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Abstract— This paper considers a shortcutting heuristic to
smooth jerky trajectories for many-DOF robot manipulators
subject to collision constraints, velocity bounds, and accelera-
tion bounds. The heuristic repeatedly picks two points on the
trajectory and attempts to replace the intermediate trajectory
with a shorter, collision-free segment. Here, we construct
segments that interpolate between endpoints with specified
velocity in a time-optimal fashion, while respecting velocity
and acceleration bounds. These trajectory segments consist of
parabolic and straight-line curves, and can be computed in
closed form. Experiments on reaching tasks in cluttered human
environments demonstrate that the technique can generate
smooth, collision-free, and natural-looking motion in seconds
for a PUMA manipulator and the Honda ASIMO robot.

I. INTRODUCTION

Autonomous robots that interact with humans or human
environments must have the capability to quickly generate
safe and natural-looking motion. So far, it has been a
challenge to simultaneously satisfy the three objectives of
speed, safety, and esthetics for high-DOF robots performing
complex tasks in unstructured environments. Sample-based
planners (e.g., PRM, RRT, etc., see Chapter 7 of [1]) are
widely used to plan collision-free paths for high-DOF robots.
They are often fast, but they produce jerky, unnatural paths.
This paper presents a fast smoothing algorithm that postpro-
cesses paths to produce a dynamic trajectory that respects
velocity and acceleration bounds and avoids collision.

Standard sample-based planners compute piecewise linear
paths that can be executed precisely by stopping the robot at
every vertex along the path. This is slow and looks unnatural,
so smoothing is often performed before execution. Spline
fitting approaches can overshoot or undershoot the original
path and lead to collision. Numerical trajectory optimization
can be used, but is computationally expensive because the
feasibility of the path must be checked at each iteration [2].

This paper presents a variant of a shortcutting heuristic
commonly used in robotics and animation. The heuristic
iteratively picks two points along the existing path, constructs
a segment between them, and checks it for collision [3]. If it
is collision-free, the segment replaces the subpath between
the two points. Our technique differs from traditional ap-
proaches in two ways. First, instead of operating in configu-
ration space, our algorithm operates in configuration/velocity
state space. Second, we use smooth, dynamically-feasible
trajectory segments as shortcuts. These shortcuts interpolate
between points in state space in a time-optimal fashion, given
bounded joint velocities and accelerations. The output of

Fig. 1. A manipulator reaches under a table to grasp a cup. The white
dotted curve depicts the original end effector path. The orange curve depicts
the smoothed path after 100 randomly-attempted shortcuts. Execution time
is reduced from 9.4s to 4.0s.

the algorithm is a smooth trajectory that respects collision,
velocity, and acceleration constraints.

The primary contribution of this work is an analyti-
cal derivation of time-optimal, bounded-velocity, bounded-
acceleration trajectories that interpolate between endpoints
with specified velocities. For a single joint, the time-optimal
interpolant is known to be composed of parabolic and linear
arcs and can be derived in closed form. We interpolate
multiple joints by finding the joint with the longest execution
time T , and then solve for the minimum-acceleration inter-
polants for the remaining joints with end time T fixed. We
also present a method for exact collision checking of these
trajectories based on the adaptive technique of [4].

We test the approach in moderately cluttered environments
using a PUMA760 manipulator (in simulation) and the arms
of the Honda ASIMO humanoid (both in simulation and on
the real robot). Experiments show that high-quality, smooth
paths with low execution time can be produced with only
a handful of shortcuts, which take just a few seconds of
computation time on a 3 GHz PC (Fig. 1). The approach also



lends itself to a convenient “on-line” smoothing implemen-
tation that optimizes the path during execution. C++ code
for the algorithms in this paper are available for download
at http://cs.indiana.edu/∼hauserk/software.htm.

II. RELATED WORK

High-quality motion generation is a topic of interest
in computer animation, and a common technique is to
adapt high-quality example motions to new characters, tasks,
and environments [5], [6]. Another technique constructs
trajectories using a generative model of “natural-looking”
motion, derived from example motions or biomechanical
principles [7]–[9]. Hard motion constraints can be handled by
using the models to bias the sampling strategy of a sample-
based planner [10], [11]. A similar approach was applied to
humanoid robot locomotion [12].

Especially for non-human-like robots, “natural-looking”
can be defined in terms of a cost function that includes
obstacle potential fields [13], [14] or physical criteria like
execution time, torque, or energy consumption [15], [16].
Then, cost is minimized using iterative numerical techniques
(e.g., gradient descent) [17]. These techniques are typically
too slow for real-time use; the resulting optimization prob-
lems can be extremely large, and each iteration is expensive
because of the large number of collision queries that need
to be tested (at possibly hundreds or thousands of discrete
points along the path). To put this in perspective, querying
collisions along the path shown in Fig. 1 takes approximately
0.15 s on a 3 GHz PC.

A shortcutting heuristic tries to replace portions of a path
with shorter segments such as straight lines, and is commonly
used in robotics and computer animation [10], [11] . It is fast,
is easily implemented, and often produces high-quality paths
in practice [3]. These techniques do not achieve optimality, or
even local optimality, but in practice can produce short paths
quickly. They can also produce good initial trajectories for
further optimization using numerical techniques.

The approach of shortcutting with time-optimal trajecto-
ries has been applied to car-like vehicles using Reeds-Shepp
curves [18]. A similar technique was used for smoothing
trajectories of aerial vehicles by placing trim curves at
waypoints [19]. Our main contribution is the closed-form
solution of time-optimal trajectories for acceleration- and
velocity- bounded systems, which is applicable to a wide
variety of robot manipulators.

III. ASSUMPTIONS AND NOTATION

Let C = Rd denote the d-dimensional configuration
space, and let F denote the subset of configurations that
are collision-free and respect joint limits. Vector-valued
quantities are denoted in bold (e.g., x), and superscripts
denote joint indexing (e.g., xk).

A trajectory u(t) is represented as a curve with piecewise-
constant acceleration (and is therefore piecewise composed
of parabola and straight lines). A trajectory is considered to
be feasible if

1) Configurations u(t) lies entirely in F .

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Illustrating the smoothing algorithm. (a) A jerky path produced by
a sample-based planner. (b) Converted into a trajectory that stops at each
milestone. (c) Attempting a random shortcut. The feasibility check fails.
(d),(e) Two more shortcuts, which pass the feasibility check. (f) The final
trajectory executed by the robot.

2) Velocities u′(t) are bounded by box limits |u′(t)| ≤
vmax. (Here, absolute value and inequality are taken
element-wise).

3) Accelerations u′′(t) are bounded by box limits
|u′′(t)| ≤ amax.

Our objective is to reduce the execution time of an input
trajectory as much as possible while retaining feasibility.

Some comments are warranted about these assumptions.
First, the velocity and acceleration bounds are somewhat
idealized constraints. The true physical limits are a complex,
nonlinear function of motor torque and power characteristics,
joint configuration, and dynamic interactions between joints.
Although some applications may demand that a robot be
pushed to its limits, in practice artificial velocity and accel-
eration bounds are usually justified for reasons of safety and
servo stability.

Second, reducing execution time is typically not a de-
sirable objective alone, because time-optimal trajectories
will graze obstacles with little or no room for error. Some
separation margin may be needed to prevent collisions in the
presence of uncertainties and disturbances, or the objective
could weight between execution time and obstacle proximity.
Such modifications can be easily implemented in our method.

IV. SHORTCUTTING ALGORITHM

The algorithm, summarized in Fig. 3, performs N itera-
tions of shortcutting on a piecewise-linear path x1, . . . ,xn

in F . Fig. 2 illustrates three iterations of the algorithm.
Step 1 converts the path to a trajectory that stops at every

milestone, and will be described in Sec. IV-A. Steps 3–
5 selects two random states (a, c) and (b,d) along the
trajectories. The Shortcut subroutine in line 6 computes the
time-optimal interpolant s(t) between states (a, c) and (b,d)



Input: piecewise linear path x1, . . . ,xn, iteration count N
Output: a smoothed, dynamically-feasible trajectory from
x1 to xn.
1. u← StartStop(x1, . . . ,xn)
2. Repeat for N iterations:
3. Sample ta and tb randomly from [0, T ]
4. (a, c)← (u(ta),u′(ta))
5. (b,d)← (u(tb),u′(tb))
6. s← Shortcut((a, c), (b,d))
7. If CollisionFree?(s) then
8. Replace the section of u from ta to tb with s
9. Return u.

Fig. 3. Pseudocode for the shortcutting algorithm.

as described in Sec. IV-B. Line 7 tests if s(t) is collision free
as described in Sec. IV-E, and if so, s(t) is spliced into the
path in line 8.

A. Time-Optimal Straight-Line Trajectories

The first step of the algorithm converts a piecewise linear
path to a time-optimal trajectory that stops at each vertex.
This requires a routine algebraic computation, and we in-
clude it here for completeness.

Let the interpolation parameter s be a monotonic function
s(t), such that the trajectory u(t) = a + s(t)(b− a) tracks
the straight-line path (see Fig. 4.a). Then the velocity and
acceleration of s(t) must not exceed, respectively, vs =
mink vk

max/|bk−ak| and as = mink ak
max/|bk−ak| where

the minimums are taken over joints k = 1, . . . , d. The
optimal s(t) travels along 1) a parabolic arc with acceleration
as, 2) may reach the maximum velocity vs and travel along
a straight line, and 3) a parabolic arc with acceleration
−as. The interpolation curve is completely determined the
inflection points.

First, we consider the case where s′(t) never exceeds vs.
Then, the inflection point occurs at tP =

√
|(x2 − x1)/as.

If astP ≤ vs, then this trajectory is valid. Otherwise s(t)
must contain a linear section. Then, the first inflection point
is at t1 = vs/as, the second occurs after an additional time
t2 = 1/vs − 1/as has elapsed, and after decelerating for
duration t1 the trajectory terminates at T = 2t1 + t2. Fig. 5a
illustrates the solution for s(t) with vs = as = 1.

B. Time-Optimal, Bounded-Acceleration, Bounded-Velocity
Interpolants

The fastest dynamically feasible trajectory between (a, c)
and (b,d) consists of parabolic arcs and straight lines.
Since each joint variable is assumed to be independent,
the minimum execution time is determined by the slowest
single-joint trajectory. We first determine this time T , and
the interpolate the rest of the joints with T fixed. Of the
many possible interpolants that finish at time T , we pick
the minimum-acceleration interpolant. We will describe these
unidimensional interpolants in the next section.

More precisely, let f(x1, x2, v1, v2, vmax, amax) compute
the time of the time-optimal interpolant between x1 and x2,

with beginning and ending velocity v1 and v2 respectively,
under maximum velocity vmax and acceleration amax. Let
g(x1, x2, v1, v2, vmax, T, t) compute the state at time t of the
minimum-acceleration interpolant, given a fixed final time T .
(The next section will describe f and g in more detail.) To
construct multidimensional interpolants, we first compute the
optimal time

T = max
k

f(ak,bk, ck,dk,vk
max,ak

max), (1)

and then compute the acceleration-optimal joint trajectories

sk(t) = g(ak,bk, ck,dk,vk
max, T, t). (2)

Examples of these curves are illustrated in Fig. 4.

C. Univariate Time-Optimal Interpolants

Here we derive the function f(x1, x2, v1, v2, vmax, amax)
that computes the execution time of a univariate, time-
optimal, velocity- and acceleration-bounded trajectory. We
compute it by enumerating all bang-bang controls [20] that
connect the initial and final states, and picking the one with
the lowest execution time. For each control, we have com-
puted inflection points analytically through an elementary,
but somewhat tedious derivation. We omit the derivations
from the following discussions.

We define four motion primitives: the parabolas P+ and
P− accelerating at amax and −amax, respectively, and the
lines L+ and L− traveling at vmax and −vmax, respectively.
There are four possible classes of motion primitive combina-
tions that may be optimal: P+P−, P−P+, P+L+P−, and
P−L−P+. We examine each class for a valid execution time
T , and find the class with the minimal execution time.

For class P+P−, to find the inflection time tP when
the trajectory stops accelerating and starts decelerating, we
compute a solution t of the quadratic equation

amaxt2 + 2v1t + (v2
1 − v2

2)/(2amax) + x1 − x2 = 0 (3)

that also satisfies 0 ≤ t ≤ (v2 − v1)/amax. If no solution
exists, the class is declared invalid. If a solution exists, the
total time is T = 2tP +(v1−v2)/amax. We must also check
that the maximum speed of the trajectory v1 + tP amax does
not exceed vmax. The P−P+ solution is given by negating
amax in the above equations.

For class P+L+P−, we compute the duration tL of the
linear portion,

tL = (v2
2 + v2

1 − 2v2
max)/(2vmaxamax) + (x2 − x1)/vmax,

(4)
the duration tP1 = (vmax − v1)/amax in the first parabola,
and the duration tP2 = (v2 − vmax)/amax in the second.
If any of tL, tP1, or tP2 are negative, the class is invalid.
Otherwise, the execution time is given by

T = tP1 + tL + tP2. (5)

The P−L−P+ solution is given by negating amax and vmax

in the above equations.
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Fig. 4. 2D time-optimal trajectories from (0,0) to (3,1) under vmax = (1, 1) and amax = (1, 1) and varying start and final velocity va and vb. Squares
depict inflection points in the x parameter, and diamonds depict inflection points in the y parameter.
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(a) P+P− curve from 0 to 1, starting
and stopping at rest.
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(b) P+L+P− curve from 0 to 3,
starting and stopping at rest.
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(c) P−P+ curve from 0 to 0, with
initial velocity 1 and stopping at rest.
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(d) P−L−P+ curve starting at 0
with velocity 1 and ending at -0.5 with
velocity 1.

Fig. 5. Univariate time-optimal trajectories under vmax = 1 and amax = 1. Time is plotted on the horizontal axis. Squares depict inflection points
between parabolic and linear trajectory segments.

D. Minimum-Acceleration Interpolants

Now we derive the minimum-acceleration trajectory given
a fixed end time T . First, we compute the minimal accel-
eration a = h(x1, x2, v1, v2, vmax, T ), and then the optimal
trajectory g(x1, x2, v1, v2, vmax, T, t) is defined in a straight-
forward manner from a. Again, we use the same combina-
tions of motion primitives: P+P−, P−P+, P+L+P−, and
P−L−P+, and find the class that has minimum acceleration.

For classes P+P− and P−P+, we compute solutions a
to the equation

T 2a2 +σ(2T (v1 +v2)+4(x1−x2))a− (v2−v1)2 = 0 (6)

whose switch time tS = 1/2(T + (v2 − v1)/a) satisfies the
condition 0 ≤ tS ≤ T . Here, σ is defined as +1 for class
P+P− and −1 for class P−P+. We must also check that
the maximum speed of the trajectory |v1 + atS | does not
exceed vmax.

For class P+L+P−, we have

a =
v2

max − vmax(v1 + v2) + 0.5(v2
1 + v2

2)
Tvmax − (x2 − x1)

(7)

We then compute the durations tL, tP1, and tP2 as in the
previous section, but replace amax with a, and check that
they are all positive. For class P−L+P+, we negate vmax

in the above equation.

E. Trajectory Collision Checking

A simple, inexact method for trajectory collision checking
is to discretize the curve to resolution ε and test each point
for collision. If ε is small, the checker will be slow, but
if ε is large, the checker may miss some collisions. The
risk of a missed collision increases after a large number
of smoothing steps as the trajectory approaches closer to

obstacles. One possible solution grows the geometry of the
robot or obstacles by a small but sufficiently large margin, so
that penetrations of distance ε do not cause actual collisions.
Another solution is exact collision checking by attempting
to cover the path with collision-free neighborhoods [4].

We extend the adaptive, recursive bisection technique
of [4] to handle parabolic paths as well as straight paths.
(see Fig. 6). Given a trajectory segment {u(t) | t1≤ t≤ t2}
we compute the maximum workspace distance λ traversed by
any point on the robot’s geometry as the robot executes the
segment. We also compute the robot-environment distances
δ1 and δ2 at u(t1) and u(t2), respectively (Fig. 6b). If
λ ≤ δ1 + δ2, then the entire segment is guaranteed to be
collision free, and it can be excluded from further collision
testing (Fig. 6d). If λ > δ1 +δ2, then the segment is bisected
at (t1 + t2)/2 and the algorithm recurses on the two halves.

The method uses a subroutine to compute a bound on
the workspace distance traveled by a point on the robot.
For example, for a serial robot with d revolute joints and
with link length at most L, a straight line motion ∆q
can move the robot geometry by at most a distance of∑d

k=1 |∆qk|kL. For piecewise parabolic paths, we compute
a bounding box around the entire path, and replace the term
∆q with the diagonal vector of the bounding box. There
are various optimizations that speed up the basic algorithm,
such as using non-cubic neighborhoods, computing different
neighborhoods for different constraints, and using approxi-
mate distance queries, all of which are described in more
detail in [4]. In our experiments, the exact collision checker
typically performs approximately 2–10 times slower than
discretizing the path at a fine resolution. As expected, it
is slowest when the robot passes close to obstacles, for
example, near the goal configuration of Figure 1.



(a) (b)

(c) (d)

(e) (f)

Fig. 6. Illustrating exact collision testing on (a) a trajectory segment.
(b) Collision-free neighborhoods (boxes) and a path bounding box (dashed
box) are computed. (c) The segment is bisected and recursion begins. (d)
Bisecting the right half, the algorithm finds that the rightmost quarter lies
inside a collision-free neighborhood of the rightmost endpoint. (e) Bisecting
the third quarter, the fifth and sixth eighths are found to be collision-free.
(f) Recursion returns to the left half and continues.
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Fig. 7. Trajectory durations as the algorithm progresses for 10 different
initial paths, on the example of Fig. 1.

V. EXPERIMENTS

Experiments were performed on a simulated reaching
task for a CAD model of a PUMA robot with approxi-
mately 8,000 polygons and an environment with over 20,000
polygons (Fig. 1). We generated 10 initial paths with the
same start and end configurations as Fig. 1 using the SBL
motion planner [21]. If these paths are followed exactly, their
optimal execution times range from 5.7 s to 10.4 s. After 200
shortcutting iterations, execution times are reduced by an
average of 40%, and the resulting trajectories range from
4.1 s to 6.6 s (Fig. 7). On a 3 GHz PC, average computa-
tion time is 0.6s for initial planning, 2.6s for smoothing,
and 3.2s total. Because of our analytical construction, the
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Fig. 8. Timing experiments on the example of Fig. 1. Mean, standard
deviation, and minimum are plotted for 10 different initial paths.
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Fig. 9. On-line smoothing on the example of Fig. 1. Mean, minimum, and
maximum are plotted over 10 different initial paths.

shortcuts take negligible time to construct; smoothing time
is overwhelmingly dominated by collision checking.

Fig. 8 shows that the smoothing algorithm reduces the
trajectory execution time quickly at first, but further iterations
have a lower rate of return. If a system is implemented in
a sequential fashion such that smoothing must be completed
before beginning execution, then it is unclear when to stop
smoothing in order to achieve an ideal balance between
computation and execution time. But, shortcutting algorithms
can be conveniently implemented in an on-line technique
that executes and smoothes the path in parallel, which
makes choosing a termination criterion unnecessary. In this
technique, shortcuts are drawn at random only from the path
after the current time, plus some small padding. Experiments
in Fig. 9 show that this method produces high-quality paths
without needing to pause the robot.

We also integrated the smoothing algorithm into a system
that enables ASIMO to push objects over a table [22]. Fig. 10
shows frames from a smoothed reaching motion performed
on the real robot. In timing experiments, 50 iterations of
shortcutting averaged 0.9s of computation time and reduced
execution time by an average of 2.4s over 10 motions
generated by SBL. Overall this was a 46% reduction relative
to the execution time of the initial paths, and the motions
were judged by observers to qualitatively look much more
natural. Videos of our experiments can be found at http://
www.cs.indiana.edu/∼hauserk/videos/icra2010/.



Fig. 10. The ASIMO robot reaching to push a block using a smoothed
arm trajectory. Sequence proceeds from top to bottom, left to right).

VI. CONCLUSION

This paper presented a fast algorithm for smoothing
collision-free trajectories for many-DOF robot manipulators.
It uses a shortcutting heuristic that draws smooth velocity-
and acceleration-bounded shortcuts between random points
on the trajectory, and if the shortcut is collision-free, replaces
the intermediate portion of the trajectory with the shortcut.
The primary contribution of the paper is a closed-form
derivation of the time-optimal velocity- and acceleration-
bounded curves that interpolate between two endpoints with
specified velocity. Experimental results on a PUMA manip-
ulator and the Honda ASIMO robot demonstrate that the
algorithm can smooth trajectories in moderately cluttered
environments in seconds. It can also be implemented as
an on-line algorithm that smoothes the trajectory during
execution.

Like other postprocessing approaches, the algorithm may
converge to a suboptimal solution if given a poor input
path. Integrating smoothing into planning may be able to
overcome some of these problems. Other work could attempt
to reduce the time per shortcut with faster collision checking,
or improve the convergence rate with nonuniform or adaptive
shortcutting strategies.
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