
Fast Software Encryption Functions

Ralph C. Merkle

Xerox PARC

3333 Coyote Hill Road

Palo Alto, CA 94304

Abstract

Encryption hardware is not available on most computer systems in use today. Despite this

fact, there is no well accepted encryption function designed for software implementation -

- instead, hardware designs are emulated in software and the resulting performance loss is

tolerated. The obvious solution is to design an encryption function for implementation in

software. Such an encryption function is presented here -- on a SUN 4/260 it can encrypt

at 4 to 8 megabits per second. The combination of modem processor speeds and a faster

algorithm make software encryption feasible in applications which previously would have

required hardware. This will effectively reduce the cost and increase the availability Of

cryptographic protection.

Introduction

The computer community has long recognized the need for security and the essential role

that encryption must play. Widely adopted, standard encryption functions will make a great

contribution to security in the distributed heavily networked environment which is already

upon us. IBM recognized the coming need in the 1970’s and proposed the Data Encryption

A.J. Menezes and S.A. Vanstone (Eds.): Advances in Cryptology - CRYPT0 ‘90, LNCS 537, pp. 476-501, 1991.

0 Springer-Verlag Berlin Heidelberg 1991

478

what reasonably should be changed.

The selection of a 56 bit key size is too small, a problem which can be easily remedied. This

subject has already been debated extensively, and while 56 bits seems to offer just sufficient

protection for many commercial applications, the negligible cost of increasing the key size

virtually dictates that it be done.

The extensive use of permutations is expensive in software, and should be eliminated --

provided that a satisfactory alternative can be found. W l e permutations are cheap in hard-

ware and provide an effective way to spread information (also called “diffusion” 1211) they

are not the best choice for software. In the faster implementations of DES. the permutations

are implemented by table look-ups on several bits at once. That is, the 48-to-32 bit permu-

tation P is implemented by looking up several bits at once in a table -- where each individual

table entry is 32 bits wide and the table has been pre-computed to contain the permutation

of the bits looked up. Using a table-lookup in a software encryption function seems a good

idea and can effectively provide the desired “diffusion” -- however there seems no reason

to limit such a table to being a permutation. Having once paid the cost of looking up an

entry in a table, it seems preferable that the entry should contain as much information as

possible rather than being arbitrarily restricted to a small range of possibilities.

Each individual S-box in DES provides only 64 entries of 4 bits each, or 32 bytes per S-

box. Memory sizes have greatly increased since the mid 1970’s when DES was designed,

and larger S-boxes seem appropriate. More subtly, DES uses 8 S-boxes and looks up 8 dif-

ferent values in them simultaneously. While this is appropriate for hardware (where the 8

lookups can occur in parallel) it seems an unreasonable restriction for software. In soft-

ware, each table lookup must follow the preceding lookups anyway -- for that is the nature

of sequential program execution. It seems more valuable cryptographically to make each

lookup depend upon the preceding lookup. Thls means that the cascade of unpredictable

changes that are so central to DES-type encryption functions can achieve greater depth with

fewer lookups. Looked at another way, DES has a maximum circuit depth of 16 S-boxes,

even though it has a total of 128 S-box lookups. If those same 128 S-box operations were

done sequentially, with the output of each lookup operation altering the input to the next

479

lookup, then the maximum circuit depth would be 128 S-boxes -- eight times as many and

almost certainly providing greater cryptographic strength. This change would have very

littie impact on the running time of a software implementation on a typical sequential pro-

cessor. We conclude that a larger S-box size and sequential (rather than parallel) S-box

usage should be adopted.

The initial and final permutations in DES are widely viewed as cryptographically pointless

-- or at least, not very important. They are therefore discarded.

The key schedule in DES has received mild criticism for not being sufficiently compli-

cated[9]. In practice, all of the faster DES software implementations pre-compute the key

schedule. This pre-computation seems a good idea when large volumes of data are being

encrypted -- the pre-computation allows a more leisurely and careful arrangement of the

encryption tables and means the actual encryption function can more rapidly scramble the

data with less effort. A more complex key pre-computation therefore seems desirable.

Finally, the design criteria used for the DES S-boxes were kept secret. Even though there

is no particular reason to believe that they conceal a trap door, it would seem better if the

criteria for S-box selection were made explicit, and some sort of assurances provided that

the S-boxes were actually chosen randomly in accordance with the published criteria. Tius

would both quiet the concerns about trap doors, and also allow a fuller and more explicit

consideration of the S-box selection criteria.

With this overview of design principles we can now proceed to the design.

Khufu, Khafre and Snefru

There are actually two encryption functions named Khufu and Khafre, and a one-way hash

function named Snefru. All three names were taken from the Pharoahs of ancient Egypt

following a suggestion by Dan Greene. To quote the Encyclopedia Britannica “The ideal

pyramid was eventually built by Snefru’s successor, Khufu, and the first --- the Great Pyr-

480

amid at Giza --- was the finest and must successful.” Khafre was Khufu’s son.

The basic hardware model around whch they are optimized is a 32-bit register oriented

microprocessor. The basic operations are 32-bit load, store, shift, rotate, “xor” and “and”.

The two encryption functions are optimized for somewhat different tasks, but use similar

design principles. Khufu is designed for fast bulk encryption of large amounts of data. TO

achieve the fastest possible speed. the tables used in encryption are pre-computed. This

pre-computation is moderately expensive, and makes Khufu unsuited for the encryption of

small amounts of data. The other encryption function -- Khafre -- does not require any pre-

computation. This means Khafre can efficiently encrypt small amounts of data. On the

other hand, Khafre is somewhat slower than Khufu for the encryption of large volumes of

data because it takes more time to encrypt each block.

The one-way hash function -- S n e h -- is designed to rapidly reduce large blocks of data to

a small residue (perhaps 128 or 256 bits). Snefru requires no pre-computation and therefore

can be efficiently applied to small arguments. Snefru provides authentication and does not

provide secrecy. Snefru is discussed in a separate paper[24]. The C source for Snefru is

available by anonymous ftp from arisia.xerox.com (13.1.1Oo.206) in directory /pubhash

We first discuss the design of Khufu.

Khufu is a block cipher operating on 64-bit blocks. Although increasing block size was a

very tempting design alternative, the 64-bit block size of DES has not been greatly criti-

cized. More important, many systems built around DES assume that the block size is 64

bits. The pain of using a different encryption function is better minimized if the new

encryption function can be easily “plugged in” in place of the old -- which can be done if

the block size is the same and the key size is larger. The new encryption function essen-

tially looks exactly like the old encryption function -- but with some new keys added to the

48 1

key space. Increasing the block size might have forced changes in more than just a single

subroutine -- it might (for example) have forced changes in data formats in a communica-

tions systems.

Khufu, like DES, is a multi-round encryption function in which two 32-bit halves (called L

and R for Left and Right) are used alternately in the computations. Each half is used as

input to a function F, whose output is XORed with the other half -- the two halves are

exchanged and the computation repeated until the result appears to be random (no statisti-

cally detectable patterns). Khufu uses a different F-function than DES -- and uses multiple

different F-functions during the course of encryption. One round of DES uses an F-func-

tion defined by 8 table lookups and associated permutations. By contrast, one round of

Khufu uses a single table lookup in a larger S-box. In addition, in the first step of encryp-

tion (prior to the main loop) the plaintext is XORed with 64 bits of key material, and again

in the final step of encryption (following the main loop) the @-bit block is XORed with

another 64 bits of key material to produce the ciphertext.

We will need to refer to the 4 bytes in a 32-bit word, and will adopt the “big-endian” con-

vention. Byte 0 is the leftmost (most significant) byte while byte 3 is the rightmost (least

significant) byte. The 8 bytes in a 64-bit block will be numbered 0 through 7, again with

byte 0 being the leftmost (most significant) byte while byte 7 is the rightmost (least signif-

icant) byte.

The algorithm proceeds as follows: the 64-bit plaintext is first divided into two 32-bit

words designated L and R. L is bytes 0 through 3, and R is bytes 4 through 7 of the @-bit

plaintext. L and R are then XORed with two 32-bit words of auxiliary key material. Then

the main loop is started, in which byte 3 (the least significant byte) of L is used as the input

to a 256-entry S-box. Each S-box entry is 32-bits wide. The selected 32-bit entry is XORed

with R. L is then rotated to bring a new byte into position, after which L and R are swapped.

The S-box itself is changed to a new S-box after every 8 rounds (we shall sometimes call 8

rounds an “octet”). This means that the number of S-boxes required depends on the number

of rounds of encryption being used: one new S-box for every octet. Finally, after the main

loop has been completed, we again XOR L and R with two new 32-bit auxiliary key values

482

to produce the ciphertext.

For efficiency reasons, we resmct the number of rounds to be a multiple of 8, i.e., an inte-

gral number of octets. If the main encryption loop is always executed a multiple of 8 times,

then it can be unrolled 8 times -- which is substantially more efficient than the definitionally

correct but inefficient versions given in this paper. For this reason, the variable “enough’

given below must be an exact multiple of 8. Various integer calculations will not work cor-

rectly for values of “enough’ that are not multiples of 8. Encryption of a single 64-bit plain-

text by Khufu can be viewed algorithmically as follows:

L, R: int32;

enough: integer: -- the security parameter, default of 16 seems appropriate.

-- values of 8, 16,24, 32,40,48,56, and 64 are possible.

SBoxes: ARRAY [1 .. enough/8] OF ARRAY [0 .. 2551 OF int32; -- key material

AuxiliaryKeys: ARRAY[1 .. 41 OF int32; -- additional key material

rotateschedule: ARRAY [I .. 81 = [16,16,8,8,16,16,24,24];

octet: integer, -- really (round+7)/8, it keeps track of which

-- &round “octet” we are currently in

L = L XOR AuxiliaryKeys[I];

R = R XOR AuxiliaryKeys[2];

Octet = 1;

FOR round = 1 TO enough DO -- Note that “enough’ must be a multiple of 8

Begin

R = R XOR SBoxes[octet] [L AND #FF];

L = RotateRight[L, rotateSchedule[(round-1) mod 8 + 11 1;

SWAP[L,R];

if (round mod 8 = 0) then octet = octet+l;

483

End;

L = L XOR AuxiliaryKeys[3];

R = R XOR AuxiliaryKeys[4];

Notationally, it will be convenient to index the different variables at different rounds. This

indexing is explicitly given by re-writing the above algorithm and replacing L and R with

arrays. In addition, we add the array 9’’ to denote the indices used to index into the S-box.

L, R: ARRAY [-1 .. enough+l] OF int32;

enough: integer, -- the security parameter, default of 16 seems appropriate.

i: ARRAY[O .. enough] OF int8; -- 8-bit bytes

SBoxes: ARRAY [1 .. enough/8] OF ARRAY [0 .. 2551 OF int32; -- key material

AuxiliaryKeys: ARRAY[1 .. 41 OF int32; -- additional key material

rotateschedule: ARRAY [1 .. 81 = [16,16,8,8,16,16,24,24];

octet: integer, -- really (round+7)/8, it keeps track of which 8-round

-- values of 8, 16,24,32,40,48,56, and 64 are possible.

-- “octet” we are currently in

L[O] = L[-1] XOR AuxiliaryKeys[11;

R[O] = R[-11 XOR AuxiliaryKeys[2];

octet = 1:

FOR round = 1 TO enough DO -- Note that “enough” must be a multiple of 8

Begin

i[round] = L[round- 11 AND #FF

L[round] = R[round-1] XOR SBoxes[octet] [i[roundl I;

R[round] = RotateRight[L[round-11, rotateschedule[(round-I) mod 8 + 1 I I ;

if (round mod 8 = 0) then octet = Octetfl;

End;

484

L[enough+l] = L[enough] XOR AuxiliaryKeys[3];

R[enough+l] = R[enough] XOR AuxiliqKeys[4];

The plaintext is (by definition) [L[-I], R[- 1 I], whde the ciphertext is [L[enough+ll,

R[enough+lll. By definition, round 1 computes L[1] and R[1] from L[O] and R[O], using

index 1 -- or $11. Similarly, round n computes L[n] and R[n] from L[n-1] and R[n-11 using

i[nl. We shall sometimes say that "round" 0 computes L[O] and R[O] from L[-11 and R[-

11, and that "round" enough+l computes L[enough+l] and R[enough+l] from L[enoughl

and R[enoughj.

The primary purpose of the rotation schedule is to bring new bytes into position so that all

8 bytes of input are used in the first 8 rounds (or first octet). This means that a change in

any single input bit is guaranteed to force the use of a different S-box entry within 8 rounds,

and so initiate the cascade of unpredictable changes needed to scramble the input. A sec-

ondary purpose of the rotation schedule is to maximize the number of rotates by 16 because

they tend to be faster on many microprocessors. For example, the 68000 has a SWAP

instruction which is equivalent to rotating a 32-bit register by 16 bits. Also, rotation by 16

tends to be very fast on processors with 16 bit registers -- simply by altering one's view-

point about which register contains the lower 16 bits and which register contains the upper

16 bits it is possible to perform this operation with no instructions at all. The final purpose

of the rotation schedule is to restore the data to its original rotational position after each

octet of 8 rounds. Thus, the sum of the rotations is equal to 0 modulo 32.

A different S-box is used after each octet of encryption. This has two beneficial effects:

first, it means that the same S-box enay will never be used twice with the same rotational

alignment. That is, if a single S-box were used for all octets, then it might be that $11 (the

index used to select an S-box entry on the first round) and i[9] might be the same -- and

therefore the same S-box entry would be used in rounds 1 and 9. These identical S-box

enmes would cancel each other out because a value XORed with itself produces 0. (If i[ll

= $91, then SBox[i[l]l XOR ... stuff... XOR SBox[i[9]] wouldequal ... stuff...) Both $11 and

485

i[9] would have had no effect on the encryption process. This would weaken the encryption

function. If, however, the S-box is changed after every octet then even if i[l] = i[9], can-

cellation is very unlikely to occur (because SBoxes[l][i[l]] is almost certainly different

from SBoxes[2][i[911, even though i[l]=i[9]). A second beneficial effect is to insure that

the encryption process is entirely different during the second octet than in the first octet. If

the same S-box were used then the second Octet would compute the same function as the

first Octet -- which can be a serious weakness.

The parameter “enough” is used because encryption must continue for enough rounds to

obscure and conceal the data. The exact number of rounds that is sufficient will no doubt

be a matter of considerable debate -- it is left as a parameter precisely so that those who

wish greater security can use more rounds, while those who are satisfied with fewer rounds

can encrypt and decrypt data more rapidly. It seems very unlikely that fewer than 8 rounds

(one octet) will ever be used, nor more than 64 rounds (8 octets). The author expects that

almost all applications will use 16,24, or 32 rounds. Values of “enough” that are not mul-

tiples of 8 are banned.

It is interesting to note that DES uses 16 rounds, and that it requires 5 rounds before each

bit of input and key influences every bit of the block being encrypted[171. That is, a change

in a single bit of the input or of the key will not influence a64 bits in the block being

encrypted for 5 rounds. We might refer to this number as the “mixing interval,” and say

that DES has a mixing interval of 5 rounds. In Khufu, it requires 9 rounds before every bit

of input and key influences every bit of the block being encrypted. It requires 8 rounds

before every bit influences the selection of an S-box entry, and a 9th round for that change

to influence the other 32-bit half of the @-bit block being encrypted. The mixing interval

in Khufu would therefore be 9 rounds. An interesting number is the total number of rounds

divided by the mixing interval, which we will call the ‘‘safety factor.” In DES, the safety

factor is 16/5 = 3.2. In Khufu with 16 rounds, the safety factor is 16/9 = 1.8. It would seem

that Khufu with 16 rounds suffers in this comparison, although we need to remember that

the S-boxes in Khufu are secret, whereas the S-boxes in DES are public. Secret S-boxes

are presumably more effective than publicly known S-boxes in concealing the data. If we

increase the number of rounds in Khufu to 32, then the safety factor becomes 32/9 = 3.6,

which seems more likely to be satisfactory. Whlle t h~s metric seems useful, it should be

viewed with caution: a large safety factor is no guarantee of security, nor is there any guar-

antee that 3.2 (the safety factor for DES) should be imbued with special significance.

Given, however, that the task of selecting the number of rounds is difficult, it seems plau-

sible to seek guidance by examining related systems.

Pre-Computing the S-Boxes

While 128 bits of key material is used at the start and finish of the encryption process (e.g.,

64 bits at the start and 64 bits at the finish from the 128-bit array “auxiliaryKeys”), most of

the key material is mixed in implicitly during the encryption process by selection of enmes

from the S-boxes. All the S-boxes (along with the 128 bits of auxiliary key material) are

pre-computed from a (presumably short) user supplied key. The S-boxes are most of the

key. This raises the question of how the S-boxes are computed and what properties they

have. W l e the specific method of computing the S-boxes is complex, the essential idea

is simple: generate the S-boxes in a pseudo-random fashion from a user supplied key SO

that they satisfy one property: all four of the one-byte columns in each S-box must be per-

mutations. Intuitively, we require that selection of a different S-box entry change all four

bytes produced by the S-box. More formally, (where “W’ means “not equal to” and SBoxe-

s[o][i][k] refers to the kth byte in the ith 32-bit entry of the SBox used during Octet “0”):

for all 0, i, j, k; i # j implies SBoxes[o][i][k] # SBoxes[olljl[kl.

We can divide the pre-computation of a pseudo-random S-box satisfying the desired prop-

erties into two parts: first, we generate a stream of good pseudo-random bytes; second, we

use the stream of pseudo-random bytes to generate four pseudo-random permutations that

map 8 bits to 8 bits. These four pseudo-random permutations are the generated S-box. We

repeat this process and compute additional S-boxes until we have enough for the number

of rounds of encryption that we anticipate.

We could generate a stream of pseudo-random bytes using an encryption function -- but we

have no S-box to use in such an encryption function! To circumvent this circularity prob-

487

lem, we can assume the existence of a single “initial” S-box. Although we must get this

initial S-box from somewhere, for the moment we assume it exists and satisfies the proper-

ties described earlier. We will discuss where it comes from later.

We (rather arbitrarily) adopt a 64-byte “state” value for our pseudo-random byte-stream

generator. That is, the user-provided key is used to initialize a @-byte block (which effec-

tively limits the key size to 512 bits -- this does not seem to be a significant limit). This 64-

byte block is then encrypted using Khufu (using the standard S-box for all octets, and set-

ting the auxiliary keys to 0) in cipher block chaining mode. (Although use of a single S -

box for all rounds will result in occasional cancelations as described earlier, this is accept-

able for thls particular application.) This provides 64 pseudo-random bytes, When these

64 bytes have been used, the @-byte block is again encrypted, providing an additional 64

pseudo-random bytes. This process is repeated as long as more pseudo-random bytes are

needed.

Now that we have a stream of pseudo-random bytes, we must convert them into the needed

permutations. We adopt the algorithm given in Knuth Vol II. In this algorithm, we start

with some pre-existing (not neccessarily random) permutation. For our purposes. we can

start with the initial S-box. We then interchange each element in the initial permutation

with some other randomly chosen element, thus producing a random permutation. In a

pseudo programming language we have:

FOR octet = 1 TO enougN8 DO

SBox = initialSBox;

FOR column = 0 TO 3 DO

BEGIN

FOR i = 0 TO 255 DO

BEGIN

randomFtow = RandomInRange[i,255]; -- returns a random number

-- between i and 255, inclusive

S wapB ytes[SB ox [i,column] , SBox[randomRow,columnJ I;

488

END;

END;

SBoxes[octet] = SBox;

END:

The routine “RandomInRange” uses the stream of random bytes to actually generate a num-

ber in the requested range.

Khafre

The design of Khafre is similar to the design of Khufu except that Khafre does not pre-com-

pute its S-box. Instead, Khafre uses a set of standard S-boxes (discussed in the next section

-- note that the standard S-boxes are different from the one initial S-box). The use of stan-

dard S-boxes means that Khafre can quickly encrypt a single 64-bit block without the

lengthy pre-computation used in Khufu; however it also means that some new mechanism

of mixing in key material must be adopted because the standard S-boxes can not serve as

the key. The mechanism of key-mixing is simple -- key material is XORed with the 64-bit

data block before the first round and thereafter following every 8 rounds. A consequence

of this method is that the key must be a multiple of 64 bits -- it is expected that @-bit and

128-bit key sizes will typically be used in commercial applications. Arbitrarily large key

sizes can be used, though this will slow down encryption.

We can summarize Khafre as follows:

L, R: int32;

standardSBoxes: ARRAY [1 .. enough/8] OF ARRAY [0 .. 2551 OF int32;

key: ARRAY [0 .. keysize-11 OF ARRAY [O .. 11 of int32;

keyIndex: [0 .. keysize- 11;

rotateschedule: ARRAY [l .. 81 = [16,16,8,8,16,16,24,24];

489

L = L XOR key[O][O];

R = R XOR key[O][I];

keyIndex = 1 MOD keysize:

octet = 1;

FOR round = 1 TO enough DO

BEGIN

L = L XOR standardSBoxes[octet} [R izND #IT];

R = RotateRightrR, rotateSchedule[round mod 8 + 11 1;

S WAP[L,R];

IF round MOD 8 = 0 THEN

BEGIN

L = L XOR rotateRight[key[keyIndex][Ol, octet];

R = R XOR rotateRight[key[keylndex][ll, octet];

keyIndex = keyIndex + I ;

IF keyIndex = keysize THEN keylndex = 0:

octet = octet+l;

END:

END;

keysize is the number of @-bit blocks of key material used for encryption.

rotateRight [a, b] rotates the 32-bit word “a” right by “b” bits.

We again require that the number of rounds be a multiple of 8 for efficiency reasons.

In order to decrypt correctly, we have to compute the correct value of “keyIndex” to use

when decryption begins. For example, if we used a 128-bit key (keysize = 2) for 32 rounds

to encrypt a @-bit plaintext. then the final entry used in the key array would be key[ll.

When we began to decrypt, we would have to begin with key[I] rather than key[OI. In gen-

eral, we will have to start decryption from key[(enougN8 + 1) MOD keysize]. This com-

490

putation is extremely easy in the common case where keysize is 1, for any integer taken

modulo 1 is 0. The other common case, in which keysize is 2, is also very easy to compute.

Computing an integer modulo 2 requires only that we examine the bottom bit of the integer.

Whde the modulo operation is more complex in some other cases, these cases are likely to

be rare. If a particular case should prove to be frequent, simple special case code could be

used to insure that computing the MOD function would not take excessive computer time.

Khafre will probably require more rounds than Khufu to achieve a similar level of security

because it uses a fixed S-box. In addition, each Khafre round is somewhat more complex

than each Khufu round. As a consequence of these two factors, Khafre will take longer than

Khufu to encrypt each @-bit block. In compensation for this slower encryption speed,

Khafre does not require pre-computation of the S-box and so will encrypt small amounts of

data more quickly than Khufu.

In Khafre used with a @-bit key, the mixing interval is again 9 rounds. Here, because the

S-boxes are public as in DES, it seems that the safety factor of 1619 = 1.8 is more directly

comparable with the safety factor of 16/5 = 3.2 for DES. Increasing the number of rounds

from 16 to 24 or 32, yielding safety factors of 2419 = 2.7 or 3219 = 3.6, would seem more

in keeping with the DES values. Further increases would be justified either because a safety

factor larger than that of DES would be viewed as prudent, or because the “quality” of the

mixing done by 9 rounds of Khafre might be viewed as less effective than 5 rounds of DES.

Use of a key with more than 64 bits increases the mixing interval, and so would presumably

require increases in the total number of rounds to yield commensurate increases in real

security. Further study of these issues is warranted.

Making the Initial and Standard S-Boxes

We need an initial S-box to generate a pseudo-random stream of bytes. We also need a set

of standard S-boxes to use in Khafre during the encryption process. In both applications,

we need assurances about how the S-boxes were generated. This was a major question in

DES -- whether any structure (intentional or accidental) might be present in the S-boxes

491

that would weaken the encryption function. Because the method of selecting the DES S-

boxes was kept secret, the published articles on the structure of DES are necessarily incom-

plete. Published discussions of the structure in the DES S-boxes makes it clear that very

strong selection criteria were used, and much of the structure actually found can reaonably

be attributed to design principles intended to strengthen DES. The purpose behind some of

the structure detected is uncle=, though it does not appear to weaken DES it would be use-

ful to know if the structure serves some purpose or whether it occured as an unintended con-

sequence of the particular method chosen to actually generate the S-boxes.

To avoid these questions, the standard S-boxes will be generated from the initial S-box

according to the standard (and public) algorithm for generating a set of S-boxes from a key.

The key selected for the standard S-boxes will be the null (all 0) key. In t h ~ s way, not only

the standard S-boxes but also the algorithm for generating them are made public and can

be examined to determine if there are any weaknesses.

The initial S-box must be generated from some stream of random numbers. In order to

insure that the initial S-box does not have hidden or secret strucnue, we adopt the following

rules:

1.) The program that generates the initial S-box from a stream of random numbers will be

public.

2.) The stream of random numbers used as input to the program should be above reproach

-- it should be selected in such a fashion that it could not reasonably have been tampered

with in a fashion that might allow insertion of a trap-door or other weakness.

The first criteria can be met by makmg the code for generation of the S-boxes available

along with the code for Khufu and Khafre. The second criteria is met by using the random

numbers published in 1955 by the RAND corporation in “A Million Random Digits with

100,OOO Normal Deviates” (available on magnetic tape for a nominal fee).

492

Methods of Cryptanalysis

Questions about the security of a new cryptographic algorithm are inevitable. Often, these

questions are of the form “Have you considered the following attack ...” It is therefore use-

ful to describe the attacks that were considered during the design process. This serves two

purposes. First, it reassures those who find their attack has already been considered (and

presumably found non-threatening). Second, it tells those who are considering a new attack

that the matter might not be settled and is worth pursuing further. A second question typi-

cally asked is “How many rounds are enough?” This will vary with three factors: the value

of the data being encrypted, the encryption speed (delay) that is acceptable, and the esti-

mated cost of cryptanalysis. l h s last cost is inferred by considering how many rounds are

sufficient to thwart various certificational attacks.

Attacks can be broadly divided into a number of categories -- starting with chosen plaintext,

known plaintext and ciphertext only. We shall primarily consider attacks of the chosen

plaintext variety -- a system secure against chosen plaintext attacks is presumably also

secure against the two weaker attacks. Some consideration will be given to known plain-

text and ciphertext only attacks. Protection against casual browsers is valuable and can be

provided more cheaply (i.e., with fewer rounds in the encryption process and hence less

delay). An attack by a casual browser is better modeled by a ciphertext only attack. At the

same time, the cryptographic resources the casual browser is likely to bring to bear are

markedly inferior. Finally, the cost of encryption (in user inconvenience or delay) might be

significant and the value of the data might not just@ much inconvenience -- the choice

might be between rapid encryption that offers protection against casual attack or no encryp-

tion at all.

Without further ado, and in no particular order, we discuss the major attacks considered

during the design phase.

We first consider attacks against Khufu with a reduced number of rounds. We shall here

consider attacks against an 8 round Khufu and will start with a chosen plaintext attack. We

assume that the objective is to determine the enmes in the S-box and the values of the aux-

493

iliary keys. While it might theoretically be possible to take advantage of the fact that the

S-box was generated in a pseudo-random fashon from a smaller key (effectively limited to

64 bytes) this has so far not proven to be the case. The pseudo-random method of generat-

ing the S-box from the key is sufficiently complex that the 64-byte to 1024-byte expansion

involved in this process appears quite strong. This is probably due to the relaxed compu-

tational time requirements on the pre-computation, i.e., the pre-computation is probably

over-kill, but in most applications an additional fixed delay of some tens of milliseconds

probably won’t be noticed, so it wasn‘t further optimized.

An 8 round encryption can be readily broken under a chosen plaintext aaack by noting that

each round of the encryption process is affected by only a single byte of the initial plaintext.

Therefore, given 8 rounds and 8 bytes of plaintext, some byte of plaintext is used last; e.g.,

in the 8th round. By encrypting two plaintext blocks that differ only in this last byte, we

obtain two ciphertext blocks in which the encryption process differs only in the 8th round,

and therefore in which the two left halves have the same difference as two S-box entries.

That is, if the two ciphertext left halves are designated L[8] and L‘[8] and if the indices of

the S-box entries used in the 8th rounds are designated $81 and i’[8], then L[8] XOR L”81

equals SBox[i[S]] XOR SBox[i’[8]]. L[8] and C[8] are known, as are i[8] and i’[8], so this

provides an equation about two S-box entries. After we recover roughly 256 equations we

will almost be able to solve for the 256 entries in the S-box. At this point, the recovery of

the S-box will not quite be complete -- we can arbitrarily set the value of a single S-box

entry and determine values for the rest of the enmes that will satisfy the equations we have.

Further equations will not help us, for if we have one solution to the equations, we can gen-

erate another solution by complementing the ith bit in every proposed S-box entry. The

new set of values will also satisfy the equations, for every equation XOR’s two S-box

enmes, and hence complementing the ith bit in both entries will leave the XOR of the two

bits unchanged. We need another method for resolving this last ambiguity. This is concep-

tually easy (in the worst case, we could simply examine all 232 possibilities) but an efficient

algorithm is difficult to explain in a short space -- we therefore leave h s as an exercise for

the reader. Once the S-box enmes are known, it is also relatively simple to determine the

auxiliary keys.

494

If we consider a known plaintext attack against an 8 round encryption, we find the problem

is more difficult. Certainly, we could request a large number of plaintext-ciphertext pairs

and hope that at least some of the pairs differed only in the final few bytes (e g , the bytes

that are used only on the 7th and 8th rounds of encryptionj but this would require many mil-

lions of such pairs. This, of course, presumes that the plaintext is selected randomly --

which implies that cipher block chaining (or some other pseudo-randomization method) is

used to insure that patterns in the plaintext are eliminated prior to encryption. Direct

encryption (without some “whitening” or pre-randomization) of sufficient text would prob-

ably result in %byte blocks that differed only in a single byte -- which might allow use Of

the method described above.

Finally, a ciphertext only attack against an 8-round Khufu appears to be a difficult problem.

More sophisticated attacks can be mounted[22] that use various “hill-climbing” strategies.

While we have not directly mounted such an attack, we would speculate that it would suc-

ceed for 8 rounds, though this is not certain.

Fundamentally, statistical or “hill-climbing’’ attacks must rely on statistically detectable

differences between various alternatives. If the statistics are flat, then such techniques will

fail. An important question with Khufu is the number of rounds required to achieve a sta-

tistically flat distribution. Preliminary results indicate that 16 rounds produces flat statis-

tics.

The use of auxiliary keys were largely adopted for three reasons: first, it seemed intuitively

reasonable that randomization of the input by XORing an unknown quanitity would assist

in the encryption process. Second, four additional register-to-register XOR operations are

cheap to implement. Finally, the auxiliary keys foil a specific chosen plaintext attack. This

attack depends on the observation that, although the S-box has 256 enmes, the encryption

process does not use all entries for each plaintext-ciphertext pair, Even worse, although a

typical 8-round encryption will use 8 different S-box entries it doesn’t have to: Some

entries could be repeated. In the worst case, a single entry would be repeated 8 times --

which would effectively mean that only 32 bits of key material was used. If the auxiliary

keys were not present then we could simply guess at the value of one of the S-box enmes,

495

and then confirm our guess if we could find a plaintext-ciphertext pair that used only that

entry for all 8 rounds. Because each of the 8 rounds uses a single byte from the plaintext,

we could actually construct the plaintext needed to confirm our guess (if the auxiliary keys

were not present). For example, if we guess that the 0
th

 S-box entry has some specific

value, then we would select the first byte of our specially-built plaintext (or i[l], the byte

of plaintext used as an index into the S-box in the first round) to be 0. Then, knowing what

happens in the first round, we can select the second byte of the plaintext (or i[2]) so that the

0 entry is again selected on the second round — which would tell us what happens in the

third round. By repeating this process for 8 rounds, we can construct a plaintext which,

when enciphered, will tell us whether or not the 0
th

 S-box entry does or does not have a

specific value. After trying 2 values we will surely find the correct one. If we then repeat

this whole process for the 1
st
 entry, and then the 2

nd
 entry, etc. we could determine the val-

ues of all the entries in the S-box.

The auxiliary keys prevent this attack because they effectively inject 64 bits of key material

into the encryption process prior to selecting S-box entries. Thus, correctly guessing a 32-

bit S-box entry is insufficient because we would also have to guess the 64-bit value XORed

with the plaintext prior to encryption. If we guessed a single such bit incorrectly, then the

incorrectly guessed bit would (within the first 8 rounds) cause selection of an uncontrolled

S-box entry which would then initiate the uncontrolled avalanche of changes that we rely

upon to provide cryptographic strength.

Although this attack is actually rather inefficient compared with our first chosen ciphertext

attack, it does point out that there is no guarantee that multiple different S-box entries have

actually been used during encryption. Instead, we must assure ourselves that the risk of this

occuring is sufficiently low by explicitly computing the probability of its occurence.

Another attack in this general class is the cancelation attack. In this attack, we alter the first

byte of the 8 bytes in the plaintext, and then attempt to cancel the effects of this alteration

by altering the other 32-bit half in a compensating fashion. That is, by altering the first byte

of plaintext used in the first round, we cause a change in the second round that we can

understand. Because we can also change the other 32-bit half, this understandable change

496

in the second round can be cancelled. (Notice that the auxiliary keys have very little impact

on this attack. We shall assume that the auxdiary keys are 0 for this analysis.). Now, if the

first byte were 3, and we changed it to a 5, then this would produce a predictable change in

the value XORed with the other 32-bit half, R, in the first round. This first round is com-

puted as:

i[1] = L[O] AND #FF;

L[11 = R[O] XOR SBox[i[11 1;

For the first plaintext we encrypted, this would become:

L[I] = R[O] XOR SBoxl31;

while for the second plaintext encrypted, this would become:

L"11 = R'[O] XOR SBox[S];

Therefore, if we select R'[O] = R[O] XOR SBox[3] XOR SBox[S], then the second equation

becomes:

L'[1] = R[O] XOR SBox[3] XOR SBox[S] XOR SBox[S]

or

L'[1] = R[O] XOR SBox[3]

But this means that L'El] = R[O] XOR SBoxt31 = L[11

In other words, L[11 and L'[11 are identical -- by knowing SBox[3] XOR SBox[S] we were

able to cancel out the change that should have taken place in L[11. This, of course, means

that the avalanche of changes upon which encryption so critically depends has been

thwarted at the very start. Notice that after the first round of encryption, the two blocks dif-

497

fer only in the first byte -- that is, the byte used in the first round. After 8 rounds of encryp-

tion, the resulting ciphertexts will also differ in only this one byte.

In practice, this attack seems to require that you first guess the correct value of SBox[il

XOR SBoxlj] for two different values of i and j. This is a 32-bit value, and so on average

it seems necessary to try 232 different values before encountering the correct one. After 8

rounds of encryption, however, the fact that we have determined the correct 32-bit “cance-

lation value” will be obvious because the final 64 bits of ciphertext generated by the two

different plaintexts will differ in only a single byte.

It might not at first be obvious, but we can in fact modify this attack so that only 2 * 216

plaintext-ciphertext pairs are required in order to find the correct cancelation value.

Although as described above, it would seem that we need 232 pairs of plaintext-ciphertext

pairs to test each possible 32-bit cancelation value, this is not the case. We can generate

two lists of plaintext-ciphertext pairs, and then by selecting one plaintext-ciphertext pair

from one list and the other plaintext-ciphertext pair from the other list, we can generate 232

possible combinations of entries from the two lists. If we select the plaintexts used to gen-

erate the lists carefully, then every 32-bit cancelation value can be represented by one entry

from the first list, and one entry from the second list.

When we consider this attack on a 16 round Khufu it is much weaker. If we can determine

the correct 32-bit cancelation value it will cause collapse of the encryption process up until

the changed byte is again used. If the first byte has been changed, then it will again be used

on the 9* round -- this means that in a 16-round Khufu a cancelation attack will effectively

strip off 8 rounds. The remaining 8 rounds must then provide sufficient cryptographic

strength to resist attack. Empirical statistical tests indicate that 8 rounds in which changes

take place in the first one or two rounds will result in apparently random output -- though

of course, this result demonstrates only that the output was random with respect to the spe-

cific statistical tests used, not that all possible statistical tests would reveal no pattern.

An attack proposed by Dan Greene is based on the observation that each 32-bit half is being

498

XORed with values selected (possibly with a rotation) from the S-box. Once the key has

been chosen this S-box is fixed -- so at most 256 different values can be used and each value

can be rotated (in the first 8 rounds of Khufu) in only four different ways. That is, we are

at best applying a fixed and rather limited set of operations to each half. If we focus on the

right half, R, (and if we neglect the effect of the auxiliary keys) then we find that:

R8 = RO XOR ROTATE[SBox[il],O] XOR ROTATE[SBox[i3],16] XOR

ROTATE[SBox[i5],24] XOR ROTATE[SBox[i71,811

R8 designates the right half following 8 rounds of Khufu, i.e., the right half of the cipher-

text. RO designates the right half before encryption begins, i.e., the right half of the plain-

text. Although the indices used to select the S-box entries are computed during encryption,

we are going to ignore their actual values. Instead, we will assume that i 1, i3, i5 and i7 are

selected randomly. This should not weaken the encryption function, so any cryptanalytic

success we have using this assumption indicates weakness in the original system as well.

If we define

Y = Y[i1, i3, i5, i7] = ROTATE[SBox[il],O] XOR ROTATE[SBox[i3],161 XOR

ROTATE[SBox[i5] ,241 XOR ROTATE[SBox[i7],8]]

we can re-express the earlier equation as:

R8 XOR RO = Y[il, i3, i.5, i7]

The left side of tlzls equation is readily computed from a plaintext-ciphertext pair, and with

enough such pairs we can compute the probability distribution of (R8 XOR RO). The right

side should determine the same distribution (if we assume the actual indices are more or

less random -- which should be a good approximation if the plaintext is random!). The 4

8-bit indices clearly could generate at most 232 possible values for Y, but it seems more

499

plausible that some values for Y will be produced more than once while other values for Y

will not be produced at all. That is to say, the distribution of Y’s will not be uniform. sf we

can compute this dismbution from enough plaintext-ciphertext pairs, and if it is non-uni-

form, could we then cryptanalyze an 8 round Khufu? Statistical evidence gathered on a 16-

round Khufu suggests that this attack will fail for 16 rounds, but its success for 8 rounds is

still unclear. Even given the distribution of Y’s it is not clear (at the time of writing) how

to determine the actual S-box entries,

Summary

An 8-round Khufu can be broken by several attacks, though it is somewhat resistant to

ciphertext only attack. . A 16-round Khufu has so far resisted the modest level of attack that

has been mounted. Preliminary statistical analysis suggests that a 16-round Khufu pro-

duces random output. We are hopeful that a 16-round Khufu will be useful for general com-

mercial encryption, but this conclusion is tentative. Increasing the number of rounds to 32

or more should be effective in increasing the complexity of cryptanalysis. Further study

concerning the number of rounds required to prevent cryptanalysis is warranted.

The analysis of Khafre has been less detailed. It seems probable that Khafre will require

more rounds of encryption to provide equivalent security than Khufu, because the S-boxes

used with Khafre are public. Khufu, by contrast, generates different S-boxes for each key

and keeps the S-boxes secret -- and so uses more key material per round than Khafre.

Any reader seriously considering use of these encryption functions is advised that (1) wait-

ing for one to two years following their publication should allow sufficient time for their

examination by the public cryptographic community and (2) current mformation about

their status should be obtained by contacting the author,

500

Acknowledgements

The author would like to particularly thank Dan Greene for his many comments and the

many hours of discussion about cryptography in general and the various design proposals

for Khufu in particular. Thanks are also due to Luis Rodriguez, who implemented the C

version of Khufu and gathered most of the statistics, Thanks are also due the many

researchers at PARC who provided insight, technical comments, and encouragement. I

would also like to thank Dan Swinehart, John White, Mark Weiser, Frank Squires, John

Seely Brown, Ron Rider, and the rest of PARC management for their persistent support of

this work.

BibLiograp h y

1.) “Secrecy, Authentication, and Public Key Systems”, Stanford PbD. thesis, 1979, by

Ralph C. MerMe.

2.) “A Certified Digital Signature”, Crypto ‘89.

3.) Moti Yung, private communication.

4.) “A High Speed Manipulation Detection Code”, by Robert R. Jueneman, Advances in

Cryptology - CRYPTO ‘86, Springer Verlag, Lecture Notes on Computer Science, Vol.

263, page 327 to 34.6.

5.) “Another Birthday Attack” by Don Coppersmith, Advances in Cryptology - CRYPTO

‘85, Springer Verlag, Lecture Notes on Computer Science, Vol. 218, pages 14 to 17.

6.) “A digital signature based on a conventional encryption function”, by Ralph C. Merkle,

Advances in Cryptology CRYPTO 87, Springer Verlag, Lecture Notes on Computer

Science, Vol. 293, page 369-378.

7.) “Cryptography and Data Security”, by Dorothy E. R. Denning, Addison-Wesley 1982,

page 170,

8.) “On the security of multiple encryption”, by Ralph C. Merkle, CACM Vol. 24 No. 7,

July 1981 pages 465 to 467.

9.) “Results of an initial attempt to cryptanalyze the NBS Data Encryption Standard”, by

Martin Hellman e t al., Information Systems lab. report SEL 76-042, Stanford Univer-

50 1

23.

24.

sity 1976.

10.) “Communication Theory of Secrecy Systems”, by C. E. Shannon, Bell Sys. Tech. Jour.

28 (Oct. 1949) 656-715

11.j “Message Authentication” by R. R. Jueneman, S . M. Matyas, C. H. Meyer, IEEE

Communications Magazine, Vol. 23, No. 9, September 1985 pages 29-40.

12.) “Generating strong one-way functions with cryptographic algorithm”, by S. M. Mat-

yas, C. H. Meyer, and J. Oseas, IBM Techca l Disclosure Bulletin, Vol. 27, No. 10A,

March 1985 pages 5658-5659

13. j “Analysis of Jueneman’s MDC Scheme”, by Don Coppersmith, preliminary version

June 9, 1988. Analysis of the system presented in [4].

14.) “The Data Encryption Standard: Past and Future” by M.E. Smid and D.K. Branstad,

Proc. of the IEEE, Vol76 No. 5 pp 550-559, May 1988

15.) “Defending Secrets, Sharing Data: New Locks and Keys for Electronic Informa-

tion”, U.S. Congress, Office of Technology Assessment, OTA-CIT-3 10, U.S. Govern-

ment Prinring Office, October 1987

16.) “Exhaustive cryptanalysis of the NBS data encryption standard”, by Whitfield Diffie

and Martin Hellman, Computer, June 1977, pages 74-78

17.) “Cryptography: a new dimension in data security”, by Carl H. Meyer and Stephen

M. Matyas , Wiley 1982.

18.) “One Way Hash Functions and DES”, by Ralph C . Merkle, Crypto ‘89.

19.) “Data Encryption Standard (DES)”, National Bureau of Standards (U.S.), Federal

Information Processing Standards Publication 46, National Technical Information Ser-

vice, Springfield, VA, Apr. 1977

21.) “Cryptography and Computer Privacy”, by H. Feistel, Sci. h e r . Vol. 228, No. 5 pp

15-23, May 1973

22.) “Maximum Likelihood Estimation Applied to Cryptanalysis”, by Dov Andelman,

Stanford Ph.D. Thesis, 1979

IBM has recently proposed a specific one-way hash function which has so far resisted

attack.

“A Fast Software One-way Hash Function,” submitted to the Journal of CryptOlOgY.

The C source for this method is available by anonymous FTP from arisia.xerox.com

(13.1.100.206) in directory /pubbash.

	Fast Software Encryption Functions
	Introduction
	Khufu, Khafre and Snefru
	Khufu
	Pre-Computing the S-Boxes
	Khafre
	Making the Initial and Standard S-Boxes
	Methods of Cryptanalysis
	Summary
	Acknowledgements
	BibLiograp h y

