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Fast simulation of complicated 3D structures above lossy magnetic

media

Richard Y. Zhang, Student Member, IEEE, Jacob K. White, Fellow, IEEE,

and John G. Kassakian, Life Fellow, IEEE

Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology,

Cambridge MA, 02139, USA

A fast numerical method is presented for the simulation of complicated 3D structures, such as inductors constructed from litz or
stranded wires, above or sandwiched between planar lossy magnetic media. Basing upon its smoothness, the quasistatic multilayer
Green’s function is numerically computed using finite differences, and its source height dependence is computed using an optimal
Toeplitz-plus-Hankel decomposition. We show that a modified precorrected FFT method can be applied to reduce the dense linear
algebra problem to near-linear time, and that frequency-dependent setups can be avoided to result in a considerable speed-up.
Experimental verifications are made for a 16-strand litz wire coil, realistically modeled down to each individual strand. Results
are obtained in 2-3 hours, showing an excellent agreement to measurements, and can be used to study the impact of transposition
patterns in litz wire construction.

Index Terms—Numerical simulation, litz wire, magnetic multilayers, inductance, skin effect, integral equations

NOMENCLATURE

r Observation point located at (x, y, z).
r� Source point located at (x�, y�, z�).
ρ Cylindrical radius of the vector (r− r�):

ρ ≡
�

(x− x�)2 + (y − y�)2.
�

G
�

Multilayer Green’s function. The brackets indicate

that this is a second order tensor, i.e. a dyadic tensor.

Gfree Free-space Laplacian Green’s function; a scalar func-

tion defined in (9).
�

Gadd
�

Additional Green’s function component due to the

presence of a multilayer; a dyadic tensor function

defined in (8).

Jw The w-th component of J, where w ∈ {x, y, z}.

[A] The matrix or dyadic tensor named “A”.

Ai,: The i-th row of matrix [A].
A:,j The j-th column of matrix [A].

I. INTRODUCTION

M
AGNETIC devices for power electronics are designed

to maximize energy storage or transfer while minimiz-

ing losses. In applications where the geometry is approxi-

mately planar, the enhancement of energy storage is often

achieved by placing the conductor coil on top or sandwiched

between a magnetic multilayer media structure that serves as

the magnetic core, as illustrated in Fig. 1. To minimize losses,

the coil is often wound using some form of twisted, stranded

or litz wire conductor pattern. Devices constructed in this way

are common, and are found in applications such as planar

monolithic inductors and transformers [1]–[3] and inductive

power transfer systems [4]. Induction heating coils can also

be viewed in this manner, and in these cases the multilayer

Manuscript received June 5, 2013. Corresponding author: R. Y. Zhang
(email: ryz@mit.edu). The source code for this work is accessible at
http://web.mit.edu/ryz/www or by emailing the corresponding author.

Figure 1: Illustration of the planar multilayer systems exam-

ined within this paper.

structure is a lossy-magnetic material that also serves as the

load [5].

A fully three-dimensional numerical simulation of a litz

wire coil, complete with realistic transposition patterns, is

generally considered intractable even without the nearby mul-

tilayer media [6]–[8]. For coils in free-space, matches to

experimental data can be achieved using a variety of simplified

models, employing prior knowledge of the expected field and

current density distributions, as well as symmetry between the

strands in each bundle [6]–[9]. However, for lossy-magnetic

multilayer structures, each strand of the coil experiences a

proximity effect not only due to the nearby strands, but

also due to the multilayer structure, complicating the overall

analysis [7], [10].

In this paper, we present a general, numerical approach
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to the litz-wire over lossy-magnetic structure problem. The

objective is to realistically model the transposition pattern of

the litz wire, and the interactions between the strands and

the multilayer media, without making a priori assumptions

about field and current distributions, and without heuristics that

must be calibrated to experimental measurements. The issue

of intractable complexity is reintroduced with a numerical

approach, but we present a number of innovations in this paper

that largely overcome this challenge.

Firstly, the method avoids discretizing the surrounding free-

space and multilayer media, by the use of the multilayer

Green’s function [11]. This technique is widely used in

microelectronic and microwave applications [12]–[15], but

normally introduces a complicated Green’s function that must

be carefully evaluated with a Sommerfeld integral. In the

quasistatic limit, we show in Section III that the Green’s

function is analytic smooth, and harmonic within free-space.

Under these very special conditions, the Green’s function

can be directly evaluated to arbitrary accuracy using finite

differences, a simple, well-established numerical technique

that can be implemented with ease. Additionally, this finite

differences approach also accommodates for continuous ma-

terial variations in the ẑ-direction.

However, the multilayer Green’s function is translation-

variant along ẑ, and each finite differences solution is valid

only for a single source point height z�. To minimize the

number of finite differences solves needed to compute the

full Green’s function, and to put it in a form compatible with

the FFT, we present in Section IV an optimal Toeplitz-plus-

Hankel decomposition. By taking the values of the Green’s

function at just four carefully chosen source points z� as input,

the decomposition is able to exactly reconstruct values of

the Green’s function at all other values of z�. Convolution

with the multilayer Green’s function can then be performed in

O(n log n) using the FFT.

Finally, we extend the smoothness property of the Green’s

function to frequency sweeps of the coil impedance. Normally,

this procedure involves the use of a fast integral method (e.g.

[16]–[19]), which compresses the governing system of linear

equations and solves them iteratively. However, where the

Green’s function is frequency-dependent, the time-consuming

setup must be repeated at each new frequency. In Section V

we show that when the smooth quasistatic Green’s function is

applied to the precorrected FFT method [17], only one setup

is needed for all frequencies. This leads to a speed advantage

of more than five times when compared to the original pFFT

algorithm in Section VIII.

In Section VI, we compare the accuracy of the numerical

model to established analytical formulas. By reproducing the

governing assumptions of the analytical models, results show

that the numerical model is able to converge to 3 or more

significant figures of accuracy.

Finally, in Section VII, we apply the method to a litz wire

induction heating coil. We make measurements of all the

characteristic dimensions of the coil, then construct a realistic

model of the coil detailed down to each of its 16 individual

strands, containing 909,504 individual elements. Predictions

are made for the series inductance, resistance, and quality

factor of the coil in free-space, and 11mm below a copper

plate, computed on a workstation computer in 2-3 hours.

The results show excellent agreement with measurements to

experimental errors, and highlights the ability of the numerical

method to fully account for the coupled interactions between

the strands of the litz wire and the multilayer structure. By

realistically modeling the woven structure of the litz wire,

the simulation captures a number of subtle, geometry-sensitive

characteristics that are missed by less detailed models.

II. FORMULATION

A. Governing Equations and Problem Geometry

In the presence of magnetic, conductive material, the electric

field E is described by the magnetic diffusion equation [20]–

[22]:

∇× 1

µ
∇×E = −jω(σE+ Jexc). (1)

The formulation is constrained to inductive interactions in

order to limit the degrees of freedom considered. It is assumed

that capacitive displacement currents and charge accumulation

are both second order:

jω�E ≈ 0, ∇ · �E ≈ 0. (2)

The excitation current density, Jexc, is due to current flow

within the excitation conductors. As shown in Fig. 1, the

conductors within this paper are positioned in a mostly planar

fashion relative to the magnetic material layers, confined to

a single layer of free-space denoted as Ω0, but spaced away

from the interface planes.

Beyond the free-space layer are an arbitrary number of

layers, each with its own conductivity σ(r), permeability µ(r),
and permittivity �(r) = �0. We impose that the layer properties

are constant over x and y such that translational invariance and

isotropy can be established in these directions. No restrictions

are imposed in the z direction; it is possible for each layer

to have piecewise constant or continuously varying properties

along z.

Substituting the quasistatic assumptions in (2) and expand-

ing yields three equations for the three field components; for

the two directions transpose to the layers, w ∈ {x, y}:

∇2Ew +
1

µ

∂µ

∂z

�

∂Ew

∂z
− ∂Ew

∂w

�

− jωµσEw

= jωµJexc
w , (3)

and for the direction normal to the layers, z:

∇2Ez − jωµσEz = jωµJexc
z . (4)

At discontinuous material interfaces where ∂µ/∂z is un-

bounded, boundary conditions can be used:

E|z=ζ− = E|z=ζ+ , (5)

1

µ

�

∂Ew

∂z
− ∂Ez

∂w

��

�

�

�

z=ζ−

=
1

µ

�

∂Ew

∂z
− ∂Ez

∂w

��

�

�

�

z=ζ+

. (6)

Here, z = ζ is the interface plane.
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B. Integral Equation Formulation

To obtain the electric field, E, given a current excitation,

Jexc, the standard approach is to solve the governing equations

(3)-(6) using the finite element method [23]–[25]. Alterna-

tively, an integral equation formulation can be used to to

evaluate E from Jexc directly, as in:

E(r) = −jωµ0

ˆ

ΩC

�

G(r, r�)
�

Jexc(r�) dr�, (7)

where the integration domain ΩC is restricted to the support

of the excitation current density.

Here, the Green’s function dyadic tensor
�

G
�

is the solution

of (3)-(6) with a Dirac delta function excitation on the right

hand side in each of the three Cartesian directions, and varies

according to cylindrical radius, ρ, field point height, z and

source point height, z�. We refer the reader to [15] for a

thorough description of the general multilayer Green’s func-

tions method, and to [26], [27] for more accessible derivations

specific to the lossy-magnetic problem.

For the remainder of this paper, we decompose the Green’s

function into a singular free-space component, and an addi-

tional component caused by the presence of the magnetic-

conductive multilayer media:
�

G(r, r�)
�

=
�

I
�

Gfree(r, r�) +
�

Gadd(r, r�)
�

, (8)

where
�

I
�

is the identity dyadic tensor, Gfree is the singular,

frequency-independent free-space Green’s function:

Gfree(r, r�) =
1

4π

1

�r− r�� , (9)

and
�

Gadd
�

is named the “added Green’s function” for con-

venience. The separation of the singularity Gfree from the

Green’s function is an important part of the formulation. As

further explained throughout the remainder of this paper, the

smoothness of
�

Gadd
�

in the source layer Ω0 allows numerical

methods based on Taylor polynomial expansions to be used,

such as the finite differences method in Section III and the

modified precorrected FFT method in Section V.

From (3)-(4), it readily follows that only the x̂x̂, ŷŷ, ẑẑ,

ẑx̂ and ẑŷ components of
�

Gadd
�

are non-zero:

�

Gadd
�

=





Gadd
xx 0 0
0 Gadd

yy 0
Gadd

zx Gadd
zy Gadd

zz



 .

Technically, all five components of
�

Gadd
�

are needed to fully

account for the presence of the multilayer media. However, if

net current flow is overwhelmingly dominant in the transverse

directions, then it can be assumed that Ez ≈ 0 in the multilayer

media. This sets the following three components to zero:

{Gadd
zx , Gadd

zy , Gadd
zz } ≈ 0, (10)

reducing the dyadic
�

Gadd
�

to a single scalar component,

Gadd
xx = Gadd

yy . Substituting (8), (10) into (7) also reduces the

dyadic integral of (7) into a scalar integral:

E(r) = −jωµ0

ˆ

Gfree(r, r�)Jexc(r�)

+Gadd
xx (r, r�)

�

x̂Jexc
x (r�) + ŷJexc

y (r�)
�

dr�. (11)

Hence, the ansatz in (10) provides a considerable reduction

in complexity. For “almost-planar” problems, experimental

experience suggest that (10) is an acceptable approximation

[1], [3], [28]. Since the majority of multilayer problems have

relatively flat geometries, the method presented within this

paper was developed with (10) built in as an assumption.

Experimental results presented in Section VII confirm that

the prediction accuracy is not significantly affected for the

geometries considered in this paper.

However, where current does not overwhelmingly flow

transverse to the multilayer, e.g. in a vertically oriented coil,

all five non-zero components of the dyadic
�

Gadd
�

must be

carefully considered. These cases fall outside of the class of

problems considered in this paper.

C. Field Evaluation via Conductor Discretization

For simple conductor geometries, evaluation of the electric

field via (7) can sometimes be performed in closed form

[1], [3], [28]. For more complicated geometries, the current

density, Jexc, is first discretized into the sum of n basis

functions, as in:

Jexc(r) ≈
n
�

j=1

Ijφj(r). (12)

In this paper, we use rectangular, piecewise constant basis

functions, φj , defined as the following:

φj =

�

uj/aj r ∈ Uj

0 r /∈ Uj

, (13)

where the support of the function, Uj , is a rectangular paral-

lelepiped pointing in the direction along the unit vector uj ,

with cross-sectional area aj . Physically, each basis function

can be interpreted as a brick-shaped conductor filament, with a

constant current density that flows along its length. The vector

of discretized values, Ib = [I1, I2, . . . , In]
T , describes the

currents flowing through each of the n filaments that discretize

Jexc. This vector is also referred to as the branch currents.

The primary advantage of discretization using brick-shaped

filaments is the closed-form solutions to the singular free-

space mutual inductance integral of (21), which can be found

in [29], [30]. Clearly, the disadvantage is the “staircase ef-

fect” when attempting to model smoothly varying current

densities and current redistribution effects. The staircase ef-

fect can be mitigated by refining conductor segments along

their cross-sections [31]. It is often helpful to allocate more

sub-conductors closer to the conductor surface, for example

according to a cosine rule, as shown in Fig. 2.

Once Jexc is discretized, the electric field is obtained by

computing the contributions of each basis function via (7),

and summing the results together. Substituting (12), (13) into

(7) yields:

E(r) = −jωµ0

n
�

j=1

Ij
aj

ˆ

Uj

�

G(r, r�)
�

uj dr
�, (14)

which becomes a matrix-vector product when evaluated

at specific observation points. For example, let Ew =
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(a) (b)

Figure 2: Refinement of a conductor to simulate high-

frequency current redistribution effects and non-orthogonal

geometries. (a) Division of a square cross-section using a

cosine rule. (b) Example model of a circular cross-section.

[E
(1)
w , E

(2)
w , . . . , E

(m)
w ]T be the vector of ŵ-directional electric

fields evaluated at the observation points, pi : i ∈ [1,m]. For

each observation point, we have:

E(i)
w = ŵ ·E(pi) =

n
�

j=1

Ψi,jIj , (15)

where element (i, j) of the matrix [Ψ] ∈ C
m×n contains the

field contributions in the ŵ-direction made by the j-th basis

function, towards the i-th observation point:

Ψi,j = ŵ ·

�

−jωµ0

aj

ˆ

Uj

�

G(pi, r
�)
�

uj dr
�

�

. (16)

D. Impedance Extraction using the PEEC method

Impedance extraction is an inverse problem that solves

conductor current densities for a specified voltage difference

at the terminals. Impedance extraction can be accomplished

by the Partial Element Equivalent Circuit (PEEC) method

[32], which reformulates the electromagnetic interactions into

a circuit network model.

To begin, a voltage-drop is defined for each brick-shaped

filament, by integrating and averaging the electric field over

each basis function:

Vi = −
ˆ

φi(r) ·E(r) dr =
−1

ai

ˆ

Ui

ui ·E(r) dr. (17)

The resulting vector of discretized values, Vb =
[V1, V2, . . . , Vn]

T , is referred to as the branch voltages

vector.

Substituting the electric field superposition integral (14) into

(17) forms a dense impedance matrix, [Z] ∈ C
n×n, that relates

branch currents to branch voltages:

Vb = {[R] + jω[L]} Ib = [Z]Ib, (18)

where [R] is the diagonal branch resistance matrix, and [L] is

the dense self and mutual branch inductance matrix:

Lij = µ0

ˆ

Ui

ui

ai
·

�

ˆ

Uj

�

G(r, r�)
� uj

aj
dr�

�

dr, (19)

also referred in literature as the partial inductances matrix [32],

[33]. Substituting (11) as an expansion for (7) into (19) yields:

Lij = Lfree
ij + Ladd

ij (20)

where

Lfree
ij = C

µ0

aiaj

ˆ

Uj

ˆ

Ui

Gfree(r, r) dr� dr, (21)

Ladd
ij = D

µ0

aiaj

ˆ

Uj

ˆ

Ui

Gadd
xx (r, r�) dr� dr, (22)

and the constants C and D are:

C = ui · uj , D = ui,xuj,x + ui,yuj,y.

The singular integral (21) for the free-space mutual in-

ductance Lfree
ij has closed-form solutions when the brick-

shaped filaments Ui and Uj are parallel along their edges

in the “Manhattan geometry” [30]. In non-Manhattan cases,

the surface-to-surface procedure described in Appendix A can

be used to evaluate (21) to arbitrary precision. The explicit

evaluation of the additional inductance Ladd
ij can be avoided

altogether by the use of the precorrected FFT algorithm, as

discussed later in Section V.

The circuit model described in (18) is incomplete without

the specification of Kirchhoff’s voltage and current laws. As

noted in [34], these constraints can be enforced by introduc-

ing the mesh-analysis matrix, [M ] ∈ R
n×l, which maps n

branches to l closed loops of current (known as meshes) with

order l non-zero entries:

[M ]T Im = Ib, (23)

Vm = [M ]Vb. (24)

Here, Vm, Im ∈ R
l×1 are known as the mesh loop voltage and

current vectors. Substituting (23),(24) into (18) yields:

[M ][Z][M ]T Im = Vm, (25)

where the right-hand side Vm is zero everywhere except those

rows corresponding to terminal voltage excitations. Solving

(25) gives the terminal admittances at the corresponding rows

of Im, concluding the impedance extraction procedure.

For large problems where a direct matrix inversion is pro-

hibitively complex, (25) can be efficiently solved using Krylov

subspace iterative methods such as GMRES [35], coupled with

a suitable preconditioner. Iterative Krylov methods require

many dense matrix-vector products in (18), but these can

be performed in O(n) or O(n log n) complexity using fast

integral methods such as the fast multipole method [16], the

precorrected FFT [17], hierarchical-SVD [18] and adaptive

cross-approximation methods [19]. The interested reader is

referred to [34] for a detailed description of solving (25) using

GMRES and a series of fast matrix vector products.
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E. Matrix-vector product acceleration with the pFFT

The precorrected FFT (pFFT) is a fast method that implic-

itly forms dense matrices, such as [Z] in (18), and [Φ] in

(15), as a summation of sparse components, and evaluates

matrix-vector products with them in O(n log n) complexity.

As a fast method, its asymptotic complexity is higher than

O(n); however, for integral equations evaluated over approx-

imately homogenous volumes, it is known to be considerably

more efficient than competing methods [36]. Furthermore, as

discussed in detail in Section V, pFFT allows an efficient

treatment of a smooth multilayer Green’s function over many

frequencies with very little additional overhead.

The pFFT algorithm is well-known in [17], [36], [37],

and an application-specific summary is provided here for

completeness. Given a dense matrix, [A], the pFFT algorithm

approximates the matrix using a sum and products of sparse

matrices:

[A] = [S] + [I][H][P ], (26)

where [S] represents nearby interactions, and [I][H][P ] rep-

resents distant interactions. More specifically, each matrix in

(26) is a step in the algorithm:

1) Projection matrix [P ]m×n: Represents the integration

over n basis functions φj : j ∈ [1, n] as equivalent

weighted point sources on a regular grid of m points.

The basis function to grid projection is performed either

using a collocation scheme [17], [36] or a polynomial

interpolation scheme [37], [38].

2) Convolution matrix [H]m×m: convolves the grid of

m weighted point sources with the governing Green’s

function using the FFT, to produce potentials evaluated

on the m grid points.

3) Interpolation matrix [I]n×m: Interpolates the m grid

evaluations onto the desired evaluation points or basis

functions, again with either collocation or polynomial

interpolation.

4) Precorrected direct matrix [S]n×n: computes self- and

nearby interactions directly, and corrects for the inaccu-

rate contributions from the grid.

The sparse [S] matrix is computed once per problem and per

Green’s function, but it is none-the-less the most expensive

part of the algorithm. For each neighboring pair of basis

functions with indices i and j, the precorrected direct term

Si,j is written:

Si,j = Ai,j − Ii,:[H]P :,j ,

where Ai,j is the (i, j)-th element of the original dense matrix

[A], representing the direct interaction between the pair, and

Ii,:[H]P :,j is the precorrection, calculated by performing the

projection-convolution-interpolation procedure using the j-th

column of [P ] and the i-th row of [I]. The precorrection

step is necessary because most electromagnetic field Green’s

functions are singular at r = r�, making grid-based projection

and interpolation inaccurate for near-by interactions. Once the

[S] matrix is formed, multiplication operations with it are

inexpensive and add relatively little overhead to each matrix-

vector product operation.

III. THE MULTILAYER GREEN’S FUNCTION

Existing multilayer media Green’s function field solvers

can be grouped into two broad categories based on the

applications. Where the conductor geometries are complicated,

for example in microstrip circuits and VLSI interconnects

applications, the Green’s functions tend to be simple. The

usual practice is to analytically derive and compute the Green’s

function, and to focus efforts on reducing complexity in the

conductors [3], [12], [39], [40]. By contrast, for antennas

and scattering applications, the Green’s functions themselves

contain a great deal of complexity, including resonant and

propagation modes, surface waves, and branch cuts in the

complex domain, and most of the emphasis is placed upon

evaluating the Green’s function to high accuracy using so-

phisticated techniques [13]–[15].

The lossy magnetic multilayer media problem shares char-

acteristics with both classes of problems. On one hand, the

conductors can contain complicated geometric details, such

twisted and interwoven wire patterns, motivating the adap-

tation of fast integral equation techniques. But on the other

hand, the multilayers themselves also tend to be complex.

For example, in the induction heating of iron and steel alloys,

magnetic field penetration into the layered media may cause

orders of magnitude of continuous variation in the linearized

magnetic permeability and conductivity along the z direction

[41].

In this section, we describe a simple procedure to evalu-

ate the multilayer Green’s function numerically, using non-

uniform finite differences in the spatial domain. In addition

to the obvious appeal of simplicity, the finite differences

approach can readily accommodate continuous material vari-

ations, which is a difficult task to accomplish using piecewise

constant analytical techniques. Furthermore, error control is

easily implemented using standard finite differences adaptive

meshing techniques, and convergence is guaranteed due to the

smoothness of the underlying solution. While the approach

cannot be easily extended to the general full-wave problem

due to wave reflections at the outer boundaries [42], [43], we

show in this section that it is efficient and competitive for the

types of layered problems considered within this paper.

A. Quasistatic Added Green’s Function

Under the quasistatic limit, the added Green’s function Gadd
xx

is piecewise infinitely differentiable smooth (i.e. piecewise

C∞). This smoothness property is an important theme for this

paper, because it is the key factor that allows numerical meth-

ods based on Taylor polynomial expansions to be effective,

including the finite differences method described below, and

the polynomial projection operation in the pFFT in Section

V. In the following subsection, we provide a brief sketch to

illustrate the smoothness property, and the implied existence

and uniqueness of the solution.

Following the naming conventions illustrated in Fig. 3,

let the open domain of free-space containing the conductors

be denoted as Ω0 ⊂ R
3, and consider solving for the x̂x̂

component of
�

G
�

in (1). This yields Laplace’s equation:

∇2Gxx = −δ(r), r ∈ Ω0.
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ΩM
σM , µM

...

Ω1
σ1, µ1

Ω0
σ0 = 0, µ0

Ω−1
σ−1, µ−1

...
Ω−L

σ−L, µ−L

...

z = ζ0

z = ζ−1

z = ζ1

z = ζ2

...

z

xy

Figure 3: Notations to describe a general multilayer geometry.

Consequently, the solution Gxx is harmonic within the region

Ω0. Since Gfree is harmonic in R
3 by definition, Gadd

xx =
Gxx −Gfree must also be harmonic within Ω0. Additionally,

with the source singularity canceled out, Gadd
xx is also smooth

at its origin. Due to the strong maximum principle for har-

monic functions, Gadd
xx must attain its maximum and minimum

along the boundaries ∂Ω0.

Outside the source layer Ω0, Gadd
xx remains smooth within

each domain. Let Ωi denote the domain of the i-th piecewise

layer of the multilayer media. Within each Ωi, equation (1)

can be written in a linear differential operator form:

Lu(r) =

�

∇2 + a(r)
∂

∂z
− b(r)

�

u(r) = 0, r ∈ Ωi,

where u(r) represents the homogenous solution, and corre-

sponds to the value of Gadd
xx within that domain. The linear

operator L is a perturbed version of the Laplacian, and is

therefore elliptic. If the material properties µ and σ in each

layer are bounded and analytic, then the coefficients a and b
are also bounded and analytic. In this case, the regularity of

elliptic operators guarantees that the solution, u, will also be

analytic and infinitely differentiable within Ωi [44, p.178].

To connect the solutions in each domain, we note that the

global solution must be Lipschitz continuous, since the the

boundary conditions (5)-(6) are equivalent to a description

of local Lipschitz continuity for finite values of µ, and

the solution is infinitely differentiable elsewhere. Then, by

applying the Picard–Lindelöf theorem along the z direction

for each fixed ρ (see [45], [46]), there exists a unique solution

to the boundary value problem, and that solution is bounded

everywhere except at the origin where the excitation may be

singular.

B. Finite Differences Evaluation of the Green’s function

Consider the geometry shown in Fig. 3. At the center of

the geometry is the layer Ω0 containing the point source, with

conductivity σ0 = 0 and permeability µ0. Above and below

Ω0 are M and L layers of magnetic conductive materials, each

containing its own conductivity σk and permeability µk that

may be variable along z. For each each layer Ωk, label the

height of the boundary directly below it as z = ζk.

The transverse Green’s function Gxx(r, r
�) is obtained by

solving (3) with an x̂-directed delta excitation located at a

height of z�, for the electric field in the x̂-direction Ex(r).
We begin by setting Jexc to the following:

−jωµ0J
exc
x = δ(x)δ(y)δ(z − z�),

Jexc
y = Jexc

z = 0. (27)

Substituting (27) into (3) yields one governing equation for

each layer of material:

∇2Ex = −δ(x)δ(y)δ(z − z�) ζ0 ≤ z ≤ ζ1 (28)
�

∇2 +
1

µ2

∂µ

∂z

∂

∂z
− jωµσ

�

Ex = 0 otherwise (29)

Equations (28) and (29) are cylindrically symmetric, and

the Laplacian operator can be expanded to its cylindrically

symmetric form:

∇2 ≡ 1

ρ

∂

∂ρ
+

∂2

∂ρ2
+

∂2

∂z2
. (30)

Let the x̂-directed electric field within each region Ωk be

labeled with superscripts as E
(k)
x ≡ {Ex(r) : r ∈ Ωk}. Using

this notation, the interface boundary between each neighboring

layer pairs E
(k)
x and E

(k−1)
x are written:

E(k)
x − E(k−1)

x = 0 z = ζk, (31)

1

µk

∂

∂z
E(k)

x − 1

µk−1

∂

∂z
E(k−1)

x = 0 z = ζk, (32)

corresponding respectively to the continuity of the tangential

electric fields x̂Ex and tangential magnetic fields ŷHy = (∇×
x̂Ex)/µ.

The singularity on the right-hand side of (28) is a disconti-

nuity that poses an issue for finite differences. However by the

field equivalence principle, it can be eliminated and replaced

with surface magnetic and electric currents at the boundaries

of Ω0 [11]. First, we note that (28) is Laplace’s equation

within the source layer Ω0, and the source contribution is equal

to Gfree(r, r�), defined earlier in (9). Subtracting the source

contribution leaves the homogenous equation in that layer:

∇2Ehom = 0 ζ0 ≤ z ≤ ζ1, (33)

where,

Ehom = E(0)
x −Gfree(r, r�). (34)

Note that Ehom corresponds to the added Green’s function

component Gadd
xx within the layer Ω0.

The equivalent magnetic and electric surface currents to re-

place the original point excitation are placed at the boundaries

of layer Ω0. Their strengths can be computed by substituting

(34) for Ehom back into the regular boundary conditions

(31),(32). At the boundary above Ω0 we have:

E(1)
x − Ehom = Gfree z = ζ1, (35)

µ0

µ1

∂

∂z
E(1)

x −
∂

∂z
Ehom =

∂

∂z
Gfree z = ζ1, (36)
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and at the boundary below Ω0:

E(−1)
x − Ehom = Gfree z = ζ0, (37)

µ0

µ−1

∂

∂z
E(−1)

x − ∂

∂z
Ehom =

∂

∂z
Gfree z = ζ0, (38)

where Gfree and ∂Gfree/∂z expand to the following form in

cylindrical coordinates:

Gfree =
1

4π [ρ2 + (z − z�)2]
1/2

, (39)

∂

∂z
Gfree =

−(z − z�)

4π [ρ2 + (z − z�)2]
3/2

. (40)

Given a fixed value of z�, equations (31)-(38) com-

bine to form a two-dimensional boundary value problem

for Ehom(ρ, z) ≡ Gadd
xx (ρ, z; z�) in region Ω0, and for

E
(k)
x (ρ, z) ≡ Gxx(ρ, z; z

�) outside of Ω0. The homogenous

equations, (33) and (29), govern the domains, and the bound-

ary conditions, (31) and (32), govern all regular interfaces. The

impulse excitation of (28) is replaced by boundary magnetic

and electric currents, (35)-(38), located at the excited interfaces

at z = ζ1 and z = ζ0. These surface currents are smooth and

non-singular, so long as the source point r� is not held exactly

on top of the surfaces.

To solve these equations, the spatial derivative operators

(30) can be discretized using non-uniform finite differences

techniques, the details of which are available in many ref-

erence texts [47], [48]. In practice, the authors have found

this approach to be competitive in problems where only 3-

4 significant figures of accuracy are desired. To illustrate,

the degrees of freedom needed to achieve ∼ 0.1% accuracy

is around 100,000 for the cases considered in Sections VI

and VII. The associated linear systems are directly inverted

in MATLAB on a 2.5 GHz dual-core CPU in less than 10

seconds.

If more significant figures are desired, then the Hankel

transform can be used to transform the spatial radial direction

ρ to its spectral domain. The difficulties associated with

Sommerfeld integrals are reintroduced with this approach, and

the reader is referred to [42], [43] for more details.

IV. DECOUPLING THE Z-DIRECTIONAL DEPENDENCE

When the multilayer Green’s function is computed numeri-

cally using the finite differences method described above, only

one “slice” of Gadd
xx is computed at a time, for all values of

ρ and z, but a single fixed value of z�. To avoid repeating

the finite differences solve for a range of z�, this section

describes a method that performs the following method-of-

images decomposition:

Gadd
xx (ρ, z, z�) = T (ρ, z − z�) +H(ρ, z + z�). (41)

This linear algebra method, named the Toeplitz-plus-Hankel

decomposition due to the underlying matrix structure, recon-

structs the least-squares values of T and H from the values

of Gadd
xx evaluated at just four carefully chosen source points

z�. The resultant components can exactly recreate the values

of Gadd
xx for all values of z�, despite sampling it at only four

distinct slices.

Furthermore, it is well-known that multilayer Green’s func-

tions are not translation-invariant along the ẑ-direction, and

cannot be directly convolved along this direction using the

FFT. Instead, the two components T and H can be separately

convolved using the FFT. The T component is treated like a

regular three-dimensional convolution, and the H component

is treated as a convolution along x̂ and ŷ, and a cross-

correlation along ẑ. In fact, previous authors have found that

the two-component convolution above incurs relatively little

overhead when compared to the traditional single-component

convolution for translation-invariant Green’s functions [12],

[36].

A. Toeplitz-plus-Hankel Decomposition

Consider discretizing (41) to a matrix [Ψ] for a uniformly

sampled zi : i ∈ [1, N ] and a fixed value ρ = ρ0:

Ψi,j = Gadd
xx (ρ = ρ0, z = zi, z

� = zj). (42)

If the vectors t, h ∈ C
2N−1×1 are defined using the functions

T and H from (41):

ti−j = T (ρ0, zi − zj), hi+j = H(ρ0, zi + zj),

then all N2 elements of [Ψ] can be expressed in terms of t
and h, in a Toeplitz-plus-Hankel structure:

Ψi,j = ti−j + hi+j . (43)

Equation (43) can be expressed as a system of linear

equations:

[B]

















t1−n

...

t0
...

tn−1

















+ [C]















h2

h3

...

h2n−1

h2n















=















Ψ1,1

Ψ2,1

...

Ψn−1,n

Ψn,n















[B]t+ [C]h = ψ, (44)

[A]

�

t
h

�

= ψ. (45)

where the vector ψ ∈ C
N2

×1 is the column vectorization of

the matrix [Ψ]:
g = vec([Ψ]).

The matrices [B], [C] ∈ R
N2

×2N−1 are sparse coefficient

matrices of ones and zeros, and the matrix [A] ∈ R
N2

×4N−2

is the horizontal concatenation of [B] and [C]. Consider

partitioning [A] into N blocks of N rows each, and referring

to each block using subscripts:

A =











A1

A2

...

AN











,

then observing (43), each i-th block of A can be shown to

have the following sparsity pattern for an ascending ordering

of t and h:

Ai =
�

0N×N−i IN 0N×2i−2 IN 0N×i−1

�

. (46)
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Matrix [A] is greatly overdetermined, possessing N2 equa-

tions for just 4N−2 unknowns. Assuming that [Ψ] does indeed

contain a Toeplitz-plus-Hankel structure, then [A] is reducible

to just four of its blocks while preserving the integrity of

the decomposition. Let the reduced form of [A] formed by

isolating blocks a, b, c, d be denoted [D]:








Aa

Ab

Ac

Ad









�

t
h

�

= [D]

�

t
h

�

= ψ∗, (47)

where ψ∗ is the column vectorization of the a-th, b-th, c-th
and d-th columns of matrix [Ψ]:

ψ∗ = vec(
�

Ψ:,a Ψ:,b Ψ:,c Ψ:,d

�

). (48)

Solving the matrix equation (47) completes the Toeplitz-plus-

Hankel decomposition.

The appropriate choice for a, b, c, d can be readily verified

by forming the full [A] matrix, selecting specific blocks to

form [D], and checking to see that both matrices maintain the

same rank. For even values of N , the following choices have

been experimentally found to be optimal:

a = 1, b = N, (49)

c = round(1.6 logN), d = c+
N

2
, (50)

where log is the natural logarithm. A formal proof of these

results involves an in-depth analysis into the sparsity structure

of [A] using elements of spectral graph theory, and can be

found in a separate upcoming paper.

V. FAST FREQUENCY SWEEPS

As described in Section II, fast integral methods (e.g. [16]–

[19]) implicitly form the coupling matrix–[Φ] in (15) and [Z]
in (18)–in a compressed structure, and perform fast matrix-

vector products directly with the compressed structure. The

initial setup is geometry dependent and Green’s function

dependent, and it is always time-consuming, taking several

tens to thousands of times the cost of each subsequent matrix-

vector product. Where the Green’s function is fixed for all

frequencies, e.g. in free-space impedance extraction, the initial

setup is performed just once for each conductor geometry.

However, when extended to multilayer Green’s functions,

repeating the setup at each new frequency adds a considerable

computational overhead.

Instead, we show in this section that the smoothness of

the quasistatic added Green’s function Gadd
xx in Ω0 (as pre-

viously shown in Section III) allows the initial setup to be

performed just once per geometry, regardless of its frequency-

dependence. This completely eliminates the overhead associ-

ated with repeating the setup at each frequency, resulting in a

considerable speedup.

Consider the convolution and precorrection matrices [H]
and [S] in the pFFT equation (26), which are both frequency-

dependent. Let this frequency-dependence be denoted with the

function argument f :

[A(f)] = [S(f)] + [I][H(f)][P ], (51)

Following (8), the coupling matrix [A] can be decomposed

according to contributions due to Gfree and those due to Gadd
xx :

[A(f)] = [Afree] + [Aadd(f)]. (52)

This leads to similar decomposition for the frequency depen-

dent matrices [S(f)] and [H(f)]:

[S(f)] = [Sfree] + [Sadd(f)] (53)

[H(f)] = [Hfree] + [Hadd(f)]. (54)

Note that only the added components of each matrix is

frequency-dependent.

In Section III, it was shown that a finite differences dis-

cretization of Gadd
xx –based upon approximating the underlying

solution with a truncated Taylor polynomial series [48]–will

converge to arbitrary accuracy as the grid size is refined. We

emphasize here that the projection and interpolation operations

in our FFT are also based upon approximating the underlying

solution with a truncated Taylor polynomial series (see [37]

for a more thorough description of these operations). Conse-

quently, we expect the pFFT method without precorrection to

also become increasingly accurate as the FFT grid is refined.

Substituting into (51) and (52), this observation can be written

as a limit statement, for an FFT grid spacing of h:

lim
h→0

[I][Hadd(f)][P ] = [Aadd(f)], (55)

noting the absence of the precorrection matrix [Sadd(f)].
Equivalently, the free-space, frequency-independent precor-

rection matrix [Sfree] becomes a better approximation for the

overall precorrection matrix [S] with a refinement of the grid:

lim
h→0

[A(f)] = [Sfree] + [I][H(f)][P ], (56)

where unlike before in (51), the [Sfree(f)] term has been

dropped from the equation.

Equation (56) summarizes the fast version of pFFT for

quasistatic multilayer Green’s functions. For some well-chosen

value of h, the frequency-independent matrix [Sfree] becomes

an accurate approximation for the frequency-dependent matrix

[S(f)]. At each new frequency, the projection-convolution-

interpolation part of pFFT is performed using the full,

frequency-dependent convolution matrix [H(f)], but the pre-

correction is performed using the frequency-independent

[Sfree].
While this may appear to be a trivial adaptation of the full

pFFT method, it has significant ramifications for the speed of

frequency sweeps. The most time-consuming step of pFFT–

the formation of the precorrection matrix–is performed just

once for all frequencies, rather than repeated at each frequency.

The need to form [Sadd(f)] is eliminated altogether, and this

provides an advantage in itself, because each of its elements is

the end-result of an expensive six-dimensional integral, shown

in (22).

To control errors to some specified limit, the exact value of

grid refinement h for (56) may be numerically estimated by

explicitly forming [Sadd(f)] to within a relative error tolerance

�:

�[Sadd(f)]� ≤ ��[Sfree]�, (57)
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1: procedure EXTRACTIMP(geometries, frequencies)

2: %Begin pFFT setup.

3: [P ], [I] ← Project conductors onto a uniform grid.

4: [Sfree] ← Precorrect Gfree(ρ, z, z�) � slow!

5: [Sfree] ← Compute direct interactions � slow!

6: for each frequency do

7: %Set up convolution components for each

8: %frequency w/o precorrecting again.

9: Gadd ← Load added Green’s function.

10: G ← Gadd +Gfree � add free-space component

11: %Begin GMRES interations

12: V = [1, 0, 0....] � Objective is 1 volt across terminals

13: while Ṽ not converged to V do

14: Guess new current density x using GMRES

15: %Perform matrix-vector product

16: xp = [P ]x � Project

17: E ← CONVOLVE(xp;G)

18: %E is the E-field evaluated on a grid

19: Ṽ = [I]E + [Sfree]x � Interpolate and Precorrect

20: end while

21: Z(f) = 1/I � Compute terminal impedance

22: end for

23: end procedure

Figure 4: The full impedance extraction procedure in pseu-

docode. Highlighted are the aspects of the algorithm acceler-

ated by pFFT and by the Gadd decomposition.

under a preferred norm.

A summary of a frequency-sweep impedance extraction

routine based upon the fast frequency sweep described above

is shown in Fig. 4 in pseudocode. Experimental confirmation

of the fast pFFT method is presented below in Table II.

VI. COMPARISON TO ANALYTICAL MODELS

A wealth of analytical models have been previously derived

for the lossy-magnetic coil problem, many of which are

exact under specific conditions and for particular conductor

geometries. In this section we demonstrate the ability of our

numerical model to converge towards a few of the most widely

used exact solutions in inductor design, when their relevant

conditions are reproduced.

A. Inductance of a single turn in free-space

The exact self-inductance for a circular turn of wire in free-

space can be derived when the cross-section of the wire is

rectangular or square and the current density is assumed to be

constant [29], [49]. Consider a single circular turn of radius

0.1m, with a square cross-section of 1mm in width and height.

Using equations (91) and (92) from [29, pp.95], the exact self-

inductance of this single turn evaluates to 689.859nH, with 4-5

s.f. of accuracy.

The circular turn is numerically modeled as an NL-sided

polygon, with a single piecewise-constant rectangular paral-

lelepiped basis function as its cross-section. The convergence

of the self-inductance with increasing NL are plotted in Fig.

5, computed using the method described in this paper. Results
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Figure 5: Convergence of free-space inductance for a single

turn against closed-from solution from Grover [29]. The

numerical results are generated using an NL-sided polygon

to approximate the ideal circle. (a) Inductances, (b) relative

errors with increasing discretization.

confirm the ability of our method to accurately compute

the self-inductance of a circular turn modeled using linear

filaments, and suggest that a polygon with more than 200 sides

is, within 5 significant figures, an accurate representation of a

circle.

B. Skin-effect Resistance of a single turn in free-space

For an isolated wire of circular cross-section, the exact

frequency-dependent ratio of its a.c. resistance to its d.c.

resistance is known in closed form, derived by solving the

cylindrically-symmetric diffusion equation using Kelvin func-

tions [6], [50]. In this subsection, we again consider a single

turn of 0.1m radius, but this time with a circular cross-section

of 1 mm in diameter. The turn is approximated as a 100-

sided regular polygon, and the cross-section is modeled to be
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circular using the techniques previously shown in Fig. 2. The

geometry yields exact a.c.-d.c. ratios of 1.006790 at 10 kHz,

1.449801 at 100 kHz, and 4.045194 at 1 MHz.

Figure 6 shows the convergence of the simulated frequency-

dependent resistance ratio with increasing discretization of the

conductor cross-section. At the coarsest discretization value

of N = 1, the wire cross-section contains only a single

piecewise constant filament of constant current density, and

it is consequently unable to capture any a.c. resistance effects.

However, as the cross-section is divided into more piecewise

constant filaments, the resistance ratios quickly converge to an-

alytical values. These results suggest that skin-effect prediction

errors are heavily dominated by the ability of the piecewise

constant basis functions to capture the non-uniform current

density distribution. These results agree with previous attempts

to model the skin-effect using PEEC, although the ability to

accommodate for far more filaments have resulted in more

accurate predictions [31].

C. Added resistance and inductance of circular filaments

When a conductor, placed over or in between a multilayer

media structure, is assumed to have a constant and uniform

current density, its terminal impedance can be decoupled into

four independent components:

Zterm = (R0 +∆R) + jω(L0 +∆L)

where R0 and L0 are the series resistance and inductance of

the coil in free-space and ∆R and ∆L are the added resistance

and inductance caused by the presence of the multilayer media.

If the conductor can be approximated as an interconnected set

of circular, concentric, zero-volume filaments, then the ∆R
and ∆L portion of its terminal impedance can be written in

closed-form in the Hankel spectral domain, and inverted to

the spatial domain with a Sommerfeld integral [1], [20], [28],

[51].

Consider the 28-turn coil experimentally verified below

in Section VII, modeled as 28 concentric circular turns,

approximated with thin linear filaments. The turns are set to

be physically isolated from each other, but are numerically

modeled as being “in series” during the impedance extraction.

The cross-section of each turn is set to be a single piecewise-

constant filament of only 10µm width and height, in order

to approximate the ideal zero-volume filament. Like Section

VII, we place the coil below a copper plate of 1/8th inch

thickness. The analytical benchmark for ∆R and ∆L is taken

from equations (13)-(15) of [28], and evaluated to machine

precision using adaptive quadrature.

Figure 7 shows the convergence of the numerical method

to the analytical benchmark with increasing fineness of the

discretization. The Green’s function and the pFFT algorithm

are both tuned to 3-4 s.f. of accuracy. Results show conver-

gence to this specified accuracy, accomplished by conforming

to the necessary assumptions for the analytical derivations: a

constant current density, a thin filament current, and perfectly

circular turns.
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Figure 6: Convergence of skin-effect resistance for a single iso-

lated turn against closed-from solution from McLachlan [50].

The cross-section is progressively refined with more filaments,

each of constant current density. (a) A.c.-d.c. resistance ratios

(b) relative errors with increasing discretization.

VII. EXPERIMENTAL VERIFICATION OF A LITZ WIRE COIL

The results above suggest that the numerical method can

replicate the predictions made by analytical models given the

same inputs and assumptions. Extending this result, we aim to

demonstrate in this section that it can also make more accurate

predictions, by working with a more faithful model of the

system and making less assumptions.

To achieve this, we perform a series of experiments on a

28-turn, 16-strand litz wire induction heating coil, shown in

Fig. 8. Two experimental cases are considered:

• The coil alone (“free-space case”),

• The coil placed underneath a flat 1/8 inch copper plate

(“plate case”).

These cases are specially chosen as accuracy benchmarks,

because they can be exactly described at quasistatic frequen-
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Figure 7: Convergence to the analytical ∆L/∆R models

with refinement of the number of filaments N in numerical

model. (a) Convergence of ∆L for 3 chosen frequencies. (b)

Convergence of the maximum relative error (∆L and ∆R)

over 30 frequencies for a solid conductor numerical model

and a zero-volume filament numerical model.

cies with the linear formulation presented in Section II. In

other words, given a perfectly faithful model of the coil and

plate geometries, prediction accuracy is limited only by the

ability to solve the governing equations. Whereas for non-

linear materials like steels and irons, a linear formulation is

only approximate, and the prediction accuracy would be bound

by the linearization process, i.e. the choice of µr = µ�

r − jµ��

r .

In the following section, the impedance magnitude and

phase measurements are made using an Agilent 4192A low-

frequency impedance analyzer. Predictions of the coil series

inductance L, resistance R, and quality factor Q = ωL/R are

computed using the numerical method described above, and

also using popular analytical formulas derived specifically for

a circular coil in proximity to multilayered media.

A. Experimental setup and model description

The exact litz wire used in the experimental coil has a

long and thin, tape-like cross-section, containing 16 strands

of annealed copper wire with σ = 5.8× 107 S/m. The strands

are wound in two layers of 8, in alternating angles of incline

as shown in Fig. 9. The distance between the center of the

first strand and the ninth strand is 23.72 ± 0.05 mm, at an

angle of 17.5◦. The height of the tape is 7.49±0.03 mm, and

each strand of wire has a circular cross-section diameter of

0.80± 0.02 mm and negligible insulation thickness.

The turns of the coil are wound in three separate sections:

• 7 inner turns, tightly wound with outermost radius at

49.2± 0.4 mm.

• 9 middle turns, tightly wound with outermost radius at

82.6± 0.4 mm.

• 12 outer turns, tightly wound with outermost radius at

114.3± 0.4 mm.

The copper plate used comprises of 99.9% annealed copper,

of 3.175± 0.013 mm thickness, µ = µ0 and σ = 5.80× 107

S/m, and is placed 10.62± 0.02 mm over the top of the coil.

The numerical model for the coil was constructed in MAT-

LAB, discretized it into 909,504 elements. Each element is a

brick-shaped filament of 1mm in length and 0.1mm in width

and height. The 16 strands are each modeled as a round

wire, refined into 25 rectangular sub-filaments along its cross-

section, according to the cosine rule previously illustrated in

Fig. 2. It is worth emphasizing that the element count should

not be directly compared with the finite element method.

An equivalent finite element model for this system would

discretize not only the conductor, but also the surrounding

multilayered media and free-space, and increasing the element

count by a factor of 20-200 [23]–[25].

Finally, the circular coil is well-known to yield accurate,

analytical solutions for the multilayer media problem [1], [52].

As a final comparison, we make predictions of the series

inductances using formulas from literature. The free-space

inductance L0 is computed using closed-form expressions in

[29], [49], and the free-space series resistance R0 of a litz

wire coil wound with round wires is taken from proximity

effect expressions derived by [6], [7]. Here, the fill-factor of

the wire is taken to be the cross-sectional area of 16 strands

of wire, divided by the cross-sectional area of the litz wire

bundle: 16 × π(0.8mm/2)2/(7.5mm × 1.6mm) = 0.67. The

added ∆R and ∆L terms are computed using expressions from

[28].

B. Series inductance predictions

Before comparisons can be made, we note that a practical

induction heating coil experiences parallel resonance due

to its internal winding-to-winding capacitances. Experimen-

tal evidence suggests that this capacitance is approximately

frequency-independent [2], [3]. By measuring the resonance

frequencies to 2.636 MHz and 3.855 MHz for the free-space

and plate cases respectively, we estimate the parallel terminal

capacitance for the coil to be 30± 3 pF.

The raw terminal impedance measurements are compen-

sated assuming 30 pF of capacitance, and compared to predic-
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(a)

(b)

Figure 8: The example coil used in this paper: (a) actual coil;

(b) discretized model.

tions made by the numerical model in Table I. The frequency-

scaled, imaginary component of each terminal impedance

(i.e. the “inductance” in an assumed series RL network) is

plotted in Fig. 10. Results confirm the presence of an artifact

resonant peak in the raw measurement, which is removed when

the capacitive effects are compensated. The accuracy of the

numerical predictions improves accordingly.

Figure 11 plots these same results compared against pre-

dictions made by the analytical models, zoomed and scaled to

the relevant ranges. Results show that both methods are able

to accurately predict the inductance to 3 significant figures at

lower frequencies, but only the numerical method is able to

maintain its accuracy at high frequencies. The presence of the

plate causes eddy currents to be induced in the plate which

in turn re-induces eddy currents within the wire bundle. This

effect is fully captured in the numerical model.

C. Series resistance and quality factor predictions

Figure 12 compares the measured series resistance of the

coil against predictions made by the numerical model and

by the analytical model, and Fig. 13 plots the equivalent

(a)

(b)

Figure 9: Detailed image of litz pattern: (a) actual coil; (b)

discretized model. Note that each strand is actually modeled

with a circular cross-section. They are shown with square

cross-sections here for clarity.

Table I: Capacitance compensated terminal impedance mag-

nitude and phase measurements, compared to numerically

simulated values.

Coil in free-space

Raw Meas. Cap. Comp. Simulated

Freq. |Z| arg(Z) |Z| arg(Z) |Z| arg(Z)
1 kHz 0.1341 73.09◦ 0.1341 73.09◦ 0.1349 72.40◦

10 kHz 1.2843 86.38◦ 1.2843 86.38◦ 1.2879 86.24◦

100 kHz 12.668 81.05◦ 12.648 81.06◦ 12.648 82.98◦

1 MHz 142.75 83.44◦ 122.01 84.38◦ 123.24 86.08◦

Coil below plate

Raw Meas. Cap. Comp. Simulated

Freq. |Z| arg(Z) |Z| arg(Z) |Z| arg(Z)
1 kHz 0.0842 45.52◦ 0.0842 45.52◦ 0.0829 46.71◦

10 kHz 0.5980 76.56◦ 0.5978 76.65◦ 0.6036 76.13◦

100 kHz 5.7689 71.08◦ 5.7632 71.14◦ 5.7787 71.16◦

1 MHz 55.872 80.93◦ 52.382 81.39◦ 52.530 79.68◦

comparison in the quality factor. The analytical fit is shown

to be good until around 20 kHz, when current redistribution

effects begin to dominate. Due to the complicated geometry of

the litz winding, these loss effects are not well approximated

by the analytical model beyond the initial knee frequency,

and the maximum quality factors predicted are off by more

than 10%. The numerical model is very accurate over its

range of applicable frequencies, but begins to deviate from

measurements at around 100 kHz. At this frequency, the skin

depth of copper is 206.3 µm, around the same size as the

cross-sectional width of the widest filament. Accuracy begins

to deteriorate because the filaments become too large to fully

capture the current density redistribution under the skin and

proximity effects.
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Figure 10: Coil inductance comparison of the frequency-

scaled imaginary component of the terminal impedance (“Raw

meas”) with inductances measured assuming 30 pF of parallel

capacitance (“L meas.”), and inductances computed using the

numerical method (“L calc”).

The figures also show the predictions in the plate case. It

is worth noting here that predictions made by the analytical

model are considerably worse because it does not take into

account the fact that some of the skin effect is actually

canceled out by the presence of the plate, and that the series

resistance measured is lower at very high frequencies than in

the free-space case.

D. Predictions made without litz wire transpositions

To show that a full model of the litz wire transpositions

is not superfluous for accurate predictions of the terminal

impedance, we repeat the 11mm copper plate numerical sim-

ulations with a coil wound using a single solid conductor,

in the shape of a long tape. We emphasize that this model

approximates the litz wire as if it were untangled into a set of

parallel strands, thereby eliminating its transposition patterns.

The formulation and numerical method remain identical. In

order to ensure that numerical discretization error does not

artificially erode the accuracy of these simulations, the coil was

discretized into 1,000,000 elements, 10,000 along its length

and 100 along its solid cross section according a cosine rule.

Results for the tape, shown in Fig. 14, fit the measurements

noticeably worse than the full litz wire model. Note that many

characteristics of the tape conductor observed here have been

previously described in literature, particularly the fact that

the resistance of a solid conductor is actually lower than an

equivalent litz wire at very high frequencies [6], [7].

E. Electric and magnetic fields

The electric field produced by the conductor is computed

on a regular grid as a by-product of the pFFT algorithm.

These fields can be separately extracted, and processed to

compute the magnetic field, at no additional cost to the overall

algorithm.
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Figure 11: Coil inductance comparison, computed against

measurements (b) in free-space and (c) with a plate over

the coil. The measured inductance was extracted from raw

measurements assuming 30 pF of parallel capacitance. Error

bars show ±0.4µH of measurement uncertainty, increasing to

±1µH at higher frequencies due to uncertainty in the parallel

capacitance.

VIII. SPEED COMPARISON

Table II shows the computational time breakdown for the

30-point frequency sweep of the coil below the copper plate,

using pFFT implemented in MATLAB, controlled to 0.1%

relative error and run on a Intel Xenon 3.10 GHz 16-core

workstation with 132Gb of RAM. The conductor geometry is

discretized into 909,504 elements. We note that the simulation

has also been performed on a 2.5 GHz dual-core laptop CPU

in a similar amount of time to those shown, by using 10 times

less elements and working to around 5% relative error.

The “fast pFFT” method is the procedure described in Sec-

tion V, which avoids explicitly computing and precorrecting

nearby interactions governed by Gadd
xx . The grid was set up so
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Figure 12: Coil series resistance predictions against measure-

ments (after compensating for 30 pF of parallel capacitance)

in the (a) free-space case and (b) the plate case. Error bars

show ±10% of measurement uncertainty.

that each cell is larger than the smallest conductor filament in

the model, and resulted in 258 × 106 pairs of nearby inter-

actions. These nearby interactions took a significant portion

of time to compute, but was only performed once for the

conductor geometry.

The “orig. pFFT” column illustrates the original pFFT

implementation for ground-plane problems, as found in [12],

[17]. Here, the nearby Gadd
xx interactions are explicitly com-

puted and precorrected at each frequency, taking up a bulk por-

tion of the total computation time. The integration is performed

using a six degree sparse grid Kronrod-Patterson quadrature

with 257 quadrature nodes per interaction, to result in around

3 significant figures of accuracy [53]. We avoided the standard

practice of expanding Gadd
xx into a summation of Gfree terms

(such as implemented by [12]), because summing multiple

interactions under Gfree would be even more time consuming

to compute. Despite the efficiency of the quadrature scheme,
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Figure 13: Coil quality factor predictions against measure-

ments (after compensating for 30 pF of parallel capacitance)

in the (a) free-space case and (b) the plate case. Error bars

show ±5% of measurement uncertainty

the need to explicitly compute Gadd
xx interactions at each

frequency make the original pFFT algorithm more than five

times slower than the fast pFFT method.

IX. CONCLUSIONS

Throughout this paper, a fast numerical method is pre-

sented for the simulation of a litz wire coil in proximity

to a multilayer lossy-magnetic structure. By noting the fact

that the governing Green’s function is smooth for the given

problem, we make full use of fast numerical methods based on

polynomial expansions. We present a simple finite differences

method to compute the Green’s function, and show that the

efficacy of a finite difference approximation leads directly to

a fast frequency-sweep version of the precorrected FFT. This

version of the pFFT avoids repeating the setup phase at each

frequency, and is consequently over five times faster than the
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Figure 14: Simulating the litz wire with a solid conductor

“tape” instead of a full litz structure, results in inductance and

resistances that fit the measured values noticeably worse than

the full litz-wire model described earlier. Results shown are

for the plate case.

original pFFT method. Finally, we describe a numerical de-

composition of the multilayer Green’s function into a Toeplitz-

plus-Hankel structure, which allows convolutions with it to

be performed using the FFT. Experimental verifications are

made for a 16-strand litz wire coil, realistically modeled down

to each individual strand. Results are obtained in 2-3 hours

on a workstation computer, showing an excellent agreement

to measurements, including the subtle geometry-dependent

characteristics not fully captured by less detailed models.

The source code for the work presented can be found online

at http://web.mit.edu/ryz/www, or by emailing the correspond-

ing author at ryz@mit.edu.
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APPENDIX

A. Mutual inductances for non-Manhattan filament interac-

tions

Volume-to-volume integrals of the free-space Green’s func-

tion (9) is used to compute the mutual inductance term [33].

For each interacting pair of current filaments φ1 and φ2, the

following integral is performed:

M =

ˆ

φ1

ˆ

φ2

R−1 dr dr� (58)

where the spherical radius R is given:

R = �r− r��.

The integration kernel becomes singular or close-to-singular

when φ1 and φ2 are close or even overlapping. If φ1 and φ2

are brick-shaped and have their edges parallel to each other in

the “Manhattan geometry”, then closed-form solutions to (58)

can be used to compute the mutual inductance [30].

When φ1 and φ2 are brick-shaped but non-Manhattan, e.g. at

a slight angle to each other, then closed-form solutions to (58)

do not exist. Instead, two of the six integral dimensions can be

implicitly eliminated with a surface-to-surface transformation.

As shown by [54], the 1/R kernel can be written as the

divergence of a gradient:

R−1 =
−1

2
∇� ·∇R, (59)

and by the divergence theorem, (59) reduces (58) to a set

of surface integrals with the spherical radius R itself as the
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kernel:

M =
−n̂ · n̂�

2

˛

∂φ1

˛

∂φ2

R dS dS�, (60)

where n̂ and n̂� are the exterior normal vectors to the field

surface dS and the source surface dS� respectively. For

arbitrarily oriented cuboids basis functions, the above integral

results in 36 surface-to-surface interactions:

M =

6
�

i=1

6
�

j=1

−n̂ · n̂�

2

ˆ

�i

ˆ

��

j

R dS dS�, (61)

where �1 · · ·�6 and �
�

1 · · ·�
�

6 are the six surfaces of the

field and source cuboids respectively. Note that the surface-

to-surface kernel, R, is no longer singular.

Through coordinate rotations, one of the two interacting

surfaces of (61) can always be set to align with the x̂ and

ŷ directions, such that dS → dx dy. Then, two of the four

remaining integrals can be evaluated analytically, with the

following identity:

I(x, y, z) =

ˆ ˆ

�

x2 + y2 + z2 dx dy

=
xy

�

x2 + y2 + z2

3

+
y3 + 3yz2

6
log

�

x+
�

x2 + y2 + z2
�

y2 + z2

�

+
x3 + 3xz2

6
log

�

y +
�

x2 + y2 + z2√
x2 + z2

�

+
z3

3
atan

�

xy

z
�

x2 + y2 + z2

�

. (62)

For example, suppose that the field rectangle, �i, is of

length L and width W long the x and y directions respectively

with one corner at the origin. Then, the inner two integrals of

(61) is simply:

ˆ

�i

R dS = I(x�, y�, z�)− I(x� − L, y�, z�)

− I(x�, y� −W, z�) + I(x� − L, y� −W, z�). (63)

The final two dimensions of integration over the source

surface, �
�

j , are truly arbitrary, and should be evaluated

numerically. Fortunately at this point, the remaining integrand

I(x, y, z) is so smooth that it can be integrated using any

reasonable two-dimensional quadrature rule. In this paper, we

have used a third-order two-dimensional Kronrod-Patterson

quadrature rule with 9 nodes based on sparse grids [53].
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