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We present a general method for analyzing mixed-mode oscillations (MMOs) in parametrically and externally

excited systems with two low excitation frequencies (PEESTLEFs) for the case of arbitrary m:n relation between

the slow frequencies of excitations. The validity of the approach has been demonstrated using the equations of

Duffing and van der Pol, separately. Our study shows that, by introducing a slow variable and finding the relation

between the slow variable and the slow excitations, PEESTLEFs can be transformed into a fast-slow form with a

single slow variable and therefore MMOs observed in PEESTLEFs can be understood by the classical machinery

of fast subsystem analysis of the transformed fast-slow system.

DOI: 10.1103/PhysRevE.92.012911 PACS number(s): 05.45.−a, 82.40.Bj

I. INTRODUCTION

Many problems in physics, chemistry, biology, engineering,

etc., can be described by nonlinear systems with slowly

varying control parameters. From the view point of physics,

this results from the fact that the results of a long-time

experiment may depend on parameters that are varying slowly.

For example, the weight of a rocket in flight slowly decreases

due to the burning of fuel and improves the speed of the

rocket [1,2]. Catalytic activities in chemical reactors slowly

decline due to chemical erosion and decrease the reactor

performance [3,4]. In all these problems, there are parameters

that are varying slowly with time or are deliberately varied by

the researcher. Slow linear simulation of a parameter is one of

the most common hypotheses that describe the variety law

of the slow parameter. Dynamical behaviors in such a situation

have been intensively studied (see, e.g., [5–7]). Another

interesting case is the slow periodic simulation of a parameter,

i.e., the case when the control parameter is a slowly varying

periodic function. Pisarchik et al. [8] provided experimental

evidence that a slowly varying periodic parameter can control

dynamical regimes and inhibit chaos in a nonlinear system.

It has also been shown that a slowly varying periodic

parameter can stabilize unstable orbits [9], annihilate one of the

coexisting states, and thus results in controlled monostability

[10]. In particular, a slowly varying periodic parameter can

lead to periodic bifurcation delay behaviors, which have been

identified as new routes to repetitive spiking and bursting [11].

However, most of the previous work focused on systems with

a single slowly varying periodic parameter and there has been

little work done on the analysis of dynamical systems with two

slowly varying control parameters.

In this paper we use slow parametric and external excita-

tions to simulate two slowly varying periodic parameters in

*biqinsheng@sohu.com

dynamical systems, governed by the general form

ẋ = F (x,β1cos(ω1t)) + β2cos(ω2t), (1)

where x ∈ R
n is the vector of dynamics, β1cos(ω1t) and

β2cos(ω2t) are the parametric and external excitations, re-

spectively, and ω1 and ω2 are small (ω1 ≪ 1 and ω2 ≪ 1), i.e.,

both of the excitations vary slowly, and denote slow cosinoidal

modulations of two parameters in the dynamical system. We

assume that the system (1) has only one time scale for the case

when the two excitations are frozen, i.e., when ω1 = ω2 = 0,

there is no difference in the time scale among variables.

Numerous results for parametrically and externally excited

systems play an important role in promoting the development

of the theory of nonlinear dynamics and its application. Various

qualitative and quantitative methods are used to study the

response, bifurcations, and chaos in these systems (see, e.g.,

Refs. [12–18] and references therein). In this paper we give a

different point of view on parametrically and externally excited

systems when the two excitations vary slowly, i.e., from the

viewpoint of fast-slow dynamics. Since the two excitations

evolve on a relatively slow time scale, while the frozen system

itself evolves on a relatively fast time scale, the system (1)

belongs to a class of fast-slow systems with two slow variables.

The fast subsystem is given by ẋ = F (x,β1γ1) + β2γ2, while

the slow variables are cos(ω1t) and cos(ω2t).

Earlier work that treated a slowly varying excitation as

a slow variable appeared in Ref. [19], where an unfolding

theory approach to mixed-mode oscillations (MMOs) was

investigated when the slow excitation traced a closed path

in the universal unfolding of the singularity. The basic idea

was presented in Ref. [20], where a classification scheme for

MMOs was described. In Refs. [21,22] this idea was applied to

the Duffing and van der Pol systems with a slowly varying ex-

ternal forcing term. Recently, it was extended to accommodate

a van der Pol system with two slowly varying external forcing

terms [23], where many complex MMOs were discovered.

Mixed-mode oscillations, also known as bursting oscil-

lations, are complex oscillatory patterns characterized by a
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FIG. 1. Mixed-mode oscillations in the Duffing system (12) for (a) ω1 = ω2 = 0.01, (b) ω1 = 0.01 and ω2 = 0.02, (c) ω1 = 0.01 and

ω2 = 0.03, (d) ω1 = 0.01 and ω2 = 0.04, (e) ω1 = ω2 = 0.02, and (f) ω1 = 0.02 and ω2 = 0.04. The insets in (a) and (b) are the enlargement

of the rectangle areas and give a clear view of the oscillations. The circled region in (b) shows that the bursting in (b) exhibits different

characteristics compared to the bursting in (a).

TABLE I. Parametrically and externally excited Duffing equation and the associated fast subsystem with different ω2 for fixed ω1 = 0.01.

ω1 ω2 Parametrically and externally excited Duffing equation Fast subsystem

0.01 0.01 ẍ + 0.1ẋ − [0.5 + cos(0.01t)]x + x3 = cos(0.01t) ẍ + 0.1ẋ − (0.5 + γ )x + x3 = γ

0.01 0.02 ẍ + 0.1ẋ − [0.5 + cos(0.01t)]x + x3 = cos(0.02t) ẍ + 0.1ẋ − (0.5 + γ )x + x3 = 2γ 2 − 1

0.01 0.03 ẍ + 0.1ẋ − [0.5 + cos(0.01t)]x + x3 = cos(0.03t) ẍ + 0.1ẋ − (0.5 + γ )x + x3 = 4γ 3 − 3γ

0.01 0.04 ẍ + 0.1ẋ − [0.5 + cos(0.01t)]x + x3 = cos(0.04t) ẍ + 0.1ẋ − (0.5 + γ )x + x3 = 8γ 4 − 8γ 2 + 1
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FIG. 2. (Color online) (a1) Bifurcation diagram of the fast subsystem (13), where γ is used as the control parameter. Solid curves are stable

equilibria, while the dashed curve indicates the unstable equilibrium. The FB denote fold bifurcations of the equilibria. (a2) Corresponding

transformed phase diagram of MMOs, with the bifurcation diagram shown in (a1) superimposed, where the stable equilibria are highlighted

with thick blue curves. (b1) and (b2) Same as in (a1) and (a2) for ω1 = 0.01 and ω2 = 0.02.

combination of small-amplitude and large-amplitude oscil-

lations, which can be described by coupled fast and slow

subsystems [24,25]. Rinzel [26] proposed the idea of using

bifurcation analysis of a frozen or fast subsystem to explain

MMO patterns. This idea is what we know as fast-slow

analysis, which was applied to great effect in the work by

Izhikevich [24] to create a classification of MMOs. Based

on the fast-slow analysis, the underlying mechanisms of the

appearance of MMOs in fast-slow systems with a single slow

variable have been actively investigated [19–22,24–30].

Moreover, there is a vast literature on MMOs in systems

with more than one slow variable. Rinzel [31] pointed out that

to generate a parabolic MMO pattern [32] in an autonomous

manner requires at least two slow variables. Izhikevich [24]

reviewed MMOs in systems with two slow variables and

presented some possible routes to MMOs. Milik et al. [33]

and Krupa et al. [34] showed that, in fast-slow systems with

two slow variables, the occurrence of MMOs is triggered by a

generalized canard phenomenon and folded singularity. Curtu

[35] and Guckenheimer [36] substantially showed that MMOs

in fast-slow systems with two slow variables were also linked

to singular Hopf bifurcations. Watts et al. [37] studied a type

of bursting model with two slow variables, where the observed

MMOs can be well understood by introducing a measure

called the dominance factor. Li and Bi [38] investigated the

mechanism of the generation of MMOs in a chemical reaction

system with two slow variables. The repetitive spiking process

of the MMOs is associated with weak excitation and can be

understood by an enveloping slow-fast analysis. A detailed

and thorough overview is presented in [39], where a survey of

different types of MMOs concentrate the analysis on MMOs

whose small-amplitude oscillations are produced by a local,

multiple-time-scale mechanism.

Though much work has been done, a systematic and

uniform method for analyzing MMOs in general fast-slow

systems with more than one slow variable is still missing. In

this paper we explore a general method for analyzing MMOs

in a class of fast-slow systems with two slow variables, i.e.,

the parametrically and externally excited systems with two

low excitation frequencies (PEESTLEFs), given by Eq. (1).

The remainder of this paper is organized as follows. In

Sec. II we provide a general method for analyzing MMOs in

PEESTLEFs. In Sec. III we implement the method on Duffing

and van der Pol equations to investigate MMOs. Dynamical

mechanisms underlying the appearance of MMOs and their

evolutions are investigated to validate the method. We show

that PEESTLEFs exhibit rich and complex MMOs and our

approach plays a key role in understanding such phenomena.

Finally, in Sec. IV we conclude with a discussion of our

results.
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FIG. 3. (Color online) Same as in Fig. 2 for (a1) and (a2) ω1 = 0.01 and ω2 = 0.03 and (b1) and (b2) ω1 = 0.01 and ω2 = 0.04.

II. GENERAL METHOD

We start by outlining the method for analyzing MMOs in

PEESTLEFs. The basic method is to transform PEESTLEFs,

a class of fast-slow systems with two slow variables, into fast-

slow forms with a single slow variable. This is possible if

we can find a slow variable g(t) such that both cos(ω1t) and

cos(ω2t) can be expressed as a function of g(t), i.e., cos(ω1t) =

f1(g(t)) and cos(ω2t) = f2(g(t)). Then the PEESTLEFs can

be rewritten in the form

ẋ = F (x,β1f1(g(t))) + β2f2(g(t)), (2)

where g(t) is the only slow variable. From a mathematical point

of view, the transformed system (2) is no different compared to

the original system (1). However, from the viewpoint of fast-

slow dynamics, the PEESTLEFs has been transformed into

a fast-slow form with a single slow variable g(t). Therefore,

MMOs observed in PEESTLEFs can be understood by the

classic fast-slow analysis of the transformed system (2).

In addition, we find the slow variable g(t) and the associated

functions f1(x) and f2(x) according to the relation between

the frequencies of the two excitations. To this end we consider

the de Moivre formula [40]: For any real number x and integer

n, it holds that

(cosx + i sinx)n = cos(nx) + i sin(nx), (3)

where i stands for the imaginary unit (i2 = −1). Expanding the

left-hand side and comparing the real and imaginary parts, one

can derive expressions for cos(nx) and sin(nx). The expression

for cos(nx) is given by

cos(nx) = C0
ncosnx + C2

ncos(n−2)x(i sinx)2

+C4
ncos(n−4)x(i sinx)4 + · · ·

+Cm
n cos(n−m)x(i sinx)m, (4)

TABLE II. Parametrically and externally excited Duffing equation and the associated fast subsystem with different ω1 and ω2.

ω1 ω2 Parametrically and externally excited Duffing equation Fast subsystem

0.02 0.01 ẍ + 0.1ẋ − [0.5 + cos(0.02t)]x + x3 = cos(0.01t) ẍ + 0.1ẋ − [0.5 + (2γ 2 − 1)]x + x3 = γ

0.03 0.01 ẍ + 0.1ẋ − [0.5 + cos(0.03t)]x + x3 = cos(0.01t) ẍ + 0.1ẋ − [0.5 + (4γ 3 − 3γ )]x + x3 = γ

0.04 0.01 ẍ + 0.1ẋ − [0.5 + cos(0.04t)]x + x3 = cos(0.01t) ẍ + 0.1ẋ − [0.5 + (1 + 8γ 4 − 8γ 2)]x + x3 = γ

0.02 0.03 ẍ + 0.1ẋ − [0.5 + cos(0.02t)]x + x3 = cos(0.03t) ẍ + 0.1ẋ − [0.5 + (2γ 2 − 1)]x + x3 = 4γ 3 − 3γ

0.03 0.02 ẍ + 0.1ẋ − [0.5 + cos(0.03t)]x + x3 = cos(0.02t) ẍ + 0.1ẋ − [0.5 + (4γ 3 − 3γ )]x + x3 = 2γ 2 − 1
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FIG. 4. (Color online) Bifurcation diagram of the fast subsystem

for (a) ω1 = 0.02, (b) ω1 = 0.03, and (c) ω1 = 0.04. The frequency

ω2 is fixed at ω2 = 0.01.

where m (m � n) is the maximum even number no larger than

n. Since the power of i sin(x) in each item of (4) is even and

sin2x = 1 − cos2x, it is easy to check that cos(nx) can be

expressed as a function of cos(x), i.e., cos(nx) ≡ f ∗
n (cos(x)),

where f ∗
n (x) follows the polynomial function

f ∗
n (x) = C0

nx
n − C2

nx
n−2(1 − x2) + C4

nx
n−4(1 − x2)2

− · · · + imCm
n xn−m(1 − x2)m/2, (5)

where m (m � n) is the maximum even number no larger

than n.

Next let us explore the slow variable g(t) and the functions

f1(x) and f2(x) based on the above results. We consider the

case of the arbitrary m:n relation between the two frequencies

of excitations (ω1 and ω2).

Case A: ω1

ω2
= m

n
, where m and n are integers. There exists

a largest integer l, i.e., the greatest common divisor of m and

n, that satisfies m = pl and n = ql, where p and q are two

prime numbers. Therefore, the slow frequencies can be written

in the form ω1 = εpl and ω2 = εql with ε ≪ 1. Based on

(4) and (5), we have cos(ω1t) = f ∗
p (cos(εlt)) and cos(ω2t) =

f ∗
q (cos(εlt)). So the slow variable g(t) can be chosen as g(t) =

cos(εlt) and the functions f1(x) and f2(x) can be selected as

f1(x) = f ∗
p (x) and f2(x) = f ∗

q (x). Thus the PEESTLEFs can

be written in a fast-slow form with a single slow variable, given

by

ẋ = F (x,β1f
∗
p (g(t))) + β2f

∗
q (g(t)), (6)

where g(t) = cos(εlt) is the slow variable. Additionally, there

are two special cases based on case A.

Case B: ω1

ω2
= n, where n is an integer. Since cos(ω1t) =

f ∗
n (cos(ω2t)), where f ∗

n (x) is the polynomial function given by

(5), the slow variable g(t) can be chosen as g(t) = cos(ω2t) and

the functions f1(x) and f2(x) can be selected as f1(x) = f ∗
n (x)

and f2(x) = f ∗
1 (x) = x, which yields

ẋ = F (x,β1f
∗
n (g(t))) + β2g(t), (7)

where g(t) = cos(ω2t) is the slow variable.

Case C: ω2

ω1
= n, where n is an integer. Since cos(ω2t) =

f ∗
n (cos(ω1t)), where f ∗

n (x) is given by (5), we have g(t) =

cos(ω1t), f1(x) = f ∗
1 (x) = x, and f2(x) = f ∗

n (x), which

yields

ẋ = F (x,β1g(t)) + β2f
∗
n (g(t)), (8)

where g(t) = cos(ω1t) is the slow variable.

Bifurcation behavior of the fast subsystem plays an impor-

tant role in the generation of MMOs. Traditionally, there are

at least two bifurcations associated with MMOs and different

MMOs can be obtained if the fast subsystem exhibits different

bifurcation modes [24,25]. From Eqs. (6)–(8) one can see that

the dynamic equation of the fast subsystem of PEESTLEFs

changes with varying the frequencies of the two excitations.

For example, for the fast-slow system (6), the associated fast

subsystem is

ẋ = F (x,β1f
∗
p (γ )) + β2f

∗
q (γ ); (9)

for the system (7), the related fast subsystem is given by

ẋ = F (x,β1f
∗
n (γ )) + β2γ ; (10)

and for the system (8), the corresponding fast subsystem

is

ẋ = F (x,β1γ ) + β2f
∗
n (γ ). (11)

In Eqs. (9)–(11), γ is the control parameter. Such changing

of the dynamics of the fast subsystem of PEESTLEFs may

further lead to different bifurcation modes, which provide

essential conditions for the generation of different MMOs.

Therefore, according to the above analysis, one can conclude
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FIG. 5. (Color online) (a1) Time series of the solution for ω1 = 0.02 and ω2 = 0.01, (a2) transformed phase diagram of the solution and

its overlay with the equilibrium curve in Fig. 4(a), (b1) and (b2) same as in (a1) and (a2) for ω1 = 0.03 and ω2 = 0.01, and (c1) and (c2) same

as in (a1) and (a2) for ω1 = 0.04 and ω2 = 0.01. In (b2) and (c2) the FB indicate fold bifurcations of equilibria.

that, for PEESTLEFs, the generation of different MMOs

is possible when we vary the frequencies of the two

excitations.

Other factors to consider are the amplitudes β1 and β2.

In the classical study of nonlinear oscillations, strong and

weak excitations are considered separately, since the methods

proposed to study systems with strong excitations may be

quite different from those of systems with weak excitations, in

particular in problems of nonlinear oscillators with weak and

strong excitations [41,42]. However, from the viewpoint of

fast-slow dynamics, strong and weak excitations are nothing

special. The reason for this is that the slow variables are

cos(ω1t) and cos(ω2t) and both amplitudes β1 and β2 belong

to the fast subsystem, i.e., like other parameters in the fast

subsystem, β1 and β2 are general parameters of the fast

subsystem, e.g., see the fast subsystems (9)–(11). No matter

what the magnitudes of the amplitudes are, the amplitudes

can change qualitatively properties of the MMOs as long

as they vary and pass through bifurcation points of the fast

subsystem.
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III. APPLICATIONS

We have outlined our general method to analyze MMOs in

PEESTLEFs. In what follows we validate the method for the

equations of Duffing and van der Pol. We first give some typical

examples of MMOs in Duffing and van der Pol equations

for the case when the excitations vary slowly. Afterward, the

dynamical mechanisms underlying the appearance of MMOs

and their evolution will be studied by using the method.

A. Duffing equation

The parametrically and externally excited Duffing equation

with two low excitation frequencies is given by

ẍ + δẋ − [b + β1cos(ω1t)]x + x3 = β2cos(ω2t), (12)

where 0 < ω1,2 ≪ 1. In order to study the generation of

MMOs, throughout this paper we fix δ = 0.1, b = 0.5, and

β1 = β2 = 1. When the two excitations vary slowly, several

interesting behaviors can be observed as follows: When

ω1 = ω2 = 0.01, a periodic MMOs pattern is exhibited [see

Fig. 1(a)]; when ω1 = 0.01 and ω2 = 0.02, the MMOs show

some different characteristics [see Fig. 1(b)]; with further

increments of ω2 (ω1 is fixed at ω1 = 0.01), the MMOs vary

and become complex [see Figs. 1(c) and 1(d)].

When ω1 = ω2 = 0.01, since the two excitations have

the same frequency, we treat cos(0.01t) as the only slow

variable, i.e., g(t) = cos(0.01t). This leads to the fast

subsystem

ẍ + 0.1ẋ − (0.5 + γ )x + x3 = γ, (13)

where γ = g(t) = cos(0.01t) is the control parameter (see

Table I, row 1), which modulates the dynamics of the

fast subsystem. This fast subsystem exhibits an S-shaped

equilibrium curve with two fold bifurcations as shown in

Fig. 2(a1). In Fig. 2(a2), the related transformed phase diagram

[21] of the MMOs is presented and the S-shaped equilibrium

curve is also overlayed and reveals the bifurcation mechanism

of the MMOs. The numerical simulations in Fig. 2(a2) show

reasonable agreement between the transformed phase diagram

and the bifurcation diagram, which complements the fact that

it is the switchings between the two stable equilibria that form

the MMOs in Fig. 1(a).

When ω1 = 0.01 and ω2 = 0.02, according to case C,

we get g(t) = cos(0.01t), f1(x) = x, and f2(x) = f ∗
2 (x) =

2x2 − 1. This leads to the fast subsystem shown in Table I, row

2. Since the equilibrium curve of the fast subsystem displays

two fold bifurcations [see Fig. 2(b1)], the MMOs in Fig. 1(b)

have the same dynamical mechanism as that of the MMOs in

Fig. 1(a), i.e., the MMOs are also generated by the switchings

between two stable equilibria of the fast subsystem [see

Fig. 2(b2)]. However, compared to the S-shaped equilibrium

curve in Fig. 2(a1), the equilibrium curve in Fig. 2(b1) has
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FIG. 6. (Color online) (a1) and (a2) Same as in Fig. 5 for ω1 = 0.02 and ω2 = 0.03, with the related fast subsystem shown in Table II, row

4. (b1) and (b2) Same as in Fig. 5 for ω1 = 0.03 and ω2 = 0.02. The associated fast subsystem is shown in Table II, row 5.
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FIG. 7. Mixed-mode oscillations in the van der Pol system (14) for (a) ω1 = ω2 = 0.01, (b) ω1 = 0.01 and ω2 = 0.02, (c) ω1 = 0.02 and

ω2 = 0.01, and (d) ω1 = 0.03 and ω2 = 0.01.

a tortuous lower branch and this answers for the different

characteristic observed in the MMOs [see the circled region in

Fig. 1(b)].

When ω1 = 0.01 and ω2 = 0.03, we have g(t) =

cos(0.01t), f1(x) = x, and f2(x) = f ∗
3 (x) = 4x3 − 3x. This

leads to the fast subsystem shown in Table I, row 3. Two

additional fold bifurcation points are created by considering

γ as the control parameter and in all, four fold bifurcation

points are obtained [see Fig. 3(a1)]. We overlay the equilibrium

curve with the transformed phased diagram of MMOs, which

explains the four catastrophic jumps observed in each period

of the MMOs [see Figs. 1(c) and 3(a2)].

When ω1 = 0.01 and ω2 = 0.04, we have g(t) =

cos(0.01t), f1(x) = x, and f2(x) = f ∗
4 (x) = 8x4 − 8x2 + 1.

Then we obtain the fast subsystem shown in Table I, row 4.

For this case, as shown in Fig. 3(b1), six fold bifurcation points

are obtained by considering γ = cos(0.01t) as the control

parameter. In Fig. 3(b2), the bifurcation diagram is overlayed

with the transformed phase diagram of MMOs, which reveals

the six catastrophic jumps observed in each period of the

MMOs [see Figs. 1(d) and 3(b2)].

Dynamical mechanisms of the MMOs for the above four

cases have been revealed, which in turn demonstrate the

effectiveness of the method. In the following two paragraphs,

we predict some dynamical behavior of the Duffing system

(12). If the method works, it should be able to make predictions

on the behavior of the system.

We consider the case when ω1 = ω2 = ε, where 0 < ε ≪ 1

and ε �= 0.01. Compared to the case when ω1 = ω2 = 0.01,

the two frequencies vary, however, the relation between

them remains the same, i.e., ω1 = ω2. According to our

method, this leads to the same fast subsystem with the same

bifurcation behavior by choosing g(t) = cos(εt) as the slow

variable. Therefore, a MMO pattern with the same dynamical

mechanism as that of the case when ω1 = ω2 = 0.01 is created

[see Fig. 1(e)]. Similarly, one may conclude that a MMO

pattern with the same dynamical mechanism as that of the

MMOs in Fig. 1(b) can be obtained for the case when ω1 = ε

TABLE III. Parametrically and externally excited van der Pol equation and the associated fast subsystem with different ω1 and ω2.

ω1 ω2 Parametrically and externally excited van der Pol equation Fast subsystem

0.01 0.01 ẍ + [1 + 1.5cos(0.01t)](x2 − 1)ẋ + x = 0.5cos(0.01t) ẍ + (1 + 1.5γ )(x2 − 1)ẋ + x = 0.5γ

0.01 0.02 ẍ + [1 + 1.5cos(0.01t)](x2 − 1)ẋ + x = 0.5cos(0.02t) ẍ + (1 + 1.5γ )(x2 − 1)ẋ + x = 0.5(2γ 2 − 1)

0.02 0.01 ẍ + [1 + 1.5cos(0.02t)](x2 − 1)ẋ + x = 0.5cos(0.01t) ẍ + [1 + 1.5(2γ 2 − 1)](x2 − 1)ẋ + x = 0.5γ

0.03 0.01 ẍ + [1 + 1.5cos(0.03t)](x2 − 1)ẋ + x = 0.5cos(0.01t) ẍ + [1 + 1.5(4γ 3 − 3γ )](x2 − 1)ẋ + x = 0.5γ
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and ω2 = 2ε, where 0 < ε ≪ 1 and ε �= 0.01 [see Fig. 1(f)

for example], since for this case the slow variable can be

chosen as g(t) = cos(εt) and the resulting fast subsystem and

its bifurcation behavior have not changed.

When ω1 = 0.02, 0.03, and 0.04 (ω2 is fixed at ω2 = 0.01),

the parametrically and externally excited Duffing equations are

listed in Table II, rows 1–3, respectively, where the associated

fast subsystems are also given by our method based on case

B. By considering γ as the control parameter of the fast

subsystems, the associated equilibrium curves are plotted

in Fig. 4. When ω1 = 0.02, as shown in Fig. 4(a), there

is no bifurcation on the equilibrium curve, which indicates

that no MMOs will be created [see Figs. 5(a1) and 5(a2)].

However, when ω1 = 0.03, the equilibrium curves become

flexural and two fold bifurcation points are created. Therefore,

qualitatively, a MMOs pattern, which has the same dynamical

mechanism as that of the MMOs pattern in Fig. 1(a), can

be created when the slow variable cos(0.01t) periodically

passes through the two fold bifurcation points [see Figs. 5(b1)

and 5(b2)]. Similarly, a MMO pattern, which has the same

dynamical mechanism, will be created for the case when

ω1 = 0.04 since the equilibrium curve also displays two fold

bifurcations [see Figs. 4(c), 5(c1), and 5(c2)].

Finally, we conclude this section by discussing two

examples related to case A. When ω1 = 0.02 and ω2 = 0.03,

a MMO pattern is exhibited in Fig. 6(a1). According to case

A, we have g(t) = cos(0.01t), f1(x) = f ∗
2 (x) = 2x2 − 1,

and f2(x) = f ∗
3 (x) = 4x3 − 3x, which gives rise to the fast

subsystem in Table II, row 4. Further numerical results show

that the MMO pattern in Fig. 6(a1) has the same dynamical

mechanism as that of the MMO pattern in Fig. 1(c) since their

respective fast subsystems exhibit the same bifurcation modes

[see Figs. 3(a2) and 6(a2)]. When ω1 = 0.03 and ω2 = 0.02,

the method reveals that a MMO pattern, which has the same

dynamical mechanism as that of the case when ω1 = 0.01

and ω2 = 0.02, is exhibited [see Figs. 2(b1), 2(b2), 6(b1), and

6(b2)].

B. van der Pol equation

We consider the following parametrically and externally ex-

cited van der Pol equation with two low excitation frequencies,
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FIG. 8. (Color online) (a1) Bifurcation diagram of the fast subsystem for ω1 = ω2 = 0.01, where γ is used as the control parameter: solid

(dashed) curve, stable (unstable) equilibrium; H , supercritical Hopf bifurcation; and cmax and cmin, the maximum and minimum amplitudes of

stable oscillations generated from H . (a2) Overlay of the bifurcation diagram with the transformed phase diagram of MMOs, where the stable

equilibrium is highlighted with thick blue curves. (b1) and (b2) Same as in (a1) and (a2) for ω1 = 0.01 and ω2 = 0.02.
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given by

ẍ + [1 + β1cos(ω1t)](x
2 − 1)ẋ + x = β2cos(ω2t), (14)

where 0 < ω1,2 ≪ 1, β1 = 1.5, β2 = 0.5, and the frequencies

ω1,2 are the control parameters. When ω1 = ω2 = 0.01, a

MMO pattern is obtained, which shows one cluster of repetitive

spiking during each period of MMO [see Fig. 7(a)]. To uncover

the dynamical mechanisms underlying the appearance of such

MMOs, we first consider the excitation cos(0.01t) as the slow

variable and then list the fast-slow system and its subsystem

in Table III, row 1. Figure 8(a1) shows that the fast subsystem

displays a supercritical Hopf bifurcation. In Fig. 8(a2), the

transformed phase diagram is also superimposed, which indi-

cates the fact that the MMOs are formed by periodic switchings

between an equilibrium attractor and a limit cycle attractor,

while such switchings are modulated by supercritical Hopf
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FIG. 9. (Color online) (a1) and (a2) Same as in Fig. 8 for ω1 = 0.02 and ω2 = 0.01 and (b1)–(b3) same as in Fig. 8 for ω1 = 0.03 and

ω2 = 0.01, with (b3) the enlargement of (b2).
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bifurcations when the slow variable cos(0.01t) periodically

passes through the Hopf bifurcation point H .

When ω1 = 0.01 and ω2 = 0.02, a similar periodic MMO

pattern can be observed in Fig. 7(b). By choosing cos(0.01t) as

the slow variable and using the method proposed, the fast-slow

system and its fast subsystem are listed in Table III, row 2.

The same dynamical mechanism as that of the MMO pattern

in Fig. 7(a) is demonstrated by the fast-slow analysis shown in

Figs. 8(b1) and 8(b2).

However, when ω1 = 0.02 and ω2 = 0.01, the MMOs show

some essential differences, i.e., two clusters of repetitive

spiking during each period of MMO occur now [see Fig. 7(c)].

The generation of such MMOs can be well understood [see

Table III, row 3 and Figs. 9(a1) and 9(a2)]. The fast subsystem

displays two supercritical Hopf bifurcations (resulting from

the changing of the fast subsystem), which bound the region

of an equilibrium attractor and outside, which are two limit

cycle attractors. When the slow variable cos(0.01t) is switched

on, the system undergoes a transition from the equilibrium

to the two limit cycles, which leads to a MMO pattern

with two clusters of repetitive spiking during each period.

When ω1 = 0.03 and ω2 = 0.01, a third supercritical Hopf

bifurcation point is created, which leads to a MMO pattern

with three clusters of repetitive spiking during each period

[see Fig. 7(d); Table III, row 4; and Figs. 9(b1)–9(b3)].

IV. DISCUSSION

Mixed-mode oscillations are a complex, multiple-time-

scale dynamical behavior and the deep understanding of such

oscillations is important. In this paper we have proposed

a framework to study MMOs in PEESTLEFs for the case

when the two slow excitation frequencies are rationally

related by introducing a slow variable and finding the relation

between such a variable and the slow excitations. Mixed-mode

oscillations can be understood by the study of the transformed

fast-slow system with a single slow variable. Our method has

explained the occurrence of MMOs: MMOs are generated

when the slow variable periodically passes through bifurcation

points of the fast subsystem of the transformed fast-slow

system. We have also investigated the mechanisms underlying

the appearance of different MMOs: The fast subsystem of

the transformed fast-slow system changes along with the

two excitation frequencies, which often leads to different

bifurcation modes, and MMOs with different patterns are thus

created.

According to the classical fast-slow analysis, MMOs occur

since the trajectory undergoes a switching between attractors

of the fast subsystem; such switching is modulated by the slow

variable when it periodically passes through bifurcation points

of the subsystem. Therefore, MMOs have the same frequency

as that of the slow variable. With respect to PEESTLEFs, since

they can be transformed into the classical fast-slow forms with

a single slow variable g(t), one may conclude that MMOs

observed in PEESTLEFs have the same frequency as that of

g(t) (see Fig. 6 for an example). On the other hand, we have

shown that if one of the two frequencies of excitations is a

multiple of the other one (see cases B and C), the excitation

with the lower frequency can be chosen as the slow variable
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FIG. 10. (Color online) Complex periodic MMO pattern and

its dynamical mechanism in the system (12) for ω1 = 0.01

and ω2 = 0.1. Since cos(0.1t) = f ∗
10(cos(0.01t)) = [2cos2(0.01t) −

1][256cos8(0.01t) − 512cos6(0.01t) + 304cos4(0.01t) − 48cos2

(0.01t) + 1], we have g(t) = cos(0.01t), f1(x) = x, and f2(x) =

(2x2 − 1)(256x8 − 512x6 + 304x4 − 48x2 + 1), which leads to the

fast subsystem ẍ + 0.1ẋ − (0.5 + γ )x + x3 = (2γ 2 − 1)(256γ 8 −

512γ 6 + 304γ 4 − 48γ 2 + 1), where γ is the control parameter. (a)

Bifurcation diagram of the fast subsystem, where γ is the control

parameter. The FB denote fold bifurcations of equilibria. (b) Overlay

of the bifurcation diagram with the transformed phase diagram of

the complex MMOs, where the stable branches of equilibrium are

highlighted.

g(t). So, in such two cases, the MMOs have the same frequency

as that of the excitation with the lower frequency (see Figs. 2,

3, 5, 8, and 9 for examples).

We would like to point out that complex MMOs are

common in PEESTLEFs. This is not surprising since complex

bifurcation behavior can be generated when the excitation

frequencies vary continually. For example, as shown in

Fig. 10(a), the equilibrium curve of the fast subsystem shows

more twists and turns and complements the generation of

complex periodic MMOs [see Figs. 10(b) and 11(a)]. With

the multiplication of the frequency, the resulting bifurcation
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FIG. 11. Transition from (a) and (b) complex periodic MMOs to

(c) quasiperiodic oscillations for (a) ω1 = 0.01 and ω2 = 0.1 [time

series of the MMOs in Fig. 10(b)], (b) ω1 = 0.01 and ω2 = 0.2, and

(c) ω1 = 0.01 and ω2 = 1.
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behavior becomes far more complicated and finally such

complex periodic MMOs evolve to nonperiodic oscillations

(see Fig. 11).

Even though we give an explanation for the generation

of MMOs, we do not consider the case when the two

excitation frequencies are incommensurate, since in this

case it is difficult to determine the slow variable g(t).

However, numerical simulations show that MMOs, espe-

cially complex nonperiodic MMOs are ubiquitous for the

incommensurate case and further work is needed on this

topic.
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