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Fast Simulation Technique of Plane Circuits via Two-Layer
CNN-Based Modeling

Yuichi TANJI†a), Hideki ASAI††, Members, Masayoshi ODA†††, Nonmember, Yoshifumi NISHIO†††,
and Akio USHIDA††††, Members

SUMMARY A fast time-domain simulation technique of plane circuits
via two-layer Cellular Neural Network (CNN) -based modeling, which is
necessary for power/signal integrity evaluation in VLSIs, printed circuit
boards, and packages, is presented. Using the new notation expressed by
the two-layer CNN, 1,553 times faster simulation is achieved, compared
with Berkeley SPICE (ngspice). In CNN community, CNNs are generally
simulated by explicit numerical integration such as the forward Euler and
Runge-Kutta methods. However, since the two-layer CNN is a stiff circuit,
we cannot analyze it by using an explicit numerical integration method.
Hence, to analyze the two-layer CNN and reduce the computational cost,
the leapfrog method is introduced. This procedure would open an applica-
tion of CNN to electronic design automation area.
key words: cellular neural networks, plane circuits, signal/power integrity,
leapfrog method

1. Introduction

VLSI implementations, potential applications for image
processing, and nonlinear wave phenomena of Cellular Neu-
ral Networks (CNNs) have attracted many interests in the
last two decades. As one of the studies, the nonlinear
wave phenomena have been analyzed via CNNs [1], [2],
[8], where the partial differential equations are expressed
into CNNs, and the nonlinear phenomena are efficiently ana-
lyzed by the CNN universal machine [6]. On an engineering
application, the ability of solving partial differential equa-
tions quickly is profitable and there may be various applica-
tions.

In this paper, we analyze the plane circuits using a
CNN for power/signal integrity evaluation in VLSIs, pack-
ages, and printed circuit boards in the high-speed electronic
systems [3], [4]. The high-speed electronic systems suffer
from the inductance effects. We introduce the two-layer
CNN [5] to model the inductance effects using the coupling
templates.
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The CNN universal machine simulates CNNs using the
forward Euler method. However, the linear RLC models
of VLSIs, packages, and printed circuit boards are stiff cir-
cuits, which prohibit use of explicit numerical integration
such as forward Euler method for transient simulation. Al-
ternatively, implicit numerical integration such as backward
Euler, backward difference, and Gear methods [7], which
are used in SPICE-like simulators, are applicable, but these
methods are computationally inefficient since they need to
solve a set of linear equations. To reduce the computational
costs, we introduce the leapfrog method [9], [11], where the
state vectors in the first and second layers of the CNN are de-
coupled and updated alternately in the same manner as the
forward Euler method. This method is a variety of FDTD
methods [10] which are known as a Maxwell’s solver. In an
illustrative example, it is shown that the proposed procedure
via the two-layer CNN-based modeling is 1,553 times faster
than Berkeley SPICE (ngspice). This means that we can ex-
pect further speed up if these computations are carried out
on a hardware accelerator as the CNN universal machine.

2. Two-Layer CNN-Based Modeling of Plane Circuits

In signal/power integrity evaluation in VLSIs, packages,
and printed circuit boards of high-speed electronic systems,
analysis of a plane circuit is required. The physical phe-
nomena on a plane circuit are governed by the Helmholtz’s
equations which are obtained from the Maxwell’s equations
on Lorentz or Coulomb gauge. However, since solving the
Helmholtz’s equations requires a huge CPU cost, the plane
circuit is approximated by the linear passive R, L, C, and G
elements shown in Fig. 1 [15]. The circuit shown in Fig. 1 is
governed by the following two equations:

dvi, j(t)

dt
= −G
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vi, j(t) +
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ii, j(t), (1)
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where

t =
1√
LC
τ, (3)

and τ and t show the actual and normalized times, respec-
tively. Equation (1) is KCL at the node (i, j) and (2) is
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Fig. 1 Circuit model of plane circuit.

Fig. 2 Cells of two-layer CNN.

obtained from the characteristics of the four RL branches
which are connected to the node (i, j).

Consider expressing (1) and (2) by a two-layer CNN.
Cells of two-layer CNN interact each other through Am, Bm,
and Cm templates as shown in Fig. 2. The state equations of
the two-layer CNN are written by

dvx1i j(t)

dt
= −vx1i j(t)

+
∑

C(k,l)∈Nr(i, j)

A1(i, j; k, l)vy1kl(t)

+
∑

C(k,l)∈Nr(i, j)

B1(i, j; k, l)vu1kl(t)

+
∑

C(k,l)∈Nr(i, j)

C1(i, j; k, l)vy2kl(t) + I1, (4)

dvx2i j(t)

dt
= −vx2i j(t)

+
∑

C(k,l)∈Nr(i, j)

A2(i, j; k, l)vy2kl(t)

+
∑

C(k,l)∈Nr(i, j)

B2(i, j; k, l)vu2kl(t)

+
∑

C(k,l)∈Nr(i, j)

C2(i, j; k, l)vy1kl(t) + I2, (5)

where Nr(i, j) is the r-neighborhood of a cell C(i, j) as
Nr(i, j) = {C(k, l)|max{|k− i|, |l− j|} ≤ r. vx1i j(t), vy1i j(t), and
vu1i j(t) are the internal state, output, input of a cell C(i, j) in
the first layer, respectively. vx2i j(t), vy2i j(t), and vu2i j(t) are
the internal state, output, input of a cell C(i, j) in the sec-
ond layer. Am(i, j; k, l), Bm(i, j; k, l), and Cm(i, j; k, l) are the
feedback, control, and coupling templates in the m-th layer,
respectively [5]. The output functions of the two-layer CNN
are described by

vy1i j(t) =
1
2

(
|vx1i j(t) + 1| − |vx1i j(t) − 1|

)
, (6)

vy2i j(t) =
1
2

(
|vx2i j(t) + 1| − |vx2i j(t) − 1|

)
. (7)

Comparing the circuit Eqs. (1) and (2) with (4) and (5),
we can describe the cloning templates for the plane circuit
as

A1 =
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0 0 0

0 1 −G
√

L
C 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , B1 = 0,

C1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0

0
√

L
C 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , I1 = 0, (8)
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where the matrices Am, Bm, and Cm are the matrix represen-
tations of Am(i, j; k, l), Bm(i, j; k, l), and Cm(i, j; k, l), respec-
tively. Since the plane circuit shown in Fig. 1 is linear, the
output functions (6) and (7) are redefined by

vy1i j(t) = vx1i j(t), (10)

vy2i j(t) = vx2i j(t). (11)

Although CNN has a periodical boundary condition in
general, the circuit model of the plane circuit does not have
such a condition. The nodes on the edge connects three or
two RL branches. Therefore, we should rewrite C2 appro-
priately for these nodes. If the node connects with three RL
branches, C2 is written by

C2 =
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.

If the node connects two RL branches, C2 is written by
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C2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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.

It should be noted that position of the nonzero off-diagonal
elements depends on the node.

3. Leapfrog Method

In the CNN universal machine [6], the dynamics of CNN
is simulated by using the forward Euler method. However,
if the circuit is stiff, the forward Euler method may break
down. For example, we simulated the two-layer CNN cor-
responding to the plane circuit shown in Fig. 3(a), where the
plane circuit with 3 × 4 cells is approximated by the RLC
circuit as shown in Fig. 3(b). Figure 4(a) shows the tran-
sient voltage waveform at the output resister Rout in Fig. 3(b)
when a pulse is given at ‘Port1,’ where the waveform was
calculated by the forward Euler method. The result is com-
pared with Berkeley SPICE. The response obtained from the
forward Euler method is violently vibrated and the simula-
tion would break down for a long duration. In this example,
the ratio of the maximum absolute eigenvalue to the mini-
mum is 2.83×106 so that the circuit is stiff. This is the reason
why the simulation would break down. Fortunately, with 10
times smaller time-step size than the case of Fig. 4(a), we
can obtain the reliable result as shown in Fig. 4(b). How-
ever, since it is not easy to know the appropriate time-step
size, the conventional forward Euler or Runge Kutta method
is not suitable for all the CNNs. Instead of such explicit
methods, we can use implicit numerical integration such
as backward Euler, backward difference, and Gear methods
[7]. However, these methods need to solve a set of linear
equations, which prohibits the application of these methods
to large-scale problems. To analyze large-scale and stiff cir-

Fig. 3 Modeling of plane circuit. (a) Plane circuit. (b) The equivalent
circuit.

cuits, we use the leapfrog method [11] which is a variety of
FDTD methods [10] for circuit simulation [9].

Since the center values of A1 in (8) and A2 in (9)
are only non-zero, the first and second layers interact each
other through the coupling templates C1(i, j; k, l) of (4) and
C2(i, j; k, l) of (5). If implicit numerical integration is used
for solving (4) and (5), we have to solve a set of linear equa-
tions due to these couplings. In the leapfrog method, the
two coupled state vectors are alternately updated. Hence,
the simulation points of the first layer is shifted with half
a time step to the second layer as shown in Fig. 6, whereas
the state vectors in both layers are simultaneously updated
when implicit integration is used. Since the state vectors are
alternately updated in the leapfrog method, we do not have
to solve a set of linear equations, differently from the case of

(a)

(b)

Fig. 4 Transient waveforms calculated by the forward Euler methods.
The 10 times smaller time-step size than the case of Fig. 4(a) is used for
the forward method to obtain the result of the Fig. 4(b). In Fig. 4(b), the
waveform (Euler) obtained by the forward Euler method almost overlaps
that obtained by SPICE.
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Fig. 5 Transient waveforms calculated by the leapfrog method. The
waveform (CNN) obtained by the leapfrog method almost overlaps that
obtained by SPICE.

the implicit integration. As a result, the leapfrog method is
much faster than the SPICE simulation which uses implicit
numerical integration for transient analysis.

The update rules of the leapfrog method for the two-
layer CNN are described by

vx1i j(ti+1) − vx1i j(ti)

ti+1 − ti
= −vx1i j(ti+1)

+
∑

C(k,l)∈Nr(i, j)

A1(i, j; k, l)vy1kl(ti+1)

+
∑

C(k,l)∈Nr(i, j)

B1(i, j; k, l)vu1kl(ti+1/2)

+
∑

C(k,l)∈Nr(i, j)

C1(i, j; k, l)vy2kl(ti+1/2) + I1, (12)

vx2i j(ti+1/2) − vx2i j(ti−1/2)

ti+1/2 − ti−1/2
= −vx2i j(ti+1/2)

+
∑

C(k,l)∈Nr(i, j)

A2(i, j; k, l)vy2kl(ti+1/2)

+
∑

C(k,l)∈Nr(i, j)

B2(i, j; k, l)vu2kl(ti)

+
∑

C(k,l)∈Nr(i, j)

C2(i, j; k, l)vy1kl(ti) + I2. (13)

In (12) and (13), since A1(i, j; i, j) and A2(i, j; i, j) are
nonzero and the other values of A templates are zero, it is
not necessary to solve a set of linear equations for updating
the state vectors.

We simulated the example of 3 × 4 cells using the
leapfrog method. Figure 5 shows the transient voltage wave-
form at the output resister Rout shown in Fig. 3(b). To obtain
the result, the time step size was taken as 100 times larger
than the forward Euler method in the case of Fig. 4(a), which
means that the leapfrog method is robust for a stiff problem,
though implicit integration is not used.

Fig. 6 Updated points of the state vectors in implicit numerical integra-
tion and the leapfrog methods.

It should be noted that the leapfrog method is restricted
by the Courant condition which gives the allowable largest
time step size h in order to ensure the stability. The Courant
condition is obtained as

h ≤ √LminCmin, (14)

where Lmin and Cmin are minimum inductance and capaci-
tance, respectively [9]. If the normalized time of (3) is τ =
1/
√

LminCmin, the Courant condition becomes ti+1 − ti ≤ 1.
Putting the time step size as ti+1 − ti = 1, we can obtain the
discrete time model, which is a Discrete Time CNN (DT-
CNN) [12], [13].

4. Examples

To show the performance of the proposed method via two-
layer CNN-based modeling, the plane circuit shown in
Fig. 3(a) was analyzed. The plane circuit is divided into
identical cells which are modeled by an RLC π-model [4],
and the equivalent circuit is obtained as Fig. 3(b). Based
on the electromagnetic theory, the parameters of the RLC
π-model corresponding to a package are determined as R =
1.73×10−3 [Ω], L = 2.26×10−9 [H], and C = 9.15×10−15 [F]
[4].

We calculated the transient responses of the CNN by
the leapfrog method and compared with Berkeley SPICE
(ngspice) [14]. The CNN simulations were carried out by
Matlab 7 on Federa Core 3. The CPU times of CNN and
SPICE simulations were measured on Pentium 4 with 3 GHz
clock and 1 GByte memory.

The linear circuit shown in Fig. 3(b) was driven by a
current source of 0.1 [ns] fall/rise time, 0.4 [ns] pulse width,
0.2 [ns] delay time, 1.0 [ns] period, and 5 [mA] amplitude at
‘Port1.’ The transient analysis was carried out for the time
interval from 0 [ns] to 2.0 [ns] using 1 [ps] time step size.
Table 1 shows the comparison of CPU times. For 320× 320
cells, the proposed method via the two-layer CNN-based
modeling is 1,553 times faster than ngspice. To investigate
accuracy of the proposed method, we calculated the tran-
sient waveforms for 10×10 cells. Figure 7(a) shows the tran-
sient voltage waveforms at ‘Port1.’ The result obtained via
the CNN-based modeling is almost same with the SPICE.
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Table 1 Comparison of CPU times for transient simulation of a plane circuit.

cells elements CNN ngspice Speed-up
10 × 10 341 0.53 2.33 4.4
20 × 20 1281 0.74 19.567 26.44
40 × 40 4961 1.79 155.56 86.90
80 × 80 19521 6.25 1400.10 224.02

160 × 160 77441 32.68 16535.75 505.99
320 × 320 308481 152.09 236199.93 1553.03

(a)

(b)

Fig. 7 Transient responses calculated by the proposed method and
SPICE. (a) The responses are calculated by h = 1 [ps]. (b) The en-
larged responses of (a) and the SPICE simulation result obtained by using
h = 0.01 [ps].

Enlarging the waveforms from 1.9 [ns] to 2.0 [ns], there ex-
ist differences between the proposed method (‘CNN’) and
SPICE in Fig. 7(b), where 1 [ps] time step size was used
in both the proposed method and SPICE simulation. Using
0.01 [ps] time step, we carry out the SPICE simulation, the
result of which is shown as ‘SPICE(0.01ps)’ in Fig. 7(b).
Since a small time step is taken, ‘SPICE(0.01ps)’ would be
more accurate than ‘CNN’ and ‘SPICE.’ However, compar-

ing ‘SPICE(0.01ps)’ with ‘CNN’ and ‘SPICE,’ we cannot
judge which is more accurate, ‘CNN’ or ‘SPICE.’ There-
fore, both methods are of the same accuracy. Since effi-
ciency of the proposed method is remarkable as listed in
Table 1, the leapfrog method via the CNN-based modeling
for analyzing plane circuit is better than implicit/explicit nu-
merical integration. We do not consider any parallelism of
CNN. If a hardware accelerator for simulating the two-layer
CNN is realized, further speed-up can be expected.

5. Conclusions

In this paper, a fast simulation of the plane circuits using
the CNN-based modeling has been presented, where the
Maxwell’s equations of plane circuits are expressed by the
two-layer CNN and the dynamics of the two-layer CNN
is calculated by the leapfrog method. Since the proposed
method is very fast on a single processor, it might be ex-
tremely fast using any hardware accelerators. The leapfrog
method is based on the FDTD methods [10]. Therefore, the
hardware accelerators would be extended to full wave anal-
ysis of electromagnetic field.
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