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Abstract 

We introduce a new model of similarity of time se- 

quences that captures the intuitive notion that two 
sequences should be considered similar if they have 
enough non-overlapping time-ordered pairs of subse- 

quences thar are similar. The model allows the am- 

plitude of one of the two sequences to be scaled by any 
suitable amount and its offset adjusted appropriately. 
Two subsequences are considered similar if one can be 

enclosed within an envelope of a specified width drawn 

around the other. The model also allows non-matching 

gaps in the matching subsequences. The matching sub- 

sequences need not be aligned along the time axis. 

Given this model of similarity, we present fast search 

techniques for discovering all similar sequences in a set 

of sequences. These techniques can also be used to 

find all (sub)sequences similar to a given sequence. We 

applied this matching system to the U.S. mutual funds 
data and discovered interesting matches. 

1 Introduction 

Time-series databases naturally arise in business as 
well as scientific decision-support applications. The 

capability to find time-sequences (or subsequences) 

that are “similar” to a given sequence or to be able 
to find all pairs of similar sequences has several 

applications, including [l] [lo]: 
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l Identify companies with similar pattern of growth. 

l Determine products with similar selling pat- 
terns. 

l Discover stocks with similar price movements. 

l Find portions of seismic waves that are not 
similar to spot geological irregularities. 

In [l], an indexing structure was proposed for 
fast similarity searches over time-series databases, 

assuming that the data aa well as query sequences 
were of the same length. They use the Discrete 
Fourier Transform (DFT) to map a time sequence 

to the frequency domain, drop all but the first few 
frequencies, and then use the remaining ones to in- 
dex the sequence using a R*-tree [3] structure. This 
work was generalized in [lo] to allow subsequence 
matching. Data sequences could now be of differ- 
ent lengths and the query sequence could be smaller 
than any of the data sequences. They use a sliding 
window over the data sequence, map each window 
to the frequency domain, and save first few frequen- 

cies. Thus, a data sequence is mapped into a trail in 
the feature space. The trails are divided into sub- 

trails, which are then represented by their minimum 

bounding rectangles, which in turn are stored in a 
R*-tree to answer queries. 

This earlier work, while pioneering, has the 
following limitations for employing it in practical 

applications: 

l The similarity measure used is the Euclidean 

distance between the subject sequences. This 

distance measure can be quite sensitive to a few 
outliers. 

l The problems of amplitude scaling and offset 
translation have not been addressed. Consider 
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(4) Amplitude Scaling 

Figure 1: Illustration of sequence matching 

the price history of two stocks: one fluctuating sequences thar are similar. We allow the amplitude 
around $10 and the other around $75. Proper of one of the two sequences to be scaled by any suit- 
amplitude scaling and offset translation is nec- able amount and its offset adjusted appropriately. 
essary before determining if the two sequences For testing the similarity of two subsequences, we 
are similar. A straightforward global scaling check if one lies within an envelope of a specified 

will make the method very sensitive to the scale width around the other, ignoring outliers. The 

points used, particularly if they happen to be matching subsequences need not be aligned along 

outliers. the time axis. 

l The problem of ignoring unspecified portions 
of sequences while matching sequences is not 

addressed. 

Our contribution We propose a new model of 
similarity of time sequences that addresses the 

above concerns and present fast search techniques 
for discovering similar sequences. Informally, we 

consider two sequences to be similar if they have 
enough non-overlapping time-ordered pairs of sub- 

Figure 1 captures the intuition underlying our 

similarity model. To determine whether two 
sequences S and T (1) are similar, we ignore small 
non-matching regions (called gaps) in S and T (2), 
translate the offset of T to align it vertically with 

S (3), scale the amplitude of T (4) so that each of 
the two subsequences of T lie within an envelope 

of a specified width around the two corresponding 

subsequences of S. Since, this condition holds (5) 
and the total length of gaps is small compared to the 
total length of sequences, S and T are considered 

491 



similar. 

We wish to handle a large number of long (say, 5 
years of daily data) sequences. Our primary focus 
is a data mining environment [2] in which the user 
wishes to find all similar time sequences in a given 
set of sequences. We would also like to be able 
to find all similar subsequences that match a given 
sequence. The user should be able to vary at run- 
time various similarity parameters such as the width 
of the envelope, tolerance to outliers, etc., while 
maintaining efficiency of matching. 

Our matching system consists of three main 
parts: (i) “atomic” subsequence matching, (ii) long 
subsequence matching, and (iii) sequence matching. 
The basic idea is to create a fast, indexable 
data structure using small, atomic subsequences 
that represents all the sequences up to amplitude 
scaling and offset. We have chosen the R-tree 
[12] family of structures for this representation 
because arbitrary precision can be maintained 
for the sequence values while still allowing for 
similarities to be defined with respect to a user- 
defined 6 distance in L, norm1 between the atomic 
subsequences. Therefore, all atomic subsequences 
matches within a distance c can be efficiently 

computed. The second stage employs a fast 
algorithm for stitching atomic matches to form 
long subsequence matches, allowing non-matching 
gaps to exist between the atomic matches. The 
third stage linearly orders the subsequence matches 
found in the second stage to determine if enough 
similar pieces exist in the two sequences. In 
every stage, the system allows for the flexibility of 

user/system-defined dynamic parameters without 
sacrificing efficiency. 

Related Work There has been work on finding 

text subsequences that approximately match a 

given string [7] [17] [20] [21] [22]. Text sequences 
normally consist of a few discrete symbols as 
opposed to continuous numbers that makes the 
similarity measures and the search methods quite 

different. 

Efficient indexing based matching of two and 
three dimensional (2D/3D) models to their views 

in images has been addressed in computer vision 
and pattern recognition. Geometric hashing [14] 
has been proposed aa a technique for fast indexing. 

Two key features of this technique are matching 

‘L, = max Ipi - qi 1 for vectors p and 4. 

that is invariant with respect to certain geometric 
transformations, and indexing to generate initial 

hypothesis. In classical geometric hashing, typically 
affine invariant coordinates for each feature in a 
model shape/pattern are generated for each possible 
base coordinate system. The invariant coordinates 
are represented as a cell in a 2D/3D index table. 
Matching repeats this process of index generation 
and is based on collecting high votes for matching 
indices between patterns. 

However, for the application of sequence match- 
ing, this classical hashing scheme is not appropriate. 
Consider a typical case of 1000 sequences each of 
length lOOO-10,000. In order to allow for any global 
offset and scale changes a similarity invariant index 
is chosen. For M sequences each with N points, 
this leads to O(MN2) indices. If each dimension is 
quantized into r buckets, the number of indices per 

cell is of the order of w which in our example 
could be anywhere between lOOO-100,000 for a r of 
1000. In real situations with relatively smooth se- 
quences, the indices will cluster even more in each 
cell. Therefore, the matching efficiency suffers be- 
cause a lot of potentially false matches may be gen- 
erated. Furthermore, the quantization needs to be 

fixed at the time of index generation, thus making 
it hard to vary the tolerance allowed in the defini- 
tion of similarity at match time. Alternatively, if 
the index table is populated to take into account 
the variance allowed in the definition of similarity, 
the influence of each index is even more spread out 
in the index table, thus further decreasing the effi- 

ciency [ll]. 

In [6] and [7], multidimensional indexing has been 
proposed as an alternative to the classical 2D/3D 

geometric hashing in the context of DNA sequence 
matching and visual shape matching, respectively. 
The problem of inefficiency due to high saturation 

of index table and false matches are alleviated 

to some extent. However, the need for a fixed 
quantization at table compile time is a drawback 
that makes this technique inappropriate for our 
application. Furthermore, the multidimensional 
indexing scheme works well when the alphabet size 

is small, for instance only 4 in the context of DNA 

sequence matching, but the index table becomes 
prohibitively large even for moderate alphabet size. 

We expect large alphabet sizes in our application. 
For instance, sequences with amplitude ranges from 

0 to 500 will result in an alphabet size of 50 even 
with a coarse quantization of 10 levels per alphabet 

492 



symbol. 

Dynamic time warping based matching has been 

another popular technique in the context of speech 
processing [18], sequence comparison [9], and shape 
matching [15]. This method has been used in [4] 
to match a given pattern in time-series data. The 

essential idea is to match one dimensional patterns 
while allowing for local stretching of the time 
parameterization. However, the matching process 
is compute intensive at match time and cannot be 
speeded up by indexing; the complexity of matching 
is O(MN) given two sequences of lengths M and N. 

Organization of the‘Paper The organization of 
the rest of the paper is as follows. In Section 2, 
we formally present our model of similarity of 
time-sequences. We give our overall approach to 
finding similar time-sequences using this model in 
Section 3. We give detailed algorithms in Section 4. 
In Section 5, we present some sample results of 
similarity matches from applying the proposed 

model and algorithms on the U.S. mutual funds 
data. We conclude with a summary in Section 6. 

2 Similarity Model 

Two time sequences are said to be similar if they 
have enough non-overlapping time-ordered pairs of 
subsequences thar are similar. One of the two 

sequences can be scaled by any suitable amount 
and translated appropriately before determining its 

subsequences that match the subsequences in the 
other sequence. Two subsequences are considered 
similar if one lies within an envelope of 6 width 

around the other, ignoring outliers. These notions 
are formalized below. 

Notation A time sequence is an ordered set of 

real values. The ith’element of a sequence S is 

S[i], and a subsequence of S consisting of elements i 
through j is S[a, j]. The-first element of S is referred 
to as first(S) and the last element as last(S). The 

length of the sequence S[i, j] is equal to j-i+l. The 

relationship < defines a total order on the elements 
of S with S[i] < SE] iff i < j. Two subsequences S 
and T overlap iff either first(S) < first(T) 5 last(S) 

or first(T) 5 first(S) < last(T). We use throughout 

the L, norm as the distance measure. We assume 

that the unit of time is the same across all sequences 
in the database. 

Sequence Similarity Time sequences S and 
T are said to be t-similar if they contain non- 

overlapping subsequences Sr . . . S,,, and TI . . . T, 
respectively such that: 

Si<SjandT~~Tj,IIi<jIm. 

3 some scale A and some translation 0 so that 

where N is the subsequence similarity operator 
defined below. e(A(Si)) represents a scaled (A) 
and translated (by 0) version of the subsequence 

Si. 

XL, length(si)+y‘” I length(Ti)) 
length(s)+length(T) 1 c. 

That is, the fraction of match length to the total 

length of the two sequences is above the specified 
threshold [. 

Depending upon the application, some changes 
can be made in the above definition of similarity. 
For example: 

If the sequences in the database are of widely 
varying lengths, one may use only the length 
of the smaller sequence to test if the fractional 
match length constraint is satisfied. That is, 
change the condition 3 above to: 

Cy=“=, length($) + Cr=“=, length(E)) 

2 x min(length(S), length(T)) ’ ‘* 

Additional constraints may be placed on the 
subsequence pairs that can contribute to the 
match length of the two sequences. An example 
of such a constraint could be that VT& Si and 

Ti must overlap. 

Subsequence Similarity The subsequence sim- 

ilarity operator satisfies the following desiderata: 

l Two subsequences are similar if one lies within 
an envelope of a specified width e drawn around 

the other. 

l We should be able to ignore noise (outliers). 
The atomic unit for matching is a subsequence 

of length w (a windoio) in which no outlier is 

allowed. After matching a window, however, a 

subsequence of length up to 7 (maximum gap 

size) may be ignored. 

493 



Figure 2: (w, y)-projection 

We say that ST is a y-projection of a sequence 
S if it satisfies the following two conditions: i) all 
the elements in Sy are also in S and they are in 
the same order; and ii) if S[i] and Sb] are the two 
elements in S corresponding to the two consecutive 
elements Sy[k] and Sy[k + l] in Sy , then j - i < y. 

We say that SW,? is a (w, y)-projection of a se- 
quence S if it is a y-projection of S and addi- 
tionally if Su,y[i] and Sw,y[i + l] are such that 
their corresponding elements in S are not consec- 
utive, then the elements of S corresponding to 

SW ,y ii - w + l] . . . SW ,r [i - l] are indeed consec- 
utive. Figure 2 shows graphically the concept of 
(w, y)-projection. 

We say that two subsequences S and T are 
(c, w, y)-similar if there exist some (w, y)-projections 
?ri, 7rz such that 

Vi, IT~+.‘J - ?~2T[i]l 5 E 

and we write SET. 

It is easy to add further application-dependent 
constraints to subsequence similarity defined above. 
For example, we may require that the corresponding 
gaps of outliers be of equal size. It can be accommo- 
dated by changing somewhat the definition of the 
y-projection. 

3 Approach 

Our overall approach to the problem of determining 
similarity of two sequences S and T is to decompose 
the problem into three subproblems: 

1. Atomic Matching: Find all pairs of gap-free 
subsequences of length w, called windows, in S 
and T that are similar. 

To account for amplitude scaling and offset 
translation, we normalize the sequence values 
within each window W to a range (-1, +l), and 

2. 

form a new window i?l using the formula: 

where Wmin and Wmax are the minimum and 
maximum values in the window IV. Now two 
normalized windows F);vr , I@2 are e-similar if 

vi, lIvl[i] - W2[zg 5 E 

We give in Section 4.1 a fast algorithm for this 
subproblem. 

Window stitching: Stitch similar windows to 
form pairs of large similar subsequences. 

Let S I...& and ?I... ?m be m normalized 
windows of two sequences S and T, such that 
i) Vi, Si and *i are similar; and ii) Vj > i, the 
starting point of window j is later than that of 
window i. 

We can stitch Si . . . S, and ?i . . .?,,, into a 
pair of similar subsequences if the following two 
conditions are satisfied: 

l For all windows i > 1, one of the following is 
true: 

- Si does not overlap S’i-i and gap between 
them in S is 5 7. The same also holds for 
rl;i. 

- $i overlaps ;i-i with the same length d as 
Ti overlaps Ti- 1. 

l For all S windows, the normalization scale is 
roughly equa12. The same also holds for all 
windows in T. 

Figure 3 shows the stitching possibilities, assum- 
ing that the scaling constraint is satisfied. A 
match is denoted by two bold horizontal lines 
connected with a dotted line. The top diagram 
shows two pairs of windows with the same over- 
lap length. The middle diagram shows two pairs 
of windows having gaps less than y. The bottom 
diagram shows a stitched pair of similar sub- 
sequences formed by combining the two condi- 
tions. 

Section 4.2 gives a fast stitching algorithm. 

2This condition is somewhat weaker than requiring one 
global scale for the whole sequence, but goes well with the 
spirit of similarity. Moreover, it makes it possible to have a 
fast window-stitching algorithm. 
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Figure 3: Illustration of the stitching possibilities 

3. Subsequence Ordering: Find a non-overlapping 
ordering of subsequence matches having the 
longest match length. 

Let S = (Si,Ti)...(&,Tk) be k pairs of 
subsequences of S and T determined simi- 
lar in the previous step. We find a subset 
($1, T,I) . . . (SI,, T,,) of S such that 

l Sli < Slj and Tli < Tlj, 1 5 i < j 5 m. 

l The scaling used in the matching of each of 
,S’li is roughly equal. The same also holds for 

each of Tli. 

l The total match length of this subset is 
maximal in S. That is, X:1 length(&) + 

CL1 length(G) is > the match length for 

any other subset of S. 

Section 4.3 gives a fast algorithm for this task. 

4 Algorithms 

We now give algorithms for the three subproblems 

identified in the previous section. 

4.1 Atomic Matching 

In this step, we need to find all pairs of gap- 
free subsequences of length w, windows, that are 

similar. A straightforward brute-force approach 
that compares a window with all other windows to 

determine similarity will take O(N2i2) time, where 
N is the number of sequences and 1 is the length of 
each one. We present a better solution. 

We can consider each window as a point in a w- 
dimensional space and reformulate this problem as: 

Given a set of points in a w-dimensional 

space, find all pairs of points within a 
distance of E from each other, where the 

distance is defined as L, norm. 

We can now use a multi-dimensional indexing 

structure to store the points, and then use a self-join 
algorithm to retrieve all pairs of matching windows. 

For building this index, we scan each sequence 
from beginning to end, extracting and normalizing 
the w-dimension point corresponding to each win- 
dow, and insert the normalized point in the the in- 
dex. Attached with each point are i) its coordinates, 
ii) the sequence-id of the corresponding sequence, 
iii) the starting point of the window, and iv) the 
scale and translation used to arrive at the coordi- 
nate (needed at the time of window-stitching). 

Considerations in choosing the index struc- 
ture The following characteristics of our problem 
influenced the choice of the index structure: 

Dimensionality. The window sizes are typically 
5-20. The index structure should be capable of 

handling dimensions in this range. 

Self-join. We want to be able to primarily do 
self-joins over this structure, as opposed to join 
between two different structures. 

Data values. Since all windows are normalized 

to a range (-1, +l), any point will always 

have a -1 and a +l value for two of its 

coordinates. Thus, many points will lie on the 

same hyperplane. 

We first considered using hashing, borrowing 
ideas from the geometric hashing techniques for 

recognizing shapes [S] [7]. Unfortunately, a static 
hashing scheme, where all the hash table boundaries 
have been pre-set, has the following disadvantages: 

l Hashing means quantization, which implies er- 

rors in precision. 

495 



l No matter what the interval is, for each hash 
region the join algorithm will have to look 
into “adjacent” hash table entries to avoid false 

dismissals. 

l The number of hash table entries can become 
very large, making the hash table unmanage- 
able. 

We also considered using a grid-based index 
structure (such as grid-file [13]), but decided against 
it. Since our points typically have a high dimension, 
the growth in the size of such a structure can 
become intolerable. Moreover, because the grid- 
based methods partition the space into adjacent 
regions and we are doing a self-join with a non-zero 
value for distance, many joins of adjacent grids will 

have to be performed. 

We finally settled on the R-tree3 [12] family of 
multi-dimensional structures because they tend to 
be more resilient to higher dimensionalities [16]. 
Moreover, since the R-tree based methods do not 
store “dead space”, regions can have a larger 
separation. This can result in fewer pages to be 
joined, speeding up the join-time. 

Specifically, we implemented two R-tree variants: 
P-tree [3] and R+-tree [19], and specialized them 

to better fit our problem. We discuss them next, 
emphasizing the customizations we made in their 
implementation. 

R*-tree The P-tree [3] enhanced the original 
R-tree in two major ways. First, ,it added the 
perimeter of the bounding regions as an important 

factor to the heuristics for node splitting. Second, 

it introduced the notion of forced reinsert to make 

the shape of the tree less dependent on the order 

of the insertion. When a node becomes full, it is 
not slitted immediately, but a portion of the node 

is reinserted from the top level again. 

Because of our definition of a window, many data 

points will be lying on lower dimension hytierplanes 

and these hyperplanes will have zero volume in 

w-dimension. In our E-tree implementation, 
therefore, we defined a new measure for deciding 

which branch to take during the insertion and for 

3The R-tree [12] can be viewed as an extension of the 
B-tree to multi-dimensions. The R-tree is a balanced tree, 
in which each node represents a region in the space. For 
each parent-child pair in the tree, all the children’s regions 
are within that of parent’s. The tree achieves its balance by 
splitting and propagating the split upwards. 

determining splits. This measure takes into account 
volumes of lower dimension hyper-surfaces. For 
each w-dimensional region in the tree, the measure 
of the region is defined to be a w-dimensional vector 
with the following values: 

(w-dimension volume, sum of all w-l dimen- 
sional regions’ volume, sum of all w-2 dimen- 
sional regions’ volume, . . ., perimeter) 

Lexicographical ordering is used to order the mea- 
sures. Components of the measure are computed 
on a when-needed basis. 

R+-tree The R+-tree [19] imposes the constraint 
that no two bounding regions of a non-leaf node 
can overlap. Thus, except for the boundary 
surfaces, there will be only one path to every leaf 

region, which can reduce search and join costs. 
However, the drawback is that when splitting an 
internal node, no split axis may be found that 
completely divides the bounding regions into two 
non-overlapping regions, causing the split to be 
propagated downwards as well as upwards. Thus, 
no minimum space utilization can be guaranteed 
as a downward split has to be made on a certain 

coordinate, leading to uneven distribution. This in 
turn leads to under-filled internal and leaf nodes, 
and the tree grows faster. In range searching, 
this problem may not be too significant as the 

tree height grow logarithmically. However, in the 
case of the similarity self-join, this problem can be 
troubling as more nodes will lead to more pairs of 
nodes getting joined. 

We attack this problem by adopting the P-tree 

reinsertion idea. Whenever a downward split results 

in an under-filled leaf node (40% of the leaf), the 
node is released from the tree and all the data points 
are reinserted from its immediate parent. We need 

not reinsert from the root as in the case of R*-tree, 
as the no-overlap rule guarantees that the insertion 

algorithm will traverse down the tree back to the 

parent. 
A problem that arises sometimes when inserting 

a point in R+-tree is illustrated in Figure 4. No 

matter which branch is taken, the enlargement 
will introduce overlap between the regions in this 
case, unless the nodes are restructured. We store 
the problem points in a temporary structure and 
reinsert them at a later time, with the hope 
that future splitting and restructure will allow the 
insertion of the problem points smoothly. 
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Figure 4: Insertion problem in R+-tree 

procedure SelfJoin(node, path, c) 
Input: A node, a path from the root and c. 
Output: A set of pairs of points which are 

within c distance. 
begin 
1. if (node.type = non-leaf) then { 
2. forall child E node.children do 

:: } 
output := ,SelfJoin(child, node U path, c); 

5. else { 

6. output := output U cJoin(node, node, 6); 
7. forall leaf E intersect(node, path, c>’ do 

8. output :=~output U cJoin(node, leaf, 6); 

9. 1 
10. return(output); 
end 

Figure 5: Self-join algorithm 

Self-Join algorithm The previous work on join 
algorithms for the R-tree variants [5] has been 
focused on the join between two different index 
tress. In contrast, our application requires a self- 

join that lends the opportunity to traverse the tree 

more intelligently. 

Figure 5 shows the the self-join algorithm we have 

used in our implementation. The algorithm calls 

itself recursively when the node is a non-leaf node. 
At a leaf node, we join thea node with any leaf node 
that has an overlapping region. We use the function 
cJoin() to compute the joins within a distance c 
between points in two leaf nodes. The function 

idersed() determines the other leaf nodes whose 

regions overlap with the given *node by traversing 
the index. 

The self-join algorithm must ensure that the same 
two leaf nodes are not joined more than once. This 
is accomplished by using an ancestor list rather 
than root in the recursive call of the algorithm and 

node. The function intersect0 returns only those 
leaf nodes that come later in this ordering. 

CPU cost is an important factor in spatial-joins 
[5]. To reduce CPU cost for redundant comparisons 
between points in an any two nodes, we first 
screen points which lie within c-distance from the 
boundary surface of other node and use sort-merge 
join for those screened points. 

The experiments that we performed with our 
datasets showed that the performance of R+-tree 
was better than R*-tree for our application. 

4.2 Window Stitching 

We formulate window stitching as a problem of 
finding longest path in an acyclic graph. 

The output of the window-matching step is 
the pairs of matching windows for every pair of 
sequences S and T. Construct a match graph G 
as follows for each pair of S and T: 

l Represent each pair of matching windows as a 
vertex..’ 

l Draw an arc from a vertex corresponding to 
match Mi = (Si, Ti) to a vertex corresponding 

to match Mi = (Sj, Tj) iff 

- 

The starting points of both the windows in 
vj are later than the starting points of their 
corresponding windows in it4i. That is, 

firSt(Si) < firSt(Sj) A first(Z) < first(q) 

Either one of the following is true: 

* The corresponding windows in the two 
matches do not overlap and the gap be- 

tween them is < 7. That is, 

(SinSj =xflq =0) A 

(firSt(Sj) - last($) < 7) A 
(first(q) - last(X) 5 7) 

* The amount of overlap between Sj and Si 
in S is the same as the amount of overlap 
between Tj and Ti in T. 

l Assign label < lij, fsi, lsj, fti, ltj > to arc Mi + 

Mj, where 

f& = firSt(Si), ZSj = l&($j), 
fti = first(Z), ltj = la&(q), and 

imposing an arbitrary order on the children of each lij = (Jsj - fsi) + (Itj - ftj) 
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where the length of the arc lij represents the 
total match length (including gaps)4. 

Figure 6 shows the pairs of window matches 
named A. . . E, and the corresponding match graph 
for it. There is no edge A --, E in the graph be- 
cause the maximumgap constraint is not satisfied. 
Similarly, there is no edge B + F because there are 
overlapping windows with unequal overlap. 

Sequence S 
i’Y.__, 

-r== 
:’ j 

A! 
“X.__ Ci 

“. ..__, 
j-J,,,..” 1 ; 

.” ._., ,: 
_,:’ ;E jF 

i ::*:... ! 

Sequence T : 
; ,_/ 

.,,F : 
__, : i ‘.._, : ,,. 

A-D B 

\ 
C-E-F 

Figure 6: A match graph 

Consider a path P + A in B obtained by com- 
posing a path P with arc A. Let the labels 
of P and A be < lij, fsi,lsj, fti,ltj > and < 
l:j, f s:, 1s; , ft:, lti > respectively. We define the la- 
bel of P + A to be: 

< ((18; - fSi) + (It; - ftj)), fSirlSi, fti,lti > 

With this definition of path composition, 6 has the 
property: 

If for two paths P, & in G, length(P) < 
length(Q) and first(P) = first(Q), then for 
any arc R in Q, we have that length(P + R) 

< length(& + R). 

We can therefore traverse B in reverse topological 
sort order and find the longest path [8], which will 
correspond to the longest match. 

One final detail concerns ensuring that the nor- 

malization scale used is roughly the same for all the 

windows in a stitched subsequence. It can be incor- 
porated in the graph traversal algorithm by check- 

ing that the scales for the windows corresponding 
to the arc with which a path is being extended is 

consistent with the scales for the windows already 
a in the path. 

‘Depending on the application, the definition of the 
length lij can be changed to to exclude gaps in the match 
length. 

4.3 Subsequence Ordering 

Having found pairs of similar subsequences, we 
can determine the maximal length match in two 
sequences using a minor variation of the window 
stitching algorithm. 

We again form a match graph and find the longest 
path in it. The difference is that the subsequence 
matches now contribute to vertices and arcs are 
created using a somewhat different constraint. In 

a match graph for sequences 5’ and T, an arc 
from match Ali = (Si, Ti) to match Mj = (Sj, Tj) 
is created iff la&(Si) < first(&) and last(Ti) < 
first(Tj); i.e., if the corresponding subsequences in 
Mj do not overlap with those in Mi and come later. 
The length of an arc is the sum of the lengths of the 
four subsequences, Si, Sj , Ti , and Tj . 

In fact, this subsequence ordering step can be 
combined with the window stitching step. We have 

presented them as separate steps for clarity. In 
addition, there are applications in which we are 
interested in finding subsequences that are similar 
to a given sequence. In that case, we only require 
window stitching. 

5 Experiments 

To get the feel for the kinds of similarity matches 
found by our algorithm, we experimented with the 
time-series database of the closing prices of U.S. 
mutual funds. The data is available from the MIT 

AI Laboratories’ Experimental Stock Market Data 
Server (http://www.ai.mit.edu/stocks/mf.html). 

We used w = 8,, e = 0.2, and 7 = 4 in our 
test. Figure 7 and Figure 8 show two of the several 
pairs of similar mutual funds discovered by our 
algorithm. The y-axis is the closing price of the 
fund in US dollars, and z-axis gives the date for the 

fund price. The data for the Harbor International 
Fund, Ivy International Fund, and Fidelity Selective 
Precious Metal & Mineral Fund is for the period 

from July 27, 1993 to February, 3 1995, excluding 

holidays and weekends (385 data points). The data 
for the VanEck International Investor Fund is from 
January 4, 1993 to February 3, 1995 (525 points). 
The solid lines in the graphs represent the portions 

of the sequences found similar by our algorithm. 
The dotted lines represent the non-matching part 
of the sequences. 

Even if some funds are in the same group, they 
do not generally perform similarly because the fund 
managers maintain different portfolios. The two 
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Figure 7: Two similar mutual funds in the same 
fund group 

funds in Figure 7 are both international funds, but 
managed by different fund managers. The funds in 

Figure 8 are even more interesting. They belong to 

two different groups-one is an international fund 

and the other a precious metal and mineral fund. 

6 Summary 

We addressed the problem of sequence similarity for 

applications involving one dimensional time series 
data. We introduced an intuitive notion of sequence 

similarity whose parameters a user can vary at run- 
time, while maintaining efficiency of matching. It 

is a robust measure that allows non-matching gaps, 
amplitude scaling, and offset translation. 

Given this similarity model, we presented fast 

search techniques for discovering all similar se- 

quences in a set of sequences. These techniques 
can also be used to find all (sub)sequences sim- 
ilar to a given sequence. Our matching system 
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Figure 8: Two similar mutual funds in different fund 
groups 

consists of three main parts: (i) “atomic” sub- 

sequence matching, (ii) long subsequence match- 
ing, and (iii) sequence matching. We use the R- 
tree [12] family of structures (specifically, the R+- 
tree) to create a fast, indexable data structure us- 
ing small, atomic subsequences that represents all 
the sequences up to amplitude scaling and offset. 

Therefore, all atomic subsequence matches within a 

user-specified distance E can be efficiently computed 
by doing an c self-join on this structure. The sec- 

ond stage employs a graph algorithm for stitching 
atomic matches to form long subsequence matches, 

allowing non-matching gaps to exist between the 
atomic matches. The third stage linearly orders the 
subsequence matches found in the second stage to 

determine if enough similar pieces exist in the two 

sequences. 

We applied our matching techniques to the 
U.S. mutual funds data and discovered several 
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interesting matches. For example, we could find 
funds belonging to the same category of funds that 
had similar price behavior. More interestingly, we 
could identify funds belonging to different fund 
categories whose price movements were similar. 
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