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Fast Skyline Community Search in Multi-Valued Networks

Dongxiao Yu, Lifang Zhang�, Qi Luo�, Xiuzhen Cheng, Jiguo Yu, and Zhipeng Cai

Abstract: Community search has been extensively studied in large networks, such as Protein-Protein Interaction

(PPI) networks, citation graphs, and collaboration networks. However, in terms of widely existing multi-valued

networks, where each node has d (d > 1) numerical attributes, almost all existing algorithms either completely

ignore the attributes of node at all or only consider one attribute. To solve this problem, the concept of skyline

community was presented, based on the concepts of k-core and skyline recently. The skyline community is defined

as a maximal k-core that satisfies some influence constraints, which is very useful in depicting the communities that

are not dominated by other communities in multi-valued networks. However, the algorithms proposed on skyline

community search can only work in the special case that the nodes have different values on each attribute, and

the computation complexity degrades exponentially as the number of attributes increases. In this work, we turn

our attention to the general scenario where multiple nodes may have the same attribute value. Specifically, we first

present an algorithm, called MICS, which can find all skyline communities in a multi-valued network. To improve

computation efficiency, we then propose a dimension reduction based algorithm, called P-MICS, using the maximum

entropy method. Our algorithm can significantly reduce the skyline community searching time, while is still able

to find almost all cohesive skyline communities. Extensive experiments on real-world datasets demonstrate the

efficiency and effectiveness of our algorithms.
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1 Introduction

Community search is a fundamental problem in

network analysis, which has attracted much attention

recently due to its wide applications, such as protein

structure analysis[1], organization of activities[2], and

advertising[3]. The community search problem is a query-
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dependent community discovery problem, and it requires

to find densely-connected subgraphs in a network given

query conditions.

In real-world applications, there exists one important

network called multi-valued network, where the nodes

are associated with d (d > 1) numerical attributes.

We can notice that in multi-valued networks, besides

the structural cohesiveness constraint, the community

search problem also needs to consider the influence

of the community represented by attribute values of

nodes. A challenging task is how to define a community,

which is dominated by other communities in terms

of d numerical attributes so that the most important

communities can be found. To solve this problem, a

novel community model, called the skyline community

model, was presented, based on the concepts of k-core[4]

and skyline[5, 6]. In particular, the skyline community is

a maximal connected k-core that is not dominated by
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other connected k-cores in the d -dimensional attribute

space. A space-partition algorithm to efficiently compute

the skyline communities was also presented in Ref. [7].

However, the proposed algorithm only works in a very

special setting that the values of nodes on each attribute

are totally different. Obviously, this setting is unrealistic

in real-world applications, as nodes frequently have the

same value on an attribute. Hence, an open problem

is then whether we can derive an algorithm for skyline

community search in the general scenario. On the other

hand, the efficiency of the space-partition algorithm

degrades exponentially with the increase of the number

of attributes, which hinders the application of the

existing algorithm in scenarios of a large number of

attributes.

To solve the above problems, we study the skyline

community search in a general multi-valued network,

where multiple nodes may have the same value on an

attribute. We present an algorithm, called MICS, which

can compute all skyline communities in general multi-

valued networks. A Maximal Community Influence

(MCI)-centric (see Section 3 for detailed definition)

approach is adopted instead of the node-centric one in

Ref. [7], to avoid the relying on different attribute values

of nodes. Furthermore, due to the fact that in real-world

applications, it usually only needs to search important

communities, i.e., those with high cohesiveness, it

admits to improve the computation efficiency by

ignoring communities that are less important. With

this intuition, we present an algorithm, called P-MISC,

which can significantly reduce the computation time of

the skyline community search. The algorithm adopts the

maximum entropy method to discover a small number

of crucial attributes, which can reserve the information

of the network as much as possible. Consequently,

this approach can help find almost all high cohesive

skyline communities. Extensive experiments verify the

efficiency and effectiveness of the proposed algorithms.

The rest of this paper is organized as follows. We

review the related work in Section 2 and present some

basic concepts and problem description in Section

3. Section 4 introduces the basic multidimensional

algorithm MICS and the improved algorithm P-MICS

after dimension reduction. Our experimental results are

reported in Section 5. At last, the paper is concluded in

Section 6.

2 Related Work

In this section, we review some existing related studies,

mainly including Community Search (CS) and

community search on the attribute graph.

Community search. Discovering communities

structure from a large social network has been a very

popular topic. To solve this problem, two basic concepts

of CS[8] and Community Detection (CD)[9, 10] have

been proposed. They are both designed to find some

cohesive subgraphs called communities from a large

network. The difference between them is that the

solutions to CS are generally given some query nodes or

query parameters, while CD will find all communities.

Besides, compared with CD, CS consumes less time

and is more suitable for the study of cohesive subgraphs

in large graphs. Sozio and Gionis[2] proposed to find a

connected k-core containing query nodes, and it is also

believed to be the first algorithm that adopts a global

approach. In Ref. [11], a community search algorithm

based on the local expansion techniques was proposed,

and it greatly improves the efficiency of the global

algorithm. In addition to k-core[2, 11–17], there are many

other classic indicators to measure the cohesiveness

of the communities, such as k-truss[18, 19], k-plex[20],

k-clique[21, 22], etc. However, most of the methods

mentioned above are limited to the structural properties

of the community and ignore the attributes of the nodes.

Community search on attribute graphs. In fact,

community search on the multiple attribute graph has

made great progress. In addition to the basic structural

constraints, existing works utilize different definitions

and methods in terms of attribute constraints. In Ref.

[23], each node was associated with a set of keywords,

and it tried to find the community with the maximum

number of common keywords for all nodes. Besides,

there are also some algorithms on a location-based

attributed graph, such as Spatial-Aware Community

(SAC) search[24], Radius-Bounded k-core (RB-k-core)

search[25], and Geo-Social Group Queries with minimum

acquaintance constraint (GSGQ)[26]. Recently, Li et

al.[27] assigned each node a weight (such as PageRank

or any other user-defined attributes) and formulated the

influence of a community as the minimum weight among

all nodes. In many real social networks, each node has a

number of attributes that represent different aspects of

the node. However, the algorithms discussed above take

into account only one attribute. Based on the definition

of influential community in Ref. [27], Li et al.[7] further

studied the first community model for a multi-valued

network, and the communities focusing on are those that

cannot be dominated by other communities. However,
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when searching all the skyline communities, the time

complexity of the algorithm increases exponentially with

the increase of the number of attributes, so it is difficult

to handle networks with higher dimensions. Therefore,

it is necessary to propose a more efficient way that can

find the most important communities in less time.

3 Problem Definition

We first formally present the multi-valued graph model.

The network with d numerical attributes is modeled as

a multi-valued graph G D .V; E; A/, where V , E, and

A represent the sets of nodes, edges, and d -dimensional

vectors associated to nodes, respectively. We have

jV j D jAj D n and jEj D m. The d -dimensional

real-valued vector associated to a node u 2 V , which

represents the attribute values of node u, is denoted as

Au D .a1
u; : : : ; ad

u /, where Au 2 A and ai
u 2 R for

i D 1; 2; : : : ; d . Without loss of generality, we assume

that the attribute values are positive. Notice that different

from Ref. [27], we do not assume that the values in a

dimension form a strict order, which makes our result

extensively applicable in reality.

We study the community search problem in the above

defined multi-valued graph model. Intuitively, the

problem is to find communities that have an influence

on multiple dimensions. Specifically, we adopt the

skyline community model that is presented in Ref. [7]

to define the influential communities. The skyline

community model is based on the concepts of k-core[4]

and skyline[5], which aims to find communities that are

not dominated by the other communities in terms of d

numerical attributes. The k-core model well depicts

the cohesiveness of a community, while the skyline

model captures the influence of a community. We next

introduce the definition of skyline community in detail.

Definition 1 (k-core) Given an undirected graph

G D .V; E/, and let H D .V 0; E 0/ is a subgraph of

G, where V 0 � V and E 0 � E. If H satisfies 8v 2 H;

degH .v/ > k , then H is a k-core of graph G.

The k-core has been widely used to represent the

structural cohesiveness of communities. However, the k-

core model cannot capture the d -dimensional numerical

attributes of a community. To better describe the

importance of community, the skyline community model

takes the numerical attributes into account.

Definition 2 (Community Influence(CI)) Given a

multi-valued graph G D .V; E; A/, assume that the

minimum attribute value of nodes in the i -th dimension

(for i D 1; 2; : : : ; d ) of G is denoted by fi .G/, i.e.,

fi .G/ D minu2V .Ai
u/, and the CI of G is defined by

f .G/ D .f1; f2; : : : ; fd /.

The definition of CI is defined as the minimum

attribute value of a community in all dimensions,

which ensures the minimum influence of nodes in the

target community. If the context is clear, we simply

write fi .G/ as fi . With this definition, it is easy to

compute the influential communities if there is only one

dimension. The basic idea is that we can first compute

the largest CI among the communities satisfying the

cohesive property in a graph, denoted as CI�, and delete

the nodes whose attribute values are smaller than CI�.

The connected k-cores in the remaining graph are then

the communities that satisfy both the cohesiveness and

the influence requirement.

However, when considering multiple dimensions, the

situation becomes much more complicated, as it is not

easy to define the maximum CI. For example, if there are

two communities whose CIs are .1; 3; 4/ and .3; 2; 1/,

respectively, and we cannot simply say which one is

larger. Because we mainly care about the communities

that are cohesive and cannot be dominated by other

communities. Hence, the following MCI is proposed

to measure the influence of communities.

Definition 3 (MCI) Let H1 be a subgraph of G. If

there does not exist another subgraph H2 of G satisfying

fi .H1/ D fi .H2/ for all i D 1; : : : ; d; and fj .H1/ <

fj .H2/ for a certain j , then f .H1/ is called a maximal

community influence.

Furthermore, if for two communities H1 and H2,

fi .H1/ D fi .H2/ for all i D 1; : : : ; d; and fj .H1/ <

fj .H2/ for a certain j , we say H1 is dominated by H2,

denoted as H1 � H2.

Based on the definitions of k-core and MCI, the

skyline community can then be defined.

Definition 4 ((Skyline community[7]) Given a multi-

valued graph G D .V; E; A/ and an integer k, a skyline

community with a parameter k is a subgraph H D .VH ;

EH ; AH / of G, such that H satisfies the following

properties:

� Cohesive property: H is a connected k-core;

� Skyline property: f .H/ is an MCI;

� Maximal property: There does not exist an induced

subgraph H 0 such that (1) H 0 is a k-core, (2) H 0

contains H , and (3) f .H 0/ is an MCI.

We use the example in Fig. 1 to illustrate the skyline

community. In Fig. 1, each node has three attributes.

Considering the case of k D 2, we will find that the
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v1 : {5,2,1}

v3 : {4,3,4}

v4 : {2,3,2}

v5 : {1,1,3}

v6 : {4,2,4}
v7 : {5,3,4}

v8 : {6,2,1}

                   v9 : {4,2,5}
v2 : {3,4,3}

v10 : {3,1,4}

v11 : {3,5,3}

v13 : {4,4,1}

v12 : {2,4,3}

Fig. 1 Example of skyline communities.

subgraphs H1 D fv2; v3; v6g, H2 D fv7; v9; v10g, and

H3 D fv11; v12; v13g are skyline communities, as the

CIs of these communities are .3; 2; 3/, .3; 1; 4/, and

.2; 4; 1/, respectively, and there are no communities can

dominate them. Notice that H5 D fv3; v4; v6g is not

a skyline community, since the CI of it is .2; 2; 2/ �

f .H1/.

With the definition of skyline community, the

community search problem is then defined as finding all

the skyline communities from a given multi-valued graph

G D .V; E; A/ with the given parameter k. In Ref. [7],

there have been algorithms proposed to solve the skyline

community search problem. However, the complexity

of these algorithms increases exponentially with the

increase of the number of attributes, which makes

the algorithms impossible to handle high-dimensional

graphs. Hence, it deserves to investigat methods that

can greatly improve the search efficiency, while can still

list the most important communities, e.g., those with

large parameter k. We propose a new approach that

can reduce inessential attributes based on the concept of

entropy defined below.

Maximum entropy model. The basic idea of our

approach is to reduce inessential attributes such that the

efficiency of community searching can be significantly

improved. On the other hand, the searching result cannot

be heavily affected after attribute reduction, or at least

the important communities, such as those with large

parameter k, should be found. Hence, the remaining

attributes should keep as much information as possible

that can facilitate finding the important communities.

In principle, the maximum entropy theory states that,

subject to precisely stated prior data (a set of precise

constraints), the probability distribution which best

represents the current state of knowledge is the one with

the largest information-theoretical entropy. So we can

use the entropy to help find the most important attributes.

Specifically, given a multi-dimensional graph G D

.V; E; A/ and a parameter p 6 d , let Ap denote the

set of all combinations of p dimensions. We calculate

the set P 2 Ap consisting of the most important p

dimensions, such that

maximize �
X

a2QP

NP .a/

NP

� log

�

NP .a/

NP

�

;

subject to 8a2QP
NP .a/ > 0;

where QP denotes the set of values of nodes on the

p dimensions in P ; NP .a/ denotes the number of

nodes that have value a on the p dimensions in P , and

NP is the number of nodes that have values on the p

dimensions in P , and in our setting, NP D n for any

set P .

The following result ensures that we can use the

approach of dimension reduction to improve the

community searching efficiency.

Theorem 1 The communities we find after

dimension reduction are skyline communities.

Proof Assuming that there are d dimensions,

denoted by A D f1; 2; : : : ; dg. Without loss of

generality, let P D f1; : : : ; pg be the dimension selected.

Let C be a skyline community with respect to the p

dimensions in P , this means that there is no another

skyline community C1 that satisfies f .C / � f .C1/ on

the dimensions in P . Thus, when considering all d

dimensions, it is easy to see that f .C / is still an MCI,

and C clearly satisfies the other two properties. As a

consequence, C is still a skyline community with d

dimensions, and the theorem is proved. �

4 Skyline Community Search Algorithm

In this section, we present our skyline community search

algorithms. At first, we present the algorithm for the

case of d D 2. The algorithm is similar to that in

Ref. [7]. But we adapt the algorithm such that it can

handle the scenario that nodes may have the same value

on a dimension. Then with the above algorithm as a

subroutine, we present the algorithm for the general case

with a d -dimensional graph. We finally give a much

more efficient algorithm with the idea of dimension

reduction.

4.1 Algorithm for dDDD2

We consider the case that nodes have two attributes,

denoted as .A1; A2/. For a node u, let .a1
u; a2

u/ denote

the attribute values of u. For a community C , its CI is

denoted as .f1; f2/. Basically we need to figure out all

.f1; f2/ values that are MCI, based on which all skyline

communities can be found.
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Basically, we need to filter the k-cores to finally find

skyline communities. The algorithm proposed in Ref.

[7] relies on the assumption that the values of nodes on

each particular dimension are all different, which admits

that the algorithm just considers the k-cores containing

some specific nodes. However, this idea does not work

anymore when multiple nodes may have the same value

on a particular dimension, as it cannot determine a

unique node by a fixed value in a dimension. Hence, we

propose a manner relying on MCIs to filtering k-cores.

Specifically, Algorithm 1 is first invoked to compute

the largest CI on the A2 dimension, denoted by f �

2 .

Then, all nodes v with a2
v < f �

2 are deleted from

the graph. Notice that instead of actually deleting

these nodes from the graph G, they are just removed

temporarily so as to find out the communities whose CI

on the A2 dimension equals f �

2 . After that, Algorithm 1

is invoked again to find the largest value of nodes on the

first dimension in the remaining graph, denoted as Qf1. It

is easy to check that . Qf1; f �

2 / is an MCI.

Once we obtain the MCI of . Qf1; f �

2 /, we can

immediately compute the corresponding communities.

But how can we efficiently find other skyline

communities? Notice that the value of f2 in above MCI

we have found is the largest on the A2 dimension, so we

have to increase f1 to find other MCIs. Based on this

idea, the nodes v with a1
v 6 Qf1 can be deleted from G,

as communities with these nodes are dominated by the

community we have found. In the remaining graph, we

iteratively use the same method to find the MCIs and

Algorithm 1:� MaxCI (G, i, k)

Input: :�A multi-attribute graph G D .V; E; A/ and a

non-negative integer k

Output: :�Largest CI in the i -th dimension

1 f D 0 ;

2 G0  maximal k-core in G;

3 while G0 ¤ ∅ do

4 Let u 2 G0 be the node with the smallest attribute value

on the i-th dimension;

5 f  fi .u/;

6 G0  Update.G0; u/;

7 return f ;

8 Function Update(G; u);

9 foreach v 2 neighbor.u/ do

10 degree.v/ degree.v/ � 1;

11 if degree.v/ < k then

12 Update.G; v/;

13 delete u from G;

14 return G;

corresponding skyline communities till f2 D 0. The

detailed algorithm is given in Algorithm 2. In Algorithm

2, dlist is used to store current .f2; f1/ value. Since the

algorithm computes f2 first and f1 later, we will also

generate dlist in this order. Besides, fdf1 is a global

variable that holds all the MCIs we have found. Initially,

dlist and fdf1 are empty.

Theorem 2 In the case of d D 2, Algorithm 2

can compute all communities with time complexity of

O.l.m C n//, where l is the maximum of different

dimension values on every dimension.

Proof In Algorithm 2, MaxCI is first invoked to

compute the maximum value on the A2 dimension,

which takes O.n C m/ time. After that, all MCIs and

corresponding communities are iteratively calculated.

The total number of iterations is upper bounded by l , and

each iteration takes O.nCm/. Combining all together,

the time complexity of the algorithm can be derived. �

4.2 Algorithm for d >>>3

In the scenario of d D 3, the method of computing

the MCIs used in the case of d D 2, i.e., determining

the largest value in one dimension and then going

through the values on the other dimension, is unavailable

any more. This is because in the case of d > 3, after

computing the maximal value in one dimension, it is

hard to determine the remaining values of a skyline

community on other dimensions.

Our algorithm uses a similar dimension reduction idea

Algorithm 2:� BICS (G, k, dlist)

Input: :�A multi-valued graph G D .V; E; A/ and a

non-negative integer k

Output: :�Skyline communities of G

1 R ∅; G0  ∅;

2 G1  the graph consisting of maximal k-cores in G;

3 f �
2
 MaxCI.G; 2; k/;

4 while f �
2

> 0 do

5 G0  G1;

6 remove u 2 G0 with a2
u < f2;

7 Qf1  MaxCI.G0; 1; k/;

8 dlist dlist [ ff �
2

; Qf1g;

9 if dlist is not dominated by fdf1 then

10 add dlist to fdf1;

11 remove u 2 G0 with a1
u < Qf1;

12 G0  kcore.G0/;

13 R connected communities of G0;

14 remove u 2 G1 with a1
u 6 Qf1;

15 f �
2
 MaxCI.G1; 2; k/;

16 return R;
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as that in the algorithm given in Ref. [7]. But here we

need to implement the algorithm based on the MCIs,

rather than some specific nodes. Basically, we first

fix one dimension and derive all possible values on the

dimension. Then, for each possible value on the fixed

dimension, the algorithm invokes itself with dimensional

parameter d � 1 to compute the .d � 1/-dimensional

skyline communities. By checking whether the CI of

these skyline communities is MCI, all d -dimensional

skyline communities are finally found.

The detailed implementation of our algorithm is

shown in Algorithm 3. Similar to Algorithm 2, the

MaxCI method is first invoked to calculate the maximum

f value of maximal k-cores on the d -th dimension,

denoted by f � (Line 6). Let F denote the set of all

possible values on the d -th dimension. For each value

f 2 F with f 6 f �, the algorithm invokes itself to

compute .d � 1/-dimension skyline communities, after

deleting all nodes with ad
v < f (Lines 7–14). When the

dimension is reduced to 2, Algorithm 2 is invoked to

compute 2-dimensional skylines (Lines 2 and 3). After

determining the value of each dimension in the above

procedure, it is then checked whether the CI composed

by these values is maximal. Once an MCI is determined,

its corresponding skyline communities are then found.

Theorem 3 For d > 3, Algorithm 3 can find

all skyline communities, and the time complexity is

O.ld�2.l.mC n///.

Proof For each CI generated in the algorithm,

Algorithm 3:� MICS (G, d, k, dlist)

Input: :�A multi-valued graph G D .V; E; A/, the number of

dimensions d , and a non-negative integer k

Output: :�Skyline communities of G

1 R ∅;

2 if d D 2 then

3 return BICS(G; k; dlist);

4 G1  the graph consisting of maximal k-cores in G;

5 F  the values on the d -th dimension;

6 f �  MaxCI.G1; d; k/;

7 foreach f 2 F and f 6 f � do

8 dlist dlist [ ff g ;

9 foreach v 2 G1 do

10 if ad
v < f then

11 G1  G1 n fvg ;

12 if G1 ¤ ∅ then

13 R MICS.G1; d � 1; k/;

14 dlist dlist n ff g;

15 return R ;

algorithm MICS will determine whether it is dominated

by previous MCIs, and all possible combinations of

.f1; :::; fd / have been considered, so it is ensured

that all MCIs have been found. According to each

MCI, corresponding skyline communities are computed

simultaneously. Hence, all skyline communities are

finally found. We next discuss the time complexity of

algorithm MICS.

In each dimension reduction process, the algorithm

with a smaller dimension parameter is invoked for at

most l times, and in general l � n. When d is reduced

to 2, Algorithm 2 is invoked, which takes O.l.mC n//

time. Hence, the total time consumed is upper bounded

by O.ld�2.l.mC n///. �

As shown in Theorem 3, though Algorithm 3

can perfectly solve the skyline community search

problem, its time complexity is unacceptable, which

increases exponentially with the increase of the

number of dimensions. Hence, we subsequently present

an algorithm that can compute important skyline

communities, while significantly reduce the time

complexity, by considering only a fixed number of

dimensions when computing the skyline communities.

4.3 Algorithm with dimension reduction

Since the time complexity of computing the skyline

community increases with the number of dimensions,

our intuition is to select a small number of important

dimensions that can help to find the most important

skyline communities. We here make use of the maximum

entropy method to achieve this goal.

The detailed algorithm is given in Algorithm 4. In

Algorithm 4, we first compute p dimensions that are

crucial to community search, for some given parameter

p. Specifically, the entropy for each combination of

p dimensions are computed, and the one with the

maximum entropy is selected (Lines 2 and 3). This

p dimensions are denoted as P . Then Algorithm 3 is

Algorithm 4:� P-MICS (G, d, k, dlist)

Input: :�A multi-valued graph G D .V; E; A/, the number of

dimension d , and a non-negative integer k

Output: :�Skyline communities of G

1 plist ∅; R ∅;

2 Compute the entropy of all combinations of p dimensions

in A;

3 P  Find the p dimensions with the maximum entropy;

4 GP  G.V; E; P /;

5 R MICS(GP ; p; k; P );

6 return R ;
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invoked to compute the skyline communities in the graph

GP which only consider the dimensions in P . As shown

in Theorem 1, the skyline communities computed using

graph GP are also skyline communities of G.

As illustrated in Section 5, for a large k, Algorithm 4

can get almost all skyline communities of G. This means

that Algorithm 4 can find almost all large communities

with high influence. On the other hand, the following

theorem shows that our algorithm can exponentially

reduce the time complexity. The proof of Theorem 4 is

similar to that of Theorem 3.

Theorem 4 The time complexity of Algorithm 4 is

O.lp�2.l.mC n///.

5 Experimental Result

In this section, we evaluate our community search

algorithm on real datasets. In particular, we will compare

the efficiency and the effectiveness of algorithms MICS

and P-MICS, i.e., the running time of these two

algorithms and the quality of skyline communities these

two algorithms find. All programs were implemented in

Java language and compiled with IntelliJ IDEA, and

all experiments were performed on a machine with

Intel Core i5-7500 3.41 GHz and 8 GB DDR3-RAM

in Windows 10.

We use the four real-world social network datasets

listed in Table 1 to evaluate the performance of our

algorithms. In Table 1, dmax and kmax represent the

maximum degree and the maximum core number in

the network, respectively. The datasets are downloaded

from an interactive scientific network data repository

(http://networkrepository.com). Besides, the generation

of attribute values in the experiment is mainly

subject to two distributions, uniform distribution, and

normal distribution. In the experiments, the number of

dimensions is set as d D 10.

5.1 Efficiency evaluation

The running time comparison of MICS and P-MICS is

shown in Fig. 2. In Fig. 2, the running time corresponds

to the case d D 10 for MICS, and the other two curves

Table 1 Network statistics.

Dataset Node Edge dmax kmax

brightkite 5:7 � 104 2:13 � 105 103 53

gowalla 1:97 � 105 9:50 � 105 1:5 � 104 52

delicious 5:36 � 105 106 3 � 103 34

lastfm 1:2 � 106 4:5 � 106 5 � 103 71

illustrate the running time for P-MICS in the cases that

reducing the number of dimensions to p D 6 and

p D 3. From Fig. 2, we can see that in all datasets,

P-MICS can greatly reduce the running time. As shown

in Fig. 3, which illustrates the reduction rate of P-MICS

over MICS on the running time, it can be seen that

when reducing the number of dimensions to p D 3,

the running time can be reduced by around 30%, and

when reducing the number of dimensions to p D 3, the

reduction can be as large as 75%. Furthermore, it can

also be found in Fig. 2 that the running time decreases

promptly as k increases. This is because k limits the

minimum degree of nodes in the target communities, and

hence the larger k is, the more nodes are filtered out. In

the dataset gowalla, the running time is less sensitive to

k, due to its higher average degree.

The above experimental results show that our

algorithms can efficiently compute the skyline

communities, and P-MICS can greatly reduce the

computation time. We next compare the quality of the

skyline communities.

5.2 Quantity evaluation

In Fig. 4, the numbers of skyline communities found

by MICS (d D 10) and P-MICS (p D 6 and p D 3)

are illustrated. From Fig. 4, it can be found that the

more dimensions are considered in the algorithm, the

more skyline communities can be found. However,

when k is large, even if the number of dimensions is

reduced to p D 3, P-MICS can find almost all skyline

communities. This is because the maximum entropy

method can select the most important dimensions that

reserve essential information. On the other hand, the

parameter k determines the cohesiveness of the skyline

community. Hence, the communities with a large k are

more important and are those that deserved to being

detected.

To summarize, the experimental results show that our

algorithms can efficiently and effectively find skyline

communities. Comparing to MICS, by reducing the

dimension but keeping the most important ones using

the maximum entropy method, P-MICS can find almost

all cohesive communities (i.e., those with a large

k), while significantly reducing the computation time.

Furthermore, the experimental results also imply that it

is possible to find an appropriate dimension reduction

parameter p to balance the reduction of running time

and the quality of the community search.
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Fig. 2 Running time of MICS (dDDD10) and P-MICS (pDDD6 and pDDD3).
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Fig. 3 Reduction rate of P-MICS comparing with MICS.

10 15 20 25
k

0

20

40

60

80

100

120

140

N
um

be
r o

f  
sk

yl
in

e 
co

m
m

un
iti

es

d=10
p=6
p=3

(a) brightkite

10 15 20 25
k

0

20

40

60

80

100

120

N
um

be
r o

f  
sk

yl
in

e 
co

m
m

un
iti

es

d=10
p=6
p=3

(b) gowalla

10 15 20 25
k

0

10

20

30

40

 N
um

be
r o

f s
ky

lin
e 

co
m

m
un

iti
es

d=10
p=6
p=3

(c) delicious

10 15 20 25
k

0

25

50

75

100

125

150

175
N

um
be

r o
f  

sk
yl

in
e 

co
m

m
un

iti
es

d=10
p=6
p=3

(d) lastfm

Fig. 4 Number of skyline communities found by MICS (dDDD10) and P-MICS (pDDD6 and pDDD3).

6 Conclusion

In this paper, we study how to find influential

communities on a multi-valued graph. In our model,

each node is associated with d attribute value, and the

size of these values indicates its importance. What

we are looking for are communities whose nodes are

important and structure is cohesive. We propose the

basic community search algorithm in the case of a high

dimension, and we notice that the dimensions have a

great influence on the algorithm time. Therefore, we

then propose a dimensionality reduction algorithm with

a maximum entropy model, which can preserve a lot

of information even if fewer dimensions are considered.

Experiments on real graphs also prove the effectiveness

of our dimensionality reduction algorithm.
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