tree and all the data points
are reinserted from its immediate parent. We need

not reinsert from the root as in the case of R*-tree,
as the no-overlap rule guarantees that the insertion

algorithm will traverse down the tree back to the

parent.
A problem that arises sometimes when inserting

a point in R+-tree is illustrated in Figure 4. No

matter which branch is taken, the enlargement
will introduce overlap between the regions in this
case, unless the nodes are restructured. We store
the problem points in a temporary structure and
reinsert them at a later time, with the hope
that future splitting and restructure will allow the
insertion of the problem points smoothly.

496

Figure 4: Insertion problem in R+-tree

procedure SelfJoin(node, path, c)
Input: A node, a path from the root and c.
Output: A set of pairs of points which are

within c distance.
begin
1. if (node.type = non-leaf) then {
2. forall child E node.children do

:: }
output := ,SelfJoin(child, node U path, c);

5. else {

6. output := output U cJoin(node, node, 6);
7. forall leaf E intersect(node, path, c>’ do

8. output :=~output U cJoin(node, leaf, 6);

9. 1
10. return(output);
end

Figure 5: Self-join algorithm

Self-Join algorithm The previous work on join
algorithms for the R-tree variants [5] has been
focused on the join between two different index
tress. In contrast, our application requires a self-

join that lends the opportunity to traverse the tree

more intelligently.

Figure 5 shows the the self-join algorithm we have

used in our implementation. The algorithm calls

itself recursively when the node is a non-leaf node.
At a leaf node, we join thea node with any leaf node
that has an overlapping region. We use the function
cJoin() to compute the joins within a distance c
between points in two leaf nodes. The function

idersed() determines the other leaf nodes whose

regions overlap with the given *node by traversing
the index.

The self-join algorithm must ensure that the same
two leaf nodes are not joined more than once. This
is accomplished by using an ancestor list rather
than root in the recursive call of the algorithm and

node. The function intersect0 returns only those
leaf nodes that come later in this ordering.

CPU cost is an important factor in spatial-joins
[5]. To reduce CPU cost for redundant comparisons
between points in an any two nodes, we first
screen points which lie within c-distance from the
boundary surface of other node and use sort-merge
join for those screened points.

The experiments that we performed with our
datasets showed that the performance of R+-tree
was better than R*-tree for our application.

4.2 Window Stitching

We formulate window stitching as a problem of
finding longest path in an acyclic graph.

The output of the window-matching step is
the pairs of matching windows for every pair of
sequences S and T. Construct a match graph G
as follows for each pair of S and T:

l Represent each pair of matching windows as a
vertex..’

l Draw an arc from a vertex corresponding to
match Mi = (Si, Ti) to a vertex corresponding

to match Mi = (Sj, Tj) iff

-

The starting points of both the windows in
vj are later than the starting points of their
corresponding windows in it4i. That is,

firSt(Si) < firSt(Sj) A first(Z) < first(q)

Either one of the following is true:

* The corresponding windows in the two
matches do not overlap and the gap be-

tween them is < 7. That is,

(SinSj =xflq =0) A

(firSt(Sj) - last($) < 7) A
(first(q) - last(X) 5 7)

* The amount of overlap between Sj and Si
in S is the same as the amount of overlap
between Tj and Ti in T.

l Assign label < lij, fsi, lsj, fti, ltj > to arc Mi +

Mj, where

f& = firSt(Si), ZSj = l&($j),
fti = first(Z), ltj = la&(q), and

imposing an arbitrary order on the children of each lij = (Jsj - fsi) + (Itj - ftj)

497

where the length of the arc lij represents the
total match length (including gaps)4.

Figure 6 shows the pairs of window matches
named A. . . E, and the corresponding match graph
for it. There is no edge A --, E in the graph be-
cause the maximumgap constraint is not satisfied.
Similarly, there is no edge B + F because there are
overlapping windows with unequal overlap.

Sequence S
i’Y.__,

-r==
:’ j

A!
“X.__ Ci

“. ..__,
j-J,,,..” 1 ;

.” ._., ,:
_,:’ ;E jF

i ::*:... !

Sequence T :
; ,_/

.,,F :
__, : i ‘.._, : ,,.

A-D B

\
C-E-F

Figure 6: A match graph

Consider a path P + A in B obtained by com-
posing a path P with arc A. Let the labels
of P and A be < lij, fsi,lsj, fti,ltj > and <
l:j, f s:, 1s; , ft:, lti > respectively. We define the la-
bel of P + A to be:

< ((18; - fSi) + (It; - ftj)), fSirlSi, fti,lti >

With this definition of path composition, 6 has the
property:

If for two paths P, & in G, length(P) <
length(Q) and first(P) = first(Q), then for
any arc R in Q, we have that length(P + R)

< length(& + R).

We can therefore traverse B in reverse topological
sort order and find the longest path [8], which will
correspond to the longest match.

One final detail concerns ensuring that the nor-

malization scale used is roughly the same for all the

windows in a stitched subsequence. It can be incor-
porated in the graph traversal algorithm by check-

ing that the scales for the windows corresponding
to the arc with which a path is being extended is

consistent with the scales for the windows already
a in the path.

‘Depending on the application, the definition of the
length lij can be changed to to exclude gaps in the match
length.

4.3 Subsequence Ordering

Having found pairs of similar subsequences, we
can determine the maximal length match in two
sequences using a minor variation of the window
stitching algorithm.

We again form a match graph and find the longest
path in it. The difference is that the subsequence
matches now contribute to vertices and arcs are
created using a somewhat different constraint. In

a match graph for sequences 5’ and T, an arc
from match Ali = (Si, Ti) to match Mj = (Sj, Tj)
is created iff la&(Si) < first(&) and last(Ti) <
first(Tj); i.e., if the corresponding subsequences in
Mj do not overlap with those in Mi and come later.
The length of an arc is the sum of the lengths of the
four subsequences, Si, Sj , Ti , and Tj .

In fact, this subsequence ordering step can be
combined with the window stitching step. We have

presented them as separate steps for clarity. In
addition, there are applications in which we are
interested in finding subsequences that are similar
to a given sequence. In that case, we only require
window stitching.

5 Experiments

To get the feel for the kinds of similarity matches
found by our algorithm, we experimented with the
time-series database of the closing prices of U.S.
mutual funds. The data is available from the MIT

AI Laboratories’ Experimental Stock Market Data
Server (http://www.ai.mit.edu/stocks/mf.html).

We used w = 8,, e = 0.2, and 7 = 4 in our
test. Figure 7 and Figure 8 show two of the several
pairs of similar mutual funds discovered by our
algorithm. The y-axis is the closing price of the
fund in US dollars, and z-axis gives the date for the

fund price. The data for the Harbor International
Fund, Ivy International Fund, and Fidelity Selective
Precious Metal & Mineral Fund is for the period

from July 27, 1993 to February, 3 1995, excluding

holidays and weekends (385 data points). The data
for the VanEck International Investor Fund is from
January 4, 1993 to February 3, 1995 (525 points).
The solid lines in the graphs represent the portions

of the sequences found similar by our algorithm.
The dotted lines represent the non-matching part
of the sequences.

Even if some funds are in the same group, they
do not generally perform similarly because the fund
managers maintain different portfolios. The two

498

Harbor International Fund
26 , 1

VanEck International Investor Fhnd

I I

19 1 I

0 100
TiE

300

Ivy International Fund

I I

8 ‘Z
P

0 100
TiE

300

Figure 7: Two similar mutual funds in the same
fund group

funds in Figure 7 are both international funds, but
managed by different fund managers. The funds in

Figure 8 are even more interesting. They belong to

two different groups-one is an international fund

and the other a precious metal and mineral fund.

6 Summary

We addressed the problem of sequence similarity for

applications involving one dimensional time series
data. We introduced an intuitive notion of sequence

similarity whose parameters a user can vary at run-
time, while maintaining efficiency of matching. It

is a robust measure that allows non-matching gaps,
amplitude scaling, and offset translation.

Given this similarity model, we presented fast

search techniques for discovering all similar se-

quences in a set of sequences. These techniques
can also be used to find all (sub)sequences sim-
ilar to a given sequence. Our matching system

P

LL J
“0 100 200 300 400 500

Time

Fidelity Selective Precious Metal and Mineral Fund

21 , I

20

19

16

17

16

15 .

14

13

12 1 I
0 100 200 300 400 500

Time

Figure 8: Two similar mutual funds in different fund
groups

consists of three main parts: (i) “atomic” sub-

sequence matching, (ii) long subsequence match-
ing, and (iii) sequence matching. We use the R-
tree [12] family of structures (specifically, the R+-
tree) to create a fast, indexable data structure us-
ing small, atomic subsequences that represents all
the sequences up to amplitude scaling and offset.

Therefore, all atomic subsequence matches within a

user-specified distance E can be efficiently computed
by doing an c self-join on this structure. The sec-

ond stage employs a graph algorithm for stitching
atomic matches to form long subsequence matches,

allowing non-matching gaps to exist between the
atomic matches. The third stage linearly orders the
subsequence matches found in the second stage to

determine if enough similar pieces exist in the two

sequences.

We applied our matching techniques to the
U.S. mutual funds data and discovered several

499

interesting matches. For example, we could find
funds belonging to the same category of funds that
had similar price behavior. More interestingly, we
could identify funds belonging to different fund
categories whose price movements were similar.

References

PI

PI

[31

PI

151

PI

VI

PI

R. Agrawal, C. Faloutsos, and A. Swami. Ef-
ficient similarity search in sequence databases.
In Proc. of the Fourth International Confer-
ence on Foundations of Dais Organization and
Algorithms, Chicago, October 1993. Also
in Lecture Notes in Computer Science 730,
Springer Verlag, 1993, 69-84.

R. Agrawal, T. Imielinski, and A. Swami.
Database mining: A performance perspective.
IEEE Transadions on Knowledge and Data
Engineering, 5(6):914-925, December 1993.
Special Issue on Learning and Discovery in
Knowledge-Based Databases.

N. Beckmann, H.-P. Kriegel, R. Schneider,
and B. Seeger. The R*-tree: an efficient and
robust access method for points and rectangles.
In Proc. of ACM SIGMOD, pages 322-331,
Atlantic City, NJ, May 1990.

D. J. Berndt and J. Clifford. Using dynamic
time warping to find patterns in time series. In
KDD-94: AAAI Workshop on Knowledge Dis-
covery in Databases, pages 359-370, Seattle,
Washington, July 1994.

T. Brinkhoff, H.-P. Kriegel, and B. Seeger.
Efficient processing of spatial joins using R-
trees. In Proc. of ACM SIGMOD, pages 237-
246, Washington, D.C., May 1993.

A. Califano and R. Mohan. Multidimensional
indexing for recQgnizing visual shapes. IEEE

‘lhnsaciions on Pattern Analysis and Machine
Intelligence, 16(4):373-392, 1994.

A. Califano and I. Rigoutsos. FLASH: A
fast look-up algorithm for string homology.
In Proc. of ihe 1st Internalional Conference

on Intelligent Systems for Molecular Biology,

pages 3531359, Bethesda, MD, July 1993.

B. Carre. Graphs and Networks. Claredon
Press, Oxford, 1978.

PI

PO1

WI

P21

P31

PI

P51

WI

VI

WJI

B. W. Erickson and P. H. Sellers. Recognition
of patterns in genetic sequences. In D. Sankoff
and J. B. Kruskal, editors, Time Warps,
String Edits, and Macromolecules: The Theory

and Practice of Sequence Compan’son. Addison
Wesley, MA, 1983.

C. Faloutsos, M. Ranganathan, and
Y. Manolopoulos. Fast subsequence matching
in time-series databases. In Proc. of the ACM
SIGMOD Conference on Management of Data,
May 1994.

W. E. L. Grimson and D. P. Huttenlocher. On
the sensitivity of geometric hashing. In Proc.
3rd Intl. Conf. on Computer Vision, pages
334-338, 1990.

A. Guttman. R-trees: a dynamic index
structure for spatial searching. In Proc. ACM
SIGMOD, pages 47-57, Boston, Mass, June
1984.

K. Hinrichs and J. Nievergelt. The grid file:
a data structure to support proximity queries
on spatial objects. In M. Nag1 and J. Perl,
editors, Proc. of the WG’89 (Intern. Workshop
on Graph Theoretic Concepts in Compuler
Science), pages 100-113, Linz, Austria, 1983.

Y. Lamdan and H. J. Wolfson. Geometric
hashing: A general and efficient model-based
recognition scheme. In Proc. 2nd Intl. Conf.

on Computer Vision, pages 238-249, 1988.

R. McConnell et al. \k-S Correlation and dy-
namic time warping: Two methods for tracking
ice floes in SAR images. IEEE lhnsadions on

Geoscience and Remote Sensing, 29(6):1004-
1012, 1991.

M. Otterme. Approximate matching with
high dimensionality R-trees. M.sc. scholarly
paper, Dept. of Computer Science, Univ. of
Maryland, College Park, Maryland, 1992.

M. Roytberg. A search for common patterns
in many sequences. Computer Applicaiions in
the Biosciences, 8(1):57-64, 1992.

H. Sakoe and S. Chiba. Dynamic program-
ming algorithm optimization for spoken word
recognition. IEEE %ansac2ions on Acouslics,
Speech and Signal Processing, 26:43-49, 1978.

500

[19] T. Sellis, N. Roussopoulos, and C. Falout-
SOS. The R+ tree: a dynamic index for multi-

dimensional objects. In Proc. 13th Interna-
tional Conference on VLDB, pages 507-518,
England, 1987.

[20] M. Vingron and P. Argos. A fast and sensitive
multiple sequence alignment algorithm. Com-
puter Applications in the Biosciences, 5:115-
122, 1989.

[21] J. T.-L. Wang, G.-W. Chirn, T. G. Marr,
B. Shapiro, D. Shasha, and K. Zhang. Com-
binatorial pattern discovery for scientific data:
Some preliminary results. In PTOC. of the ACM
SIGMOD Conference on Management of Data,
Minneapolis, May 1994.

[22] S. Wu and U. Manber. Fast text searching
allowing errors. Communications of the ACM,

35(10):83-91, October 1992.

501

