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Abstract

The minimum ℓ1-norm solution to an underdetermined system of linear equations y = Ax,
is often, remarkably, also the sparsest solution to that system. This sparsity-seeking property
is of interest in signal processing and information transmission. However, general-purpose
optimizers are much too slow for ℓ1 minimization in many large-scale applications.

The Homotopy method was originally proposed by Osborne et al. for solving noisy
overdetermined ℓ1-penalized least squares problems. We here apply it to solve the noiseless
underdetermined ℓ1-minimization problem min ‖x‖1 subject to y = Ax. We show that
Homotopy runs much more rapidly than general-purpose LP solvers when sufficient sparsity
is present. Indeed, the method often has the following k-step solution property: if the
underlying solution has only k nonzeros, the Homotopy method reaches that solution in
only k iterative steps. When this property holds and k is small compared to the problem
size, this means that ℓ1 minimization problems with k-sparse solutions can be solved in a
fraction of the cost of solving one full-sized linear system.

We demonstrate this k-step solution property for two kinds of problem suites. First,
incoherent matrices A, where off-diagonal entries of the Gram matrix AT A are all smaller
than M . If y is a linear combination of at most k ≤ (M−1 + 1)/2 columns of A, we
show that Homotopy has the k-step solution property. Second, ensembles of d × n random
matrices A. If A has iid Gaussian entries, then, when y is a linear combination of at most
k < d/(2 log(n)) · (1 − ǫn) columns, with ǫn > 0 small, Homotopy again exhibits the k-step
solution property with high probability. Further, we give evidence showing that for ensembles
of d×n partial orthogonal matrices, including partial Fourier matrices, and partial Hadamard
matrices, with high probability, the k-step solution property holds up to a dramatically higher
threshold k, satisfying k/d < ρ̂(d/n), for a certain empirically-determined function ρ̂(δ).

Our results imply that Homotopy can efficiently solve some very ambitious large-scale
problems arising in stylized applications of error-correcting codes, magnetic resonance imag-
ing, and NMR spectroscopy. Our approach also sheds light on the evident parallelism in
results on ℓ1 minimization and Orthogonal Matching Pursuit (OMP), and aids in explaining
the inherent relations between Homotopy, LARS, OMP, and Polytope Faces Pursuit.
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1 Introduction

Recently, ℓ1-norm minimization has attracted attention in the signal processing community
[9, 26, 20, 7, 5, 6, 8, 27, 31, 32, 44], as an effective technique for solving underdetermined
systems of linear equations, of the following form. A measurement vector y ∈ Rd is generated
from an unknown signal of interest x0 ∈ Rn by a linear transformation y = Ax0, with a known
matrix A of size d × n. An important factor in these applications is that d < n, so the system
of equations y = Ax is underdetermined. We solve the convex optimization problem

(P1) min
x
‖x‖1 subject to y = Ax,

obtaining a vector x1 which we consider an approximation to x0.
Applications of (P1) have been proposed in the context of time-frequency representation [9],

overcomplete signal representation [20, 26, 27, 31, 32], texture/geometry separation [48, 49],
compressed sensing (CS) [14, 7, 56], rapid MR Imaging [37, 38], removal of impulsive noise
[21], and decoding of error-correcting codes (ECC) [5, 44]. In such applications, the underlying
problem is to obtain a solution to y = Ax which is as sparse as possible, in the sense of having
few nonzero entries. The above-cited literature shows that often, when the desired solution x0

is sufficiently sparse, (P1) delivers either x0 or a reasonable approximation.
Traditionally, the problem of finding sparse solutions has been catalogued as belonging to a

class of combinatorial optimization problems, whereas (P1) can be solved by linear programming,
and is thus dramatically more tractable in general. Nevertheless, general-purpose LP solvers
ultimately involve solution of ‘full’ n× n linear systems, and require many applications of such
solvers, each application costing order O(n3) flops.

Many of the interesting problems where (P1) has been contemplated are very large in scale.
For example, already 10 years ago, Basis Pursuit [9] tackled problems with d = 8, 192 and
n = 262, 144, and problem sizes approached currently [55, 7, 56, 38] are even larger. Such
large-scale problems are simply too large for general-purpose strategies to be used in routine
processing.

1.1 Greedy Approaches

Many of the applications of (P1) can instead be attacked heuristically by fitting sparse models,
using greedy stepwise least squares. This approach is often called Matching Pursuit or Orthogo-
nal Matching Pursuit (Omp) [12] in the signal processing literature. Rather than minimizing an
objective function, Omp constructs a sparse solution to a given problem by iteratively building
up an approximation; the vector y is approximated as a linear combination of a few columns of
A, where the active set of columns to be used is built column by column, in a greedy fashion.
At each iteration a new column is added to the active set – the column that best correlates with
the current residual.

Although Omp is a heuristic method, in some cases it works marvelously. In particular, there
are examples where the data y admit sparse synthesis using only k columns of A, and greedy
selection finds exactly those columns in just k steps. Perhaps surprisingly, optimists can cite
theoretical work supporting this notion; work by Tropp et al. [52, 54] and Donoho et al. [19] has
shown that Omp can, in certain circumstances, succeed at finding the sparsest solution. Yet,
theory provides comfort for pessimists too; Omp fails to find the sparsest solution in certain
scenarios where ℓ1 minimization succeeds [9, 15, 52].

Optimists can also rely on empirical evidence to support their hopeful attitude. By now
several research groups have conducted studies of Omp on problems where A is random with
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iid Gaussian elements and x0 is sparse but random (we are aware of experiments by Tropp,
by Petukhov, as well as ourselves) all with the conclusion that Omp – despite its greedy and
heuristic nature – performs roughly as well as (P1) in certain problem settings. Later in this
paper we document this in detail. However, to our knowledge, there is no theoretical basis
supporting these empirical observations.

This has the air of mystery – why do (P1) and Omp behave so similarly, when one has a
rigorous foundation and the other one apparently does not? Is there some deeper connection
or similarity between the two ideas? If there is a similarity, why is Omp so fast while ℓ1

minimization is so slow?
In this paper we aim to shed light on all these questions.

1.2 A Continuation Algorithm To Solve (P1)

In parallel with developments in the signal processing literature, there has also been interest in
the statistical community in fitting regression models while imposing ℓ1-norm constraints on the
regression coefficients. Tibshirani [51] proposed the so-called Lasso problem, which we state
using our notation as follows:

(Lq) min
x
‖y −Ax‖22 subject to ‖x‖1 ≤ q;

in words: a least-squares fit subject to an ℓ1-norm constraint on the coefficients. In Tibshirani’s
original proposal, Ad×n was assumed to have d > n, i.e. representing an overdetermined linear
system.

It is convenient to consider instead the unconstrained optimization problem

(Dλ) min
x
‖y −Ax‖22/2 + λ‖x‖1,

i.e. a form of ℓ1-penalized least-squares. Indeed, problems (Lq) and (Dλ) are equivalent under
an appropriate correspondence of parameters. To see that, associate with each problem (Dλ) :
λ ∈ [0,∞) a solution x̃λ (for simplicity assumed unique). The set {x̃λ : λ ∈ [0,∞)} identifies
a solution path, with x̃λ = 0 for λ large and, as λ → 0, x̃λ converging to the solution of (P1).
Similarly, {x̃q : q ∈ [0,∞)} traces out a solution path for problem (Lq), with x̃q = 0 for q = 0
and, as q increases, x̃q converging to the solution of (P1). Thus, there is a reparametrization
q(λ) defined by q(λ) = ‖x̃λ‖1 so that the solution paths of (Dλ) and (Lq(λ)) coincide.

In the classic overdetermined setting, d > n, Osborne, Presnell and Turlach [40, 41] made
the useful observation that the solution path of (Dλ), λ ≥ 0 (or (Lq), q ≥ 0) is polygonal.
Further, they characterized the changes in the solution x̃λ at vertices of the polygonal path.
Vertices on this solution path correspond to solution subset models, i.e. vectors having nonzero
elements only on a subset of the potential candidate entries. As we move along the solution
path, the subset is piecewise constant as a function of λ, changing only at critical values of λ,
corresponding to the vertices on the polygonal path. This evolving subset is called the active
set. Based on these observations, they presented the Homotopy algorithm, which follows the
solution path by jumping from vertex to vertex of this polygonal path. It starts at x̃λ = 0 for λ
large, with an empty active set. At each vertex, the active set is updated through the addition
and removal of variables. Thus, in a sequence of steps, it successively obtains the solutions
x̃λℓ

at a special problem-dependent sequence λℓ associated to vertices of the polygonal path.
The name Homotopy refers to the fact that the objective function for (Dλ) is undergoing a
homotopy from the ℓ2 constraint to the ℓ1 objective as λ decreases.
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Malioutov et al. [39] were the first to apply the Homotopy method to the formulation (Dλ)
in the underdetermined setting, when the data are noisy. In this paper, we also suggest using
the Homotopy method for solving (P1) in the underdetermined setting.

Homotopy Algorithm for Solving (P1): Apply the Homotopy method: follow the solution
path from xλ0

= 0 to x̃0. Upon reaching the λ = 0 limit, (P1) is solved.

Traditionally, to solve (P1), one would apply the simplex algorithm or an interior-point
method, which, in general, starts out with a dense solution and converges to the solution of (P1)
through a sequence of iterations, each requiring the solution of a full linear system. In contrast,
the Homotopy method starts out at xλ0

= 0, and successively builds a sparse solution by adding
or removing elements from its active set. Clearly, in a sparse setting, this latter approach is
much more favorable, since, as long as the solution has few nonzeros, Homotopy will reach the
solution in a few steps.

Numerically, each step of the algorithm involves the rank-one update of a linear system,
and so if the whole procedure stops in k steps, yielding a solution with k nonzeros, its overall
complexity is bounded by k3 + kdn flops. For k ≪ d and d ∝ n, this is far better than the d3/3
flops it would take to solve just one d × d linear system. Moreover, to solve (Dλ) for all λ ≥ 0
by a traditional approach, one would need to repeatedly solve a quadratic program for every λ
value of interest. For any problem size beyond the very smallest, that would be prohibitively
time consuming. In contrast, Homotopy delivers all the solutions x̃λ to (Dλ), λ ≥ 0.

1.3 LARS

Efron, Hastie, Johnstone, and Tibshirani [24] developed an approximation to the Homotopy

algorithm which is quite instructive. The Homotopy algorithm maintains an active set of
nonzero variables composing the current solution. When moving to a new vertex of the solution
polygon, the algorithm may either add new elements to or remove existing elements from the
active set. The Lars procedure is obtained by following the same sequence of steps, only
omitting the step that considers removal of variables from the active set, thus constraining its
behavior to adding new elements to the current approximation. In other words, once activated,
a variable is never removed.

In modifying the stepwise rule, of course, one implicitly obtains a new polygonal path, the
Lars path, which in general may be different from the Lasso path. Yet, Efron et al. observed
that in practice, the Lars path is often identical to the Lasso path. This equality is very
interesting in the present context, because Lars is so similar to Omp. Both algorithms build up
a model a step at a time, adding a new variable to the active set at each step, and ensuring that
the new variable is in some sense the most important among the potential candidate variables.
The details of determining importance differ but in both cases involve the inner product between
the candidate new variables and the current residual.

In short, a stepwise algorithm with a greedy flavor can sometimes produce the same result
as full-blown ℓ1 minimization. This suggests a possibility which can be stated in two different
ways:

• ... that an algorithm for quasi ℓ1 minimization runs just as rapidly as Omp.

• ... that an algorithm visibly very similar to Omp can be just as effective as ℓ1 minimization.
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1.4 Properties of Homotopy

Another possibility comes to mind. The Homotopy algorithm is, algorithmically speaking,
a variant of Lars, differing only in a few lines of code. And yet this small variation makes
Homotopy rigorously able to solve a global optimization problem.

More explicitly, the difference between Homotopy and Lars lies in the provision by Ho-

motopy for terms to leave as well as enter the active set. This means that the number of steps
required by Homotopy can, in principle, be significantly greater than the number of steps re-
quired by Lars, as terms enter and leave the active set numerous times. If so, we observe “model
churning” which causes Homotopy to run slowly. We present evidence that under favorable
conditions, such churning does not occur. In such cases, the Homotopy algorithm is roughly
as fast as both Lars and Omp.

In this paper, we consider two settings for performance measurement: deterministic incoher-
ent matrices and random matrices. We demonstrate that, when a k-sparse representation exists,
k ≪ d, the Homotopy algorithm finds it in k steps. Results in each setting parallel existing
results about Omp in that setting. Moreover, the discussion above indicates that each step of
Homotopy is identical to a step of Lars and therefore very similar to a corresponding step of
Omp. We interpret this parallelism as follows.

The Homotopy algorithm, in addition to solving the ℓ1 minimization problem,
runs just as rapidly as the heuristic algorithms Omp/ Lars, in those problem suites
where those algorithms have been shown to correctly solve the sparse representation
problem.

Since there exists a wide range of cases where ℓ1-minimization is known to find the sparsest
solution while Omp is known to fail [9, 15, 52], Homotopy gives in some sense the best of both
worlds by a single algorithm: speed where possible, sparsity where possible.

In addition, our viewpoint sheds new perspective on previously-observed similarities between
results about ℓ1 minimization and about Omp. Previous theoretical work [19, 52, 54] found that
these two seemingly disparate methods had comparable theoretical results for finding sparse
solutions. Our work exhibits inherent similarities between the two methods which motivate
these parallel findings.

Figure 1 summarizes the relation between ℓ1 minimization and Omp, by highlighting the inti-
mate bonds between Homotopy, Lars, and Omp. We elaborate on these inherent connections
in a later section.

1.5 Main Results

Our results about the stopping behavior of Homotopy require some terminology.

Definition 1 A problem suite S(E,V; d, n, k) is a collection of problems defined by three com-
ponents: (a) an ensemble E of matrices A of size d×n; (b) an ensemble V of n-vectors α0 with
at most k nonzeros; (c) an induced ensemble of left-hand sides y = Aα0.

Where the ensemble V is omitted from the definition of a problem suite, we interpret that as
saying that the relevant statements hold for any nonzero distribution. Otherwise, V will take
one of three values: (Uniform), when the nonzeros are iid uniform on [0, 1]; (Gauss), when the
nonzeros are iid standard normal; and (Bernoulli), when the nonzeros are iid equi-probable
Bernoulli distributed with values ±1.
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Figure 1: Bridging ℓ1 minimization and OMP. (1) Homotopy provably solves ℓ1 minimization
problems [24]. (2) Lars is obtained from Homotopy by removing the sign constraint check. (3)
Omp and Lars are similar in structure, the only difference being that Omp solves a least-squares
problem at each iteration, whereas Lars solves a linearly-penalized least-squares problem. There
are initially surprising similarities of results concerning the ability of OMP and ℓ1 minimization
to find sparse solutions. We view those results as statements about the k-step solution property.
We present evidence showing that for sufficiently small k, steps (2) and (3) do not affect the
threshold for the k-sparse solution property. Since both algorithms have the k-step solution
property under the given conditions, they both have the sparse solution property under those
conditions.

Definition 2 An algorithm A has the k-step solution property at a given problem instance (A, y)
drawn from a problem suite S(E,V; d, n, k) if, when applied to the data (A, y), the algorithm
terminates after at most k steps with the correct solution.

Our main results establish the k-step solution property in specific problem suites.

1.5.1 Incoherent Systems

The mutual coherence M(A) of a matrix A whose columns are normalized to unit length is the
maximal off-diagonal entry of the Gram matrix AT A. We call the collection of matrices A with
M(A) ≤ µ the incoherent ensemble with coherence bound µ (denoted Incµ). Let S(Incµ; d, n, k)
be the suite of problems with d × n matrices drawn from the incoherent ensemble Incµ, with
vectors α0 having ‖α0‖0 ≤ k. For the incoherent problem suite, we have the following result:

Theorem 1 Let (A, y) be a problem instance drawn from S(Incµ; d, n, k). Suppose that

k ≤ (µ−1 + 1)/2. (1.1)

Then, the Homotopy algorithm runs k steps and stops, delivering the solution α0.

The condition (1.1) has appeared elsewhere; work by Donoho et al. [20, 18], Gribonval and
Nielsen [31], and Tropp [52] established that when (1.1) holds, the sparsest solution is unique
and equal to α0, and both ℓ1 minimization and Omp recover α0. In particular, Omp takes at
most k steps to reach the solution.

In short we show here that for the general class of problems S(Incµ; d, n, k), where a unique
sparsest solution is known to exist, and where Omp finds it in k steps, Homotopy finds that
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same solution in the same number of steps. Note that Homotopy always solves the ℓ1 minimiza-
tion problem; the result shows that it operates particularly rapidly over the sparse incoherent
suite.

1.5.2 Random Matrices

We first consider d× n random matrices A from the Uniform Spherical Ensemble (USE). Such
matrices have columns independently and uniformly distributed on the sphere Sd−1. Consider
the suite S(USE; d, n, k) of random problems where A is drawn from the USE and where α0 has
at most k nonzeros at k randomly-chosen sites, with the sites chosen independently of A.

Empirical Finding 1 Fix δ ∈ (0, 1). Let d = dn = ⌊δn⌋. Let (A, y) be a problem instance
drawn from S(USE; d, n, k). There is ǫn > 0 small, so that, with high probability, for

k ≤ dn

2 log(n)
(1− ǫn), (1.2)

the Homotopy algorithm runs k steps and stops, delivering the solution α0.

Remarks:

• We conjecture that corresponding to this empirical finding is a theorem, in which the
conclusion is that as n→∞, ǫn → 0.

• The empirical result is in fact stronger. We demonstrate that for problem instances with
k emphatically not satisfying (1.2), but rather

k ≥ dn

2 log(n)
(1 + ǫn),

then, with high probability for large n, the Homotopy algorithm fails to terminate in k
steps. Thus, (1.2) delineates a boundary between two regions in (k, d, n) space; one where
the k-step property holds with high probability, and another where the chance of k-step
termination is very low.

• This empirical finding also holds for matrices drawn from the Random Signs Ensemble
(RSE). Matrices in this ensemble are constrained to have their entries ±1 (suitably nor-
malized to obtain unit-norm columns), with signs drawn independently and with equal
probability.

We next consider ensembles made of partial orthogonal transformations. In particular, we
consider the following matrix ensembles:

• Partial Fourier Ensemble (PFE). Matrices in this ensemble are obtained by sampling at
random d rows of an n by n Fourier matrix.

• Partial Hadamard Ensemble (PHE). Matrices in this ensemble are obtained by sampling
at random d rows of an n by n Hadamard matrix.

• Uniform Random Projection Ensemble (URPE). Matrices in this ensemble are obtained
by generating an n by n random orthogonal matrix and sampling d of its rows at random.
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As it turns out, when applied to problems drawn from these ensembles, the Homotopy al-
gorithm maintains the k-step property at a substantially greater range of signal sparsities. In
detail, we give evidence supporting the following conclusion.

Empirical Finding 2 Fix δ ∈ (0, 1). Let d = dn = ⌊δn⌋. Let (A, y) be a problem instance
drawn from S(E,V; d, n, k), with E ∈ { PFE,PHE,URPE }, and V ∈ { Uniform,Gauss,Bernoulli

}. The empirical function ρ̂(δ) depicted in Figure 8, marks a transition such that, for k/dn ≤
ρ̂(δ), the Homotopy algorithm runs k steps and stops, delivering the solution α0.

A third, and equally important, finding we present involves the behavior of the Homotopy

algorithm when the k-step property does not hold. We provide evidence to the following.

Empirical Finding 3 Let (A, y) be a problem instance drawn from S(E,V; d, n, k), with E ∈ {
PFE,PHE,URPE }, V ∈ { Uniform,Gauss,Bernoulli }, and (d, n, k) chosen so that the k-
step property does not hold. With high probability, Homotopy, when applied to (A, y), operates
in either of two modes:

1. It recovers the sparse solution α0 in cs ·d iterations, with cs a constant depending on E, V ,
empirically found to be less than 1.6.

2. It does not recover α0, returning a solution to (P1) in cf · d iterations, with cf a constant
depending on E, V , empirically found to be less than 4.85.

We interpret this finding as saying that we may safely apply Homotopy to problems whose
solutions are not known a priori to be sparse, and still obtain a solution rapidly. In addition, if
the underlying solution to the problem is indeed sparse, Homotopy is particularly efficient in
finding it. This finding is of great usefulness in practical applications of Homotopy.

1.6 An Illustration: Error Correction in a Sparse Noisy Channel

The results presented above have far-reaching implications in practical scenarios. We demon-
strate these with a stylized problem inspired by digital communication systems, of correcting
gross errors in a digital transmission. Recently, researchers pointed out that ℓ1-minimization/sparsity
ideas have a role to play in decoding linear error-correcting codes over Z [5, 44], a problem
known, in general, to be NP-hard. Applying the Homotopy algorithm in this scenario, we now
demonstrate the following remarkable property, an implication of Empirical Finding 2.

Corollary 1 Consider a communications channel corrupting a fraction ǫ < 0.24 of every n
transmitted integers, the corrupted sites chosen by a Bernoulli(ǫ) iid selection. For large n,
there exists a rate-1/5 code, that, with high probability, can be decoded, without error, in at most
.24n Homotopy steps.

In other words, even when as many as a quarter of the transmitted entries are corrupted,
Homotopy operates at peak performance, recovering the encoded bits in a fixed number of
steps, known in advance. This feature enables the design of real-time decoders obeying a hard
computational budget constraint, with a fixed number of flops per decoding effort.

Let us describe the coding strategy in more detail. Assume θ is a digital signal of length
p, with entries ±1, representing bits to be transmitted over a digital communication channel.
Prior to transmission, we encode θ with a rate 1/5 code constructed in the following manner.
Let H be a n × n Hadamard matrix, n ≈ 5p. Construct the ‘encoding matrix’ E by selecting
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(a) Gaussian noise
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(b) Bernoulli noise
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(c) Cauchy noise
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(d) Rayleigh noise

Figure 2: Performance of Homotopy in decoding a rate-1/5 partial Hadamard code. Each
panel shows the number of iterations, divided by n, that Homotopy takes in order to recover
the coded signal, versus ǫ, the fraction of corrupt entries in the transmitted signal, with the
noise distributed (a) N(0,1); (b) ±1 with equal probabilities; (c) Cauchy; (d) Rayleigh. In each
plot ‘o’ indicates k-step recovery, and ‘x’ implies recovery in more than k steps.

p rows of H at random. The ‘decoding matrix’ D is then composed of the other 4p rows of H.
The encoding stage amounts to computing x = ET θ, with x the encoded signal, of length n. At
the decoder, we receive r = x + z, where z has nonzeros in k random positions, and the nonzero
follow a specified distribution. At the decoder, we apply Homotopy to solve

(EC1) min ‖α‖1 subject to Dα = Dr;

Call the solution α̂. The decoder output is then

θ̂ = sgn(ET (r − α̂)).

The key property being exploited is the mutual orthogonality of D and E. Specifically, note
that Dr = D(ET θ + z) = Dz. Hence, (EC1) is essentially solving for the sparse error patten.

To demonstrate our claim, we set p = 256, and considered error rates k = ǫn, with ǫ varying
in [0.04, 0.4]. In each case we generated a problem instance as described above, and measured the
number of steps Homotopy takes to reach the correct solution. Results are plotted in Figure
2, showing four different noise distributions. Inspecting the results, we make two important
observations. First, as claimed, for the noise distributions considered, as long as the fraction
of corrupt entries is less that 0.24n, Homotopy recovers the correct solution in k steps, as
implied by Empirical Finding 2. Second, as ǫ increases, the k-step property may begin to fail,
but Homotopy still does not take many more than k steps, in accord with Empirical Finding
3.
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1.7 Relation to Earlier Work

Our results seem interesting in light of previous work by Osborne et al. [40] and Efron et
al. [24]. In particular, our proposal for fast solution of ℓ1 minimization amounts simply to
applying to (P1) previously known algorithms (Homotopy a.k.a Lars/Lasso) designed for
fitting equations to noisy data. We make the following contributions.

• Few Steps. Efron et al. considered the overdetermined noisy setting, and remarked in
passing that while, in principle Homotopy could take many steps, they had encountered
examples where it took a direct path to the solution, in which a term, once entered into
the active set, stayed in the active set [24]. Our work in the noiseless underdetermined
setting formally identifies a precise phenomenon, namely, the k-step solution property, and
delineates a range of problem suites where this phenomenon occurs.

• Similarity of Homotopy and Lars. Efron et al., in the overdetermined noisy setting,
commented that, while in principle the solution paths of Homotopy and Lars could be
different, in practice they were came across examples where Homotopy and Lars yielded
very similar results [24]. Our work in the noiseless case formally defines a property which
implies that Homotopy and Lars have the same solution path, and delineates a range
of problem suites where this property holds. In addition, we present simulation studies
showing that, over a region in parameter space, where ℓ1 minimization recovers the sparsest
solution, Lars also recovers the sparsest solution.

• Similarity of Homotopy and Omp. In the random setting, a result of Tropp and Gilbert
[54] as saying that Omp recovers the sparsest solution under a condition similar to (1.2),
although with a somewhat worse constant term; their result (and proof) can be interpreted
in the light of our work as saying that Omp actually has the k-step solution property under
their condition.

In fact it has the k-step solution property under the condition (1.2). Below, we elaborate
on the connections between Homotopy and Omp leading to these similar results.

• Similarity of Homotopy and Polytope Faces Pursuit. Recently, Plumbley introduced a
greedy algorithm to solve (P1) in the dual space, which he named Polytope Faces Pursuit
(Pfp) [43, 42]. The algorithm bears strong resemblance to Homotopy and Omp. Below,
we elaborate on Plumbley’s work, to show that the affinities are not coincidental, and
in fact, under certain conditions, Pfp is equivalent to Homotopy. We then conclude
that Pfp maintains the k-step solution property under the same conditions required for
Homotopy.

In short, we provide theoretical underpinnings, formal structure, and empirical findings. We
also believe our viewpoint clarifies the connections between Homotopy, Lars, and Pfp.

1.8 Contents

The paper is organized as follows. Section 2 reviews the Homotopy algorithm in detail. Section
3 presents running-time simulations alongside a formal complexity analysis of the algorithm, and
discusses evidence leading to Empirical Finding 3. In Section 4 we prove Theorem 1, the k-step
solution property for the sparse incoherent problem suite. In Section 5 we demonstrate Empirical
Finding 1, the k-step solution property for the sparse USE problem suite. Section 6 follows, with
evidence to support Empirical Finding 2. In Section 7 we elaborate on the relation between ℓ1
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minimization and Omp hinted at in Figure 1. This provides a natural segue to Section 8, which
discusses the connections between Homotopy and Pfp. Section 9 then offers a comparison of
the performance of Homotopy, Lars, Omp and Pfp in recovering sparse solutions. In Section
10, we demonstrate the applicability of Homotopy and Lars with examples inspired by NMR
spectroscopy and MR imaging. Section 11 discusses the software accompanying this paper.
Section 12 briefly discusses approximate methods for recovery of sparse solutions, and a final
section has concluding remarks.

2 The Homotopy Algorithm

We shall start our exposition with a description of the Homotopy algorithm. Recall that the
general principle undergirding homotopy methods is to trace a solution path, parametrized by
one or more variables, while evolving the parameter vector from an initial value, for which the
corresponding solution is known, to the desired value. For the Lasso problem (Dλ), this implies
following the solution xλ, starting at λ large and xλ = 0, and terminating when λ → 0 and xλ

converging to the solution of (P1). The solution path is followed by maintaining the optimality
conditions of (Dλ) at each point along the path.

Specifically, let fλ(x) denote the objective function of (Dλ). By classical ideas in convex
analysis, a necessary condition for xλ to be a minimizer of fλ(x) is that 0 ∈ ∂xfλ(xλ), i.e. the
zero vector is an element of the subdifferential of fλ at xλ. We calculate

∂xfλ(xλ) = −AT (y −Axλ) + λ∂‖xλ‖1, (2.3)

where ∂‖xλ‖1 is the subgradient

∂‖xλ‖1 =

{

u ∈ Rn

∣

∣

∣

∣

ui = sgn(xλ,i), xλ,i 6= 0
ui ∈ [−1, 1], xλ,i = 0

}

.

Let I = {i : xλ(i) 6= 0} denote the support of xλ, and call c = AT (y−Axλ) the vector of residual
correlations. Then, equation (2.3) can be written equivalently as the two conditions

c(I) = λ · sgn(xλ(I)), (2.4)

and
|c(Ic)| ≤ λ, (2.5)

In words, residual correlations on the support I must all have magnitude equal to λ, and signs
that match the corresponding elements of xλ, whereas residual correlations off the support must
have magnitude less than or equal to λ. The Homotopy algorithm now follows from these two
conditions, by tracing out the optimal path xλ that maintains (2.4) and (2.5) for all λ ≥ 0. The
key to its successful operation is that the path xλ is a piecewise linear path, with a discrete
number of vertices [24, 40].

The algorithm starts with an initial solution x0 = 0, and operates in an iterative fashion,
computing solution estimates xℓ, ℓ = 1, 2, . . .. Throughout its operation, it maintains the active
set I, which satisfies

I = {j : |cℓ(j)| = ‖cℓ‖∞ = λ}, (2.6)

as implied by conditions (2.4) and (2.5). At the ℓ-th stage, Homotopy first computes an update
direction dℓ, by solving

AT
I AIdℓ(I) = sgn(cℓ(I)), (2.7)
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with dℓ set to zero in coordinates not in I. This update direction ensures that the magnitudes of
residual correlations on the active set all decline equally. The algorithm then computes the step
size to the next breakpoint along the homotopy path. Two scenarios may lead to a breakpoint.
First, that a non-active element of cℓ would increase in magnitude beyond λ, violating (2.5).
This first occurs when

γ+
ℓ = min

i∈Ic

{

λ− cℓ(i)

1− aT
i vℓ

,
λ + cℓ(i)

1 + aT
i vℓ

}

, (2.8)

where vℓ = AIdℓ(I), and the minimum is taken only over positive arguments. Call the minimizing
index i+. The second scenario leading to a breakpoint in the path occurs when an active
coordinate crosses zero, violating the sign agreement in (2.4). This first occurs when

γ−
ℓ = min

i∈I
{−xℓ(i)/dℓ(i)}, (2.9)

where again the minimum is taken only over positive arguments. Call the minimizing index i−.
Homotopy then marches to the next breakpoint, determined by

γℓ = min{γ+
ℓ , γ−

ℓ }, (2.10)

updates the active set, by either appending I with i+, or removing i−, and computes a solution
estimate

xℓ = xℓ−1 + γℓdℓ.

The algorithm terminates when ‖cℓ‖∞ = 0, and the solution of (P1) has been reached.

Remarks:

1. In the algorithm description above, we implicitly assume that at each breakpoint on the
homotopy path, at most one new coordinate is considered as candidate to enter the active
set (Efron et al. called this the “one at a time” condition [24]). If two or more vectors are
candidates, more care must be taken in order to choose the correct subset of coordinates
to enter the active set; see [24] for a discussion.

2. In the introduction, we noted that the Lars scheme closely mimics Homotopy, the main
difference being that Lars does not allow removal of elements from the active set. Indeed,
to obtain the Lars procedure, one simply follows the sequence of steps described above,
omitting the computation of i− and γ−

ℓ , and replacing (2.10) with

γℓ = γ+
ℓ .

The resulting scheme adds a single element to the active set at each iteration, never
removing active elements from the set.

3. The Homotopy algorithm may be easily adapted to deal with noisy data. Assume that
rather than observing y0 = Aα0, we observe a noisy version y = Aα0 + z, with ‖z‖2 ≤ ǫn.
Donoho et al. [19, 16] have shown that, for certain matrix ensembles, the solution xq of
(Lq) with q = ǫn has an error which is at worst proportional to the noise level. To solve for
xǫn

, we simply apply the Homotopy algorithm as described above, terminating as soon
as the residual satisfies ‖rℓ‖ ≤ ǫn. Since in most practical scenarios it is not sensible to
assume that the measurements are perfectly noiseless, this attribute of Homotopy makes
it an apt choice for use in practice.
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3 Computational Cost

In earlier sections, we claimed that Homotopy can solve the problem (P1) much faster than
general-purpose LP solvers, which are traditionally used to solve it. In particular, when the
k-step solution property holds, Homotopy runs in a fraction of the time it takes to solve one
full linear system, making it as efficient as fast stepwise algorithms such as Omp. To support
these assertions, we now present the results of running-time simulations, complemented by a
formal analysis of the asymptotic complexity of Homotopy.

3.1 Running Times

To evaluate the performance of the Homotopy algorithm applied to (P1), we compared its
running times on instances of the problem suite S(USE,Gauss; d, n, k) with two state-of-the-
art algorithms for solving Linear Programs. The first, LP Solve, is a Mixed Integer Linear
Programming solver, implementing a variant of the Simplex algorithm [2]. The other, PDCO,
a Primal-Dual Convex Optimization solver, is a log-barrier interior point method, written by
Michael Saunders of the Stanford Optimization Laboratory [45]. Table 1 shows the running times
for Homotopy, LP Solve and PDCO, for various problem dimensions. The figures appearing
in the table were measured on a 3GHz Xeon workstation.

(d,n,k) Homotopy LP Solve PDCO

(200,500,20) 0.03 2.04 0.90
(250,500,100) 0.94 9.27 1.47
(500,1000,100) 1.28 45.18 4.62
(750,1000,150) 2.15 85.78 7.68
(500,2000,50) 0.34 59.52 6.86
(1000,2000,200) 7.32 407.99 22.90
(1600,4000,320) 31.70 2661.42 122.47

Table 1: Comparison of execution times (in seconds) of Homotopy, LP Solve and PDCO,
applied to instances of the random problem suite S(USE,Gauss; d, n, k).

Examination of the running times in the table suggests two important observations. First,
when the underlying solution to the problem (P1) is sparse, a tremendous saving in computation
time is achieved using Homotopy, compared to traditional LP solvers. For instance, when A
is 500 × 2000, and y admits sparse synthesis with k = 50 nonzeros, Homotopy terminates
in about 0.34 seconds, 20 times faster than PDCO, and over 150 times faster than LP Solve.
Second, when the linear system is highly underdetermined (i.e. d/n is small), even when the
solution is not sparse, Homotopy is more efficient than either LP Solve or PDCO. This latter
observation is of particular importance for applications, as it implies that Homotopy may be
‘safely’ used to solve ℓ1 minimization problems even when the underlying solution is not known
to be sparse.

3.2 Complexity Analysis

The timing studies above are complemented by a detailed analysis of the complexity of the
Homotopy algorithm. We begin by noting that the bulk of computation is invested in the
solution of the linear system (2.7) at each iteration. Thus, the key to an efficient implemen-
tation is maintaining a Cholesky factorization of the gram minor AT

I AI , updating it with the
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addition/removal of elements to/from the active set. This allows for fast solution for the up-
date direction; O(d2) operations are needed to solve (2.7), rather than the O(d3) flops it would
ordinarily take. In detail, let ℓ = |I|, where I denotes the current active set. The dominant
calculations per iteration are the solution of (2.7) at a cost of 2ℓ2 flops, and computation of the
step to the next vertex on the solution path, using nd+6(n− ℓ) flops. In addition, the Cholesky
factor of AT

I AI is either updated by appending a column to AI at a cost of ℓ2 + ℓd + 2(ℓ + d)
flops, or ‘downdated’ by removing a column of AI using at most 3ℓ2 flops.

To conclude, without any sparsity constraints on the data, k Homotopy steps would take
at most 4kd2/3 + kdn + O(kn) flops. However, if the conditions for the k-step solution property
are satisfied, a more favorable estimate holds.

Lemma 1 Let (A, y) be a problem instance drawn from a suite S(E,V; d, n, k). Suppose the k-
step solution property holds, and the Homotopy algorithm performs k steps, each time adding
a single element into the active set. The algorithm terminates in k3 + kdn + 1/2k2(d − 1) +
n(8k + d + 1) + 1/2k(5d− 3) flops.

Notice that, for k ≪ d, the dominant term in the expression for the operation count is kdn, the
number of flops needed to carry out k matrix-vector multiplications. Thus, we may interpret
Lemma 1 as saying that, under such favorable conditions, the computational workload of Ho-

motopy is roughly proportional to k applications of a d× n matrix. For comparison, applying
least-squares to solve the underdetermined linear system Ax = y would require 2d2n − 2d3/3
operations [30]. Thus, for k ≪ d, Homotopy runs in a fraction of the time it takes to solve one
least-squares system.

To visualize this statement, panel (a) of Figure 3 displays the operation count of Homotopy

on a grid with varying sparsity and indeterminacy factors. In this simulation, we measured the
total operation count of Homotopy as a fraction of the solution of one d×n least-squares system,
for random instances of the problem suite S(USE,Uniform; d, n, k). We fixed n = 1000, varied
the indeterminacy of the system, indexed by δ = d/n, in the range [0.1, 1], and the sparsity
of the solution, indexed by ρ = k/d, in the range [0.05, 1]. For reference, we superposed the
theoretical bound ρW below which the solution of (P1) is, with high probability, the sparsest
solution (see section 9 for more details). Close inspection of this plot reveals that, below this
curve, Homotopy delivers the solution to (P1) rapidly, much faster than it takes to solve one
d× n least-squares problem.

3.3 Number of Iterations

Considering the analysis just presented, it is clear that the computational efficiency of Homo-

topy greatly depends on the number of vertices on the polygonal Homotopy path. Indeed,
since it allows removal of elements from the active set, Homotopy may, conceivably, require
an arbitrarily large number of iterations to reach a solution. We note that this property is not
shared by Lars or Omp; owing to the fact that these algorithms never remove elements from
the active set, after d iterations they terminate with zero residual.

In [24], Efron et al. briefly noted that they had observed examples where Homotopy does
not ‘drop’ elements from the active set very frequently, and so, overall, idoesn’t require many
more iterations than Lars to reach a solution. We explore this initial observation further,
and present evidence leading to Empirical Finding 3. Specifically, consider the problem suite
S(E,V; d, n, k), with E ∈ {USE,PFE,PHE,URPE }, and V ∈ { Uniform,Gauss,Bernoulli

}. The space (d, n, k) of dimensions of underdetermined problems may be divided into three
regions:
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Figure 3: Computational Cost of Homotopy. Panel (a) shows the operation count as a fraction
of one least-squares solution on a ρ-δ grid, with n = 1000. Panel (b) shows the number of
iterations as a fraction of d = δ ·n. The superimposed dashed curve depicts the curve ρW , below
which Homotopy recovers the sparsest solution with high probability.

1. k-step region. When (d, n, k) are such that the k-step property holds, then Homotopy

successfully recovers the sparse solution in k steps, as suggested by Empirical Findings 1
and 2. Otherwise;

2. k-sparse region. When (d, n, k) are such that ℓ1 minimization correctly recovers k-sparse
solutions but Homotopy takes more than k steps, then, with high probability, it takes
no more than cs · d steps, with cs a constant depending on E, V , empirically found to be
∼ 1.6. Otherwise;

3. Remainder. With high probability, Homotopy does not recover the sparsest solution,
returning a solution to (P1) in cf ·d steps, with cf a constant depending on E, V , empirically
found to be ∼ 4.85.

We note that the so-called “constants” cs, cf depend weakly on δ and n.
A graphical depiction of this division of the space of admissible (d, n, k) is given in panel

(b) of Figure 3. It shows the number of iterations Homotopy performed for various (d, n, k)
configurations, as a shaded attribute on a grid indexed by δ and ρ. Inspection of this plot
reveals that Homotopy performs at most ∼ 1.6 · d iterations, regardless of the underlying
solution sparsity. In particular, in the region below the curve ρW , where, with high probablity,
Homotopy recovers the sparsest solution, it does so in less than d steps.

More extensive evidence is given in Table 2, summarizing the results of a comprehensive
study. We considered four matrix ensembles E, each coupled with three nonzero ensembles
V . For a problem instance drawn from a S(E,V; d, n, k), we recorded the number of iterations
required to reach a solution. We repeated this at many different (d, n, k) configurations, gen-
erating 100 independent realizations for each (d, n, k), and computing the average number of
iterations observed at each instance. Table 2 displays the estimated constants cs, cf for different
combinations of matrix ensemble and coefficient ensemble. Thus, the results in Table 2 read,
e.g., ‘Applied to a problem instance drawn from S(USE,Uniform; d, n, k), Homotopy takes,
with high probability, no more than 1.69 · d iterations to obtain the minimum ℓ1 solution’.
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Coeff. Ensemble / Uniform Gauss Bernoulli

Matrix Ensemble cs cf cs cf cs cf

USE 1.65 1.69 1.6 1.7 1.23 1.68
PFE 0.99 3.44 0.99 1.42 0.86 1.49
PHE 0.99 4.85 0.92 1.44 0.87 1.46

URPE 1.05 4.4 1 1.46 1 1.44

Table 2: Maximum number of Homotopy iterations, as a fraction of d, for various matrix /
coefficient ensembles.

4 Fast Solution with the Incoherent Ensemble

Let the d× n matrix A have unit-length columns aj , ‖aj‖2 = 1. The mutual coherence

M(A) = max
i6=j
|〈ai, aj〉|

measures the smallest angle between any pair of columns. As n > d, this angle must be greater
than zero: the columns cannot be mutually orthogonal; in fact, there is an established lower
bound on the coherence of A:

M(A) ≥
√

n− d

d(n− 1)
,

Matrices which satisfy this lower bound with equality are known as optimal Grassmannian frames
[50]. There is by now much work establishing relations between the sparsity of a coefficient vector
α0 and the coherence of a matrix A needed for successful recovery of α0 via ℓ1 minimization
[20, 18, 53, 31] or Omp [19, 52]. In detail, for a general matrix A with coherence M(A), both
ℓ1 minimization and OMP recover the solution α0 from data y = Aα0 whenever the number of
nonzeros in α0 satisfies

‖α0‖0 < (M(A)−1 + 1)/2. (4.1)

see, for example, Theorem 7 of [18] or Corollary 3.6 of [52]. Comparing (4.1) with (1.1), we see
that Theorem 1 essentially states that a parallel result holds for the Homotopy algorithm.

Before proceeding to the proof of the Theorem, we make a few introductory assumptions.
As in the above, we assume that the Homotopy algorithm operates with a problem instance
(A, y) as input, with y = Aα0 and ‖α0‖0 = k. To simplify notation, we assume, without loss
of generality, that α0 has its nonzeros in the first k positions. Further, we operate under the
convention that at each step of the algorithm, only one vector is introduced into the active
set. If two or more vectors are candidates to enter the active set, assume the algorithm inserts
them one at a time, on separate stages. Finally, to fix notation, let xℓ denote the Homotopy

solution at the ℓ-th step, rℓ = y − Axℓ denote the residual at that step, and cℓ = AT rℓ be the
corresponding residual correlation vector. To prove Theorem 1, we introduce two useful notions.

Definition 3 We say that the Homotopy algorithm has the Correct Term Selection Property
at a given problem instance (A, y), with y = Aα0, if at each iteration, the algorithm selects a
new term to enter the active set from the support set of α0.

Homotopy has the correct term selection property if, throughout its operation, it builds the
solution using only correct terms. Thus, at termination, the support set of the solution is
guaranteed to be a subset of the support set of α0.
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Definition 4 We say that the Homotopy algorithm has the Sign Agreement Property at a
given problem instance (A, y), with y = Aα0, if at every step ℓ, for all j ∈ I,

sgn(xℓ(j)) = sgn(cℓ(j)).

In words, Homotopy has the sign agreement property if, at every step of the algorithm, the
residual correlations in the active set agree in sign with the corresponding solution coefficients.
This ensures that the algorithm never removes elements from the active set.

These two properties are the fundamental building blocks needed to ensure that the k-
step solution property holds. In particular, these two properties are necessary and sufficient
conditions for successful k-step termination, as the following lemma shows.

Lemma 2 Let (A, y) be a problem instance drawn from a suite S(E,V; d, n, k). The Homotopy

algorithm, when applied to (A, y), has the k-step solution property if and only if it has the correct
term selection property and the sign agreement property.

Proof. To argue in the forward direction, we note that, after k steps, correct term selection
implies that the active set is a subset of the support of α0, i.e. I ⊆ {1, ..., k}. In addition, the
sign agreement property ensures that no variables leave the active set. Therefore, after k steps,
I = {1, ..., k} and the Homotopy algorithm recovers the correct sparsity pattern. To show that
after k steps, the algorithm terminates, we note that, at the k-th step, the step-size γk is chosen
so that, for some j ∈ Ic,

|ck(j)− γka
T
j AIdk(I)| = λk − γk, (4.2)

with λk = ‖ck(I)‖∞. In addition, for the k-th update, we have

AIdk(I) = AI(A
T
I AI)

−1AT
I rk = rk,

since rk is contained in the column space of AI . Hence

ck(I
c) = AT

IcAIdk(I),

and γk = λk is chosen to satisfy (4.2). Therefore, the solution at step k has Axk = y. Since y
has a unique representation in terms of the columns of AI , we may conclude that xk = α0.

The converse is straightforward. In order to terminate with the solution α0 after k steps, the
Homotopy algorithm must select one term out of {1, ..., k} at each step, never removing any
elements. Thus, violation of either the correct term selection property or the sign agreement
property would result in a number of steps greater than k or an incorrect solution. �

Below, we will show that, when the solution α0 is sufficiently sparse, both these properties
hold as the algorithm traces the solution path. Theorem 1 then follows naturally.

4.1 Correct Term Selection

We now show that, when sufficient sparsity is present, the Homotopy solution path maintains
the correct term selection property.

Lemma 3 Suppose that y = Aα0 where α0 has only k nonzeros, with k satisfying

k ≤ (µ−1 + 1)/2. (4.3)
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Assume that the residual at the ℓ-th step can be written as a linear combination of the first k
columns in A, i.e.

rℓ =
k

∑

j=1

βℓ(j)aj .

Then the next step of the Homotopy algorithm selects an index from among the first k.

Proof. We will show that at the ℓ-th step,

max
1≤i≤k

|〈rℓ, ai〉| > max
i>k
|〈rℓ, ai〉|, (4.4)

and so at the end of the ℓ-th iteration, the active set is a subset of {1, ..., k}.
Let G = AT A denote the gram matrix of A. Let î = arg max1≤i≤k |βi|. The left hand side

of (4.4) is bounded below by

max
1≤i≤k

|〈rℓ, ai〉| ≥ |〈rℓ, aî〉|

≥ |
k

∑

j=1

βℓ(j)Gîj |

≥ |βℓ(̂i)| −
∑

j 6=î

|Gîj ||βℓ(j)|

≥ |βℓ(̂i)| −M(A)
∑

j 6=î

|βℓ(j)|

≥ |βℓ(̂i)| −M(A)(k − 1)|βℓ(̂i)|, (4.5)

Here we used: ‖aj‖22 = 1 for all j and Gîj ≤M(A) for j 6= î. As for the right hand side of (4.4),
we note that for i > k we have

|〈rℓ, ai〉| ≤
k

∑

j=1

|βℓ(j)||Gij |

≤ M(A)

k
∑

j=1

|βℓ(j)|

≤ kM(A)|βℓ(̂i)|. (4.6)

Combining (4.5) and (4.6), we get that for (4.4) to hold, we need

1− (k − 1)M(A) > kM(A). (4.7)

Since k was selected to exactly satisfy this bound, relation (4.4) follows. �

Thus, when k satisfies (4.3), the Homotopy algorithm only ever considers indices among
the first k as candidates to enter the active set.

4.2 Sign Agreement

Recall that an index is removed from the active set at step ℓ only if condition (2.4) is violated, i.e.
if the signs of the residual correlations cℓ(i), i ∈ I do not match the signs of the corresponding
elements of the solution xℓ. The following lemma shows that, when α0 is sufficiently sparse, an
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even stronger result holds: at each stage of the algorithm, the residual correlations in the active
set agree in sign with the direction of change of the corresponding terms in the solution. In
other words, the solution moves in the right direction at each step. In particular, it implies that
throughout the Homotopy solution path, the sign agreement property is maintained.

Lemma 4 Suppose that y = Aα0, where α0 has only k nonzeros, with k satisfying

k ≤ (µ−1 + 1)/2.

For ℓ ∈ {1, ..., k}, let cℓ = AT rℓ, and let the active set I be defined as in (2.6). Then the update
direction dℓ defined by (2.7) satisfies,

sgn(dℓ(I)) = sgn(cℓ(I)). (4.8)

Proof. Let λℓ = ‖cℓ‖∞. We will show that for i ∈ I, |dℓ(i)− sgn(cℓ(i))| < 1, implying that (4.8)
holds. To do so, we note that (2.7) can be rewritten as

λℓ(A
T
I AI − Id)dℓ(I) = −λℓdℓ(I) + cℓ(I),

where Id is the identity matrix of appropriate dimension. This yields

‖λℓdℓ(I)− cℓ(I)‖∞ ≤ ‖AT
I AI − Id‖(∞,∞) · ‖λℓdℓ(I)‖∞

≤ 1−M(A)

2
‖λℓdℓ(I)‖∞

≤ 1−M(A)

2
(‖cℓ(I)‖∞ + ‖λℓdℓ(I)− cℓ(I)‖∞)

≤ 1−M(A)

2
(λℓ + ‖λℓdℓ(I)− cℓ(I)‖∞),

where ‖ · ‖|(∞,∞) denotes the induced ℓ∞ operator norm. Rearranging terms, we get

‖λℓdℓ(I)− cℓ(I)‖∞ ≤ λℓ ·
1−M

1 + M
< λℓ,

thus,
‖dℓ(I)− sgn(cℓ(I))‖∞ < 1.

Relation (4.8) follows. �

4.3 Proof of Theorem 1

Lemmas 3 and 4 establish the correct term selection property and the sign agreement property
at a single iteration of the algorithm. We will now give an inductive argument showing that the
two properties hold at every step ℓ ∈ {1, ..., k}.

In detail, the algorithm starts with x0 = 0; by the sparsity assumption on y = Aα0, we may
apply Lemma 3 with r0 = y, to get that at the first step, a column among the first k is selected.
Moreover, at the end of the first step we have x1 = γ1d1, and so, by Lemma 4,

sgn(x1(I)) = σ1(I).

By induction, assume that at step ℓ, only indices among the first k are in the active set, i.e.

rℓ =

k
∑

j=1

βℓ(j)aj ,
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and the sign condition (2.4) holds, i.e.

sgn(xℓ(I)) = σℓ(I).

Applying Lemma 3 to rℓ, we get that at the (l + 1)-th step, the term to enter the active set will
be selected from among the first k indices. Moreover, for the updated solution we have

sgn(xℓ+1(I)) = sgn(xℓ(I) + γℓ+1dℓ+1(I)).

By Lemma 4 we have
sgn(dℓ+1(I)) = σℓ+1(I).

We observe that
cℓ+1 = cℓ − γℓ+1A

T Adℓ+1,

whence, on the active set,
|cℓ+1(I)| = |cℓ(I)|(1− γℓ+1),

and so
σℓ+1(I) = σℓ(I).

In words, once a vector enters the active set, its residual correlation maintains the same sign.
We conclude that

sgn(xℓ+1(I)) = σℓ+1(I). (4.9)

Hence no variables leave the active set. To summarize, both the correct term selection property
and the sign agreement property are maintained throughout the execution of the Homotopy

algorithm.
We may now invoke Lemma 2 to conclude that the k-step solution property holds. This

completes the proof of Theorem 1. �

5 Fast Solution with the Uniform Spherical Ensemble

Suppose now that A is a random matrix drawn from the Uniform Spherical Ensemble. It is
not hard to show that such matrices A are naturally incoherent; in fact, for ǫ > 0, with high
probability for large n

M(A) ≤
√

4 log(n)

d
· (1 + ǫ).

Thus, applying Theorem 1, we get as an immediate corollary that if k satisfies

k ≤
√

d/ log(n) · (1/4− ǫ′), (5.10)

then Homotopy is highly likely to recover any sparse vector α0 with at most k nonzeros.
However, as it turns out, Homotopy operates much more efficiently when applied to instances
from the random suite S(USE; d, n, k), than what is implied by incoherence. We now discuss
evidence leading to Empirical Finding 1. We demonstrate, through a comprehensive suite of
simulations, that the formula d/(2 log(n)) accurately describes the breakdown of the k-step
solution property. Before doing so, we introduce two important tools that will be used repeatedly
in the empirical analysis below.
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5.1 Phase Diagrams and Phase Transitions

In statistical physics, a phase transition is the transformation of a thermodynamic system from
one phase to another. The distinguishing characteristic of a phase transition is an abrupt
change in one or more of its physical properties, as underlying parameters cross a region of
parameter space. Borrowing terminology, we say that property P exhibits a phase transition
at a sequence of problem suites S(E,V; d, n, k), if there is a threshold function Thresh(d, n) on
the parameter space (k, d, n), such that problem instances with k ≤ Thresh(d, n) have property
P with high probability, and problem instances above this threshold do not have property P
with high probability. As we show below, the the k-step solution property of Homotopy,
applied to problem instances drawn from S(USE; d, n, k), exhibits a phase transition at around
d/(2 log(n)). Thus, there is a sequence (ǫn) with each term small and positive, so that for k <
(1− ǫn) ·d/(2 log(n)), Homotopy delivers the sparsest solution in k steps with high probability;
on the other hand, if k > (1 + ǫn) · d/(2 log(n)), then with high probablity, Homotopy, fails to
terminate in k steps.

To visualize phase transitions, we utilize phase diagrams. In statistical physics, a phase
diagram is a graphical depiction of a parameter space decorated by boundaries of regions where
certain properties hold. Here we use this term in an analogous fashion, to mean a graphical
depiction of a subset of the parameter space (d, n, k), illustrating the region where an algorithm
has a given property P, when applied to a problem suite S(E,V; d, n, k). It will typically take
the form of a 2-D grid, with the threshold function associated with the corresponding phase
transition dividing the grid into two regions: A region where property P occurs with high
probablity, and a region where P occurs with low probablity.

While phase transitions are sometimes discovered by formal mathematical analysis, more
commonly, the existence of phase transitions is unearthed by computer simulations. We now
describe an objective framework for estimating phase transitions from simulation data. For
each problem instance (A, y) drawn from a suite S(E,V; d, n, k), we associate a binary outcome

variable Y d,n
k , with Y d,n

k = 1 when property P is satisfied on that realization, and Y d,n
k =

0 otherwise. Within our framework, Y d,n
k is modeled as a Bernoulli random variable with

probability πd,n
k . Thus, P (Y d,n

k = 1) = πd,n
k , and P (Y d,n

k = 0) = 1−πd,n
k . Our goal is to estimate

a value k̃d,n where the transition between these two states occurs. To do so, we employ a logistic
regression model on the mean response E{Y d,n

k } with predictor variable k,

E{Y d,n
k } =

exp(β0 + β1k)

1 + exp(β0 + β1k)
. (5.11)

Logistic response functions are often used to model threshold phenomena in statistical data
analysis [34]. Let π̂d,n

k denote the value of the fitted response function. We may then compute a

value k̂d,n
η indicating that, with probability exceeding 1− η, for a problem instance drawn from

S(E,V; d, n, k) with k < k̂d,n
η , property P holds. k̂ is given by

π̂k̂ = 1− η.

Thus, computing k̂d,n
η for a range of (d, n) values essentially maps out an empirical phase tran-

sition of property P. The value η fixes a location on the transition band below which we define
the region of success. In our work, we set η = 0.25.

5.2 The k-Step Solution Property

We now apply the method described in the previous section to estimate an empirical phase
transition for the k-step solution property of the Homotopy algorithm. Before doing so, we
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Figure 4: k-Step Solution Property of Homotopy for the Problem Suite
S(USE,Uniform; d, n, k). Shaded attribute is the proportion of successful terminations,
out of 100 trials, in the case: (a) k = 1 . . . 40, d = 200, and n = 200 . . . 20000; (b) k = 2 . . . 100,

d = 100 . . . 1000, and n = 1000. Overlaid are curves for d/(2 log(n)) (solid), k̂d,n
0.25 (dashed), and

the confidence bound for k̂d,n
0.25 with 95% confidence level (dotted).

briefly describe the experimental setup. For (d, n, k) given, we generated a problem instance
(A, y) drawn from the problem suite S(USE,Uniform; d, n, k). To this instance we applied the

Homotopy algorithm, and recorded the outcome of the response variable Y d,n
k . We did so in

two cases; first, fixing d = 200, varying n through 40 log-equispaced points in [200, 20000] and
k through 40 equispaced points in [1, 40]; second, keeping n fixed at 1000, varying d through 40
equispaced points in [100, 1000] and k through 40 equispaced points in [2, 100]. For each (d, n, k)
instance we ran 100 independent trials. To estimate the regression coefficients β0, β1 in (5.11),
we used maximum likelihood estimation [34].

Figure 4 displays two phase diagrams, giving a succinct depiction of the simulation results.
Panel (a) displays a grid of (k, n) values, k ∈ [1, 40], n ∈ [200, 20000]. Each point on this grid
takes a value between 0 and 1, representing the ratio of successful outcomes to overall trials;
these are precisely the observed E{Y d,n

k }, on a grid of (k, n) values, with d fixed. Overlaid are

curves for the estimated k̂d,n
η for each n with η = 0.25, and the theoretical bound d/(2 log(n)).

Panel (b) has a similar configuration on a (k, d) grid, with n fixed at 1000. Careful inspection

of these phase diagrams reveals that the estimated k̂d,n
η closely follows the curve d/(2 log(n));

Panel (a) shows the logarithmic behavior of the phase transition as n varies, and panel (b) shows
its linear behavior as d varies.

Table 3 offers a summary of the results of this experiment, for the three nonzero ensembles
used in our simulations: Uniform, Gauss, and Bernoulli. In each case, two measures for
statistical goodness-of-fit are reported: the mean-squared error (MSE) and the R2 statistic.
The MSE measures the squared deviation of the estimated k values from the proposed formula
d/(2 log(n)). The R2 statistic measures how well the observed phase transition fits the theo-
retical model; a value close to 1 indicates a good fit. These statistical measures give another
indication that the empirical behavior is in line with theoretical predictions. Moreover, they
support the theoretical assertion that the k-step solution property of the Homotopy algorithm
is independent of the coefficient distribution.

The results in Figure 4 and Table 3 all demonstrate consistency between the empirical phase
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Coefficient Ensemble MSE R2

Uniform 0.09 0.98

Gauss 0.095 0.98

Bernoulli 0.11 0.98

Table 3: Deviation of estimated k̂d,n
η from d/(2 log(n)) for S(USE,V; d, n, k), for different coef-

ficient ensembles V .
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(c) Estimated Logistic Response, n = 20000, d = 200

Figure 5: Sharpness of Phase Transition. The top panel shows the behavior of the regression
coefficient β1 of (5.11) for d = 200 and n = 200 . . . 20000. The bottom panels show two instances
of the fitted transition model, for (b) d = 200, n = 200 and (c) d = 200, n = 20000.

transition and the bound d/(2 log(n)), even for very modest problem sizes. We now turn to
examine the sharpness of the phase transition as the problem dimensions increase. In other
words, we ask whether for large d, n, the width of the transition band becomes narrower, i.e.
ǫn in (1.2) becomes smaller as n increases. We note that the regression coefficient β1 in (5.11)

associated with the predictor variable k dictates how sharp the transition from πd,n
k = 1 to

πd,n
k = 0 is; a large negative value for β1 implies a ‘step function’ behavior. Hence, we expect

β1 to grow in magnitude as the problem size increases. This is indeed verified in panel (a) of
Figure 5, which displays the behavior of β1 for increasing n, and d fixed at 200. For illustration,
panels (b) and (c) show the observed mean response Y d,n

k vs. k for n = 200, with β1 ≈ −0.35,
and n = 20000, with β1 ≈ −1.1, respectively. Clearly, the phase transition in panel (c) is much
sharper.

5.3 Correct Term Selection and Sign Agreement

In Section 4, we have identified two fundamental properties of the Homotopy solution path,
namely, correct term selection and sign agreement, that constitute necessary and sufficient con-
ditions for the k-step solution property to hold. We now present the results of a simulation
study identifying phase transitions in these cases.

In detail, we repeated the experiment described in the previous section, generating problem
instances from the suite S(USE,Uniform; d, n, k) and applying the Homotopy algorithm. As

the outcome of the response variable Y d,n
k , we recorded first the property { The Homotopy
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Figure 6: Phase diagrams for (a) Correct term selection property; (b) Sign agreement property,

on a k-n grid, with k = 1 . . . 40, d = 200, and n = 200 . . . 20000. Overlaid are curves for k̂d,n
0.25

(dashed), and the confidence bound for k̂d,n
0.25 with 95% confidence level (dotted). Panel (a) also

displays the curve d/(
√

2 · log(n)) (solid), and panel (b) displays the curve d/(2 log(n)) (solid).
The transition on the right-hand display occurs significantly above the transition in the left-hand
display. Hence the correct term selection property is the critical one for overall success.

algorithm selected only terms from among {1, ..., k} as entries to the active set }, and next, the
property { At each iteration of the Homotopy algorithm, the signs of the residual correlations
on the active set match the signs of the corresponding solution terms }. Finally, we estimated
phase transitions for each of these properties. Results are depicted in panels (a) and (b) of
Figure 6. Panel (a) displays a phase diagram for the correct term selection property, and Panel
(b) has a similar phase diagram for the sign agreement property.

The results are quite instructive. The phase transition for the correct term selection property
agrees well with the formula d/(2 log(n)). Rather surprisingly, the phase transition for the sign
agreement property seems to be at a significantly higher threshold, d/(

√
2·log(n)). Consequently,

the ‘weak link’ for the Homotopy k-step solution property, i.e. the attribute that dictates the
sparsity bound for the k-step solution property to hold, is the addition of incorrect terms into the
active set. We interpret this finding as saying that the Homotopy algorithm would typically
err first ‘on the safe side’, adding terms off the support of α0 into the active set (a.k.a false
discoveries), before removing correct terms from the active set (a.k.a missed detections).

5.4 Random Signs Ensemble

Matrices in the Random Signs Ensemble (RSE), are constrained to have elements of constant
amplitude, with signs independently drawn from an equi-probable Bernoulli distribution. This
ensemble is known to be effective in various geometric problems associated with underdetemined
systems, through work of Kashin [36], followed by Garnaev and Gluskin [28]. Previous work
[55, 56, 54] gave theoretical and empirical evidence to the fact that many results developed in
the USE case hold when the matrices considered are drawn from the RSE. Indeed, as we now
demonstrate, the RSE shares the k-step solution property with USE.

To show this, we conducted a series of simulations, paralleling the study described in Section
5.2. In our study, we replaced the problem suite S(USE; d, n, k) by S(RSE; d, n, k). Just as
above, we estimated k̂d,n in two cases: First, fixing d = 200, varying n through 40 log-equispaced
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Figure 7: k-Step Termination of Homotopy for the problem suite S(RSE,Uniform; d, n, k).
Shaded attribute is the proportion of successful terminations, out of 100 trials, in the case: (a)
k = 1 . . . 40, d = 200, and n = 200 . . . 20000; (b) k = 2 . . . 100, d = 100 . . . 1000, and n = 1000.

Overlaid are curves for d/(2 log(n)) (solid), k̂d,n
0.25 (dashed), and the confidence bound for k̂d,n

0.25

with 95% confidence level (dotted).

points in [200, 20000] and k through 40 equispaced points in [1, 40]; second, keeping n fixed at
1000, varying d through 40 equispaced points in [100, 1000] and k through 40 equispaced points
in [2, 100]. The resulting phase diagrams appear in panels (a),(b) of Figure 7. Careful inspection
of the results indicates that the empirical phase transition for RSE agrees well with the formula
d/(2 log(n)) that describes the behavior in the USE case. This is further verified by examining
Table 4, which has MSE and R2 measures for the deviation of the empirical phase transition
from the threshold d/(2 log(n)), for different coefficient ensembles. In summary, these empirical
results give strong evidence to support the conclusion that the Homotopy algorithm has the
k-step solution property when applied to the the problem suite S(RSE; d, n, k) as well. An
important implication of this conclusion is that in practice, we may use matrices drawn from the
RSE to replace matrices from the USE without loss of performance. This may result in reduced
complexity and increased efficiency, as matrices composed of random signs can be generated and
applied much more rapidly than general matrices composed of real numbers.

Coefficient Ensemble MSE R2

Uniform 0.12 0.98

Gauss 0.11 0.98

Bernoulli 0.08 0.99

Table 4: Deviation of estimated k̂d,n
η from d/(2 log(n)) for S(RSE,V; d, n, k), for different coef-

ficient ensembles V .

6 Fast Solution with Partial Orthogonal Ensembles

We now turn our attention to a class of matrices composed of partial orthogonal matrices, i.e.
matrices constructed by sampling a subset of the rows of an orthogonal matrix. In particular,
we will be interested in the following three ensembles:

25



• Partial Fourier Ensemble (PFE). Matrices in this ensemble are obtained by taking an n
by n Fourier matrix and sampling d rows at random. The PFE is of utmost importance
in medical imaging and spectroscopy, as it can be used to model reconstruction of image
data from partial information in the frequency domain [7, 6, 37, 38].

• Partial Hadamard Ensemble (PHE). Matrices in this ensemble are obtained by taking an
n by n Hadamard matrix and sampling d of its rows at random. This ensemble is known
to be important for various extremal problems in experimental design [33].

• Uniform Random Projections (URPE). Matrices in this ensemble are obtained by taking
an n by n random orthogonal matrix and sampling d of its rows at random. It serves as
a general model for the PFE and PHE.

As we now demonstrate, the k-step solution property of Homotopy holds at a significantly
greater range of signal sparsities than observed in Section5.

We first consider the PFE and PHE. Partial Fourier matrices and partial Hadamard matrices
have drawn considerable attention in the sparse approximation community [7, 6, 56, 55, 29]. We
mention two incentives:

• Modeling of Physical Phenomena. Fourier operators play a key role in numerous
engineering applications modeling physical phenomena. For instance, acquisition of 2- and
3-D Magnetic Resonance images is modeled as applying a Fourier operator to spatial data.
Thus, application of a partial Fourier operator would correspond to acquisition of partial
frequency data. Likewise, the Hadamard operator, albeit not as common, is often used in
Hadamard Transform Spectroscopy.

• Fast Implementations. Both the Fourier transform and the Hadamard transform have
special structure allowing for rapid computation. They can be computed by algorithms
which run much faster than the näıve implementation from definition. In detail, the
Fast Fourier Transform (FFT) can be applied to an n-vector using O(n log(n)) opera-
tions, rather than the n2 operations needed by direct computation [3]. Similarly, a Fast
Hadamard Transform (FHT) exists, which applies a Hadamard operator using O(n log(n))
operations. With these fast algorithms, rapid computation of partial Fourier or partial
Hadamard products is straightforward. Specifically, note that we may write a d by n
matrix A from the PFE as A = R · F , with F an n by n Fourier matrix, and R a d by
n random sampling matrix. Translating to linear operations, application of A amounts to
applying F , using the FFT, followed by sampling d entries of the resulting vector. Similarly
for partial Hadamard matrices.

The experimental setup leading to Empirical Finding 2 utilizes a more extensive phase di-
agram. Expressly, we fix n and generate a grid of points indexed by variables δ = d/n and
ρ = k/d, with δ in (0, 1], ρ in (0, 1]. Thus, at a fixed δ, d = ⌊δn⌋, and k = ⌊ρd⌋ ranges between
1 and d. In a sense, this ρ-δ grid gives a complete picture of all sparse underdetermined settings
of interest. We considered two discretizations. First, we fixed n = 1024, varied δ in the range
[0.1, 1], and ρ in [0.05, 1]. Second, we fixed δ = 0.5, varied n in [256, 1024], and ρ in [0.05, 1].
Data collection and estimation of an empirical phase transition were done in the same manner
described in Section 5.2. Figures 8 and 9 summarize the simulation results, each depicting three
phase diagrams, for three different nonzero distributions.

The results are indeed surprising; for problems from the suite S(PFE; d, n, k), Homotopy

maintains the k-step solution property at a much broader range of sparsities k than observed
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Figure 8: k-Step Solution Property of Homotopy for the Suite S(PFE,V; d, n, k). Each phase
diagram presents success rates on a ρ-δ grid, with ρ = k/d in [0.05, 1], δ = d/n in [0.1, 1], and
n = 1024, for: (a) V = Uniform; (b) V = Gauss; (c) V = Bernoulli. Overlaid are curves
for ρ̂0.25(δ) (dash-dotted), with the confidence bounds for 95% confidence level (dotted), and
ρ = 1/(2 log(n)) (solid). The range of sparsities in which the k-step solution property holds is
much more extensive than implied by the bound k < d/(2 log(n)).

Figure 9: k-Step Solution Property of Homotopy for the Suite S(PFE,V; d, n, k). Each phase
diagram presents success rates on a ρ-n grid, with ρ = k/d in [0.05, 1], n in [128, 8192], and
d = 125, for: (a) V = Uniform; (b) V = Gauss; (c) V = Bernoulli. Overlaid are curves
for ρ̂0.25(δ) (solid), with the confidence bounds for 95% confidence level (dotted).

for problems from S(USE; d, n, k), particularly at high values of the indeterminacy ratio δ.
For instance, at δ = 3/4, the empirical results indicate that when the nonzeros are uni-
formly distributed, the empirical phase transition is at k̂ = ρ̂d ≈ 174, whereas the formula
d/(2 log(n)) ≈ 55, implying that the range of sparsities for which Homotopy terminates in k
steps has grown threefold.

We conducted parallel simulation studies for the PHE and the URPE, and we summarize
the empirical findings in Figure 10. It displays the empirical phase transitions ρ̂(δ) for the three
partial orthogonal ensembles with different nonzero distributions. Careful inspection of the
curves reveals that the k-step property of Homotopy holds at roughly the same region of (δ, ρ)
space for all combinations of matrix ensembles and coefficient distributions considered, with mild
variations in the location and shape of the phase transition for different nonzero distributions.
In particular, the data indicate that problems with underlying nonzero distribution Bernoulli

exhibit the lowest k-step breakdown. Thus, in some sense, the ‘hardest’ problems are those with
uniform-amplitude nonzeros in the solution.

The empirical phase transition ρ̂(δ) does not yield itself to a simple representation in func-
tional form. It does, however, have several important characteristics, which we now highlight.
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Figure 10: Estimated Phase Transition Curves. Each panel displays empirical phase transition
curves for the PFE (solid), PHE (dashed), URPE (dash-dotted), with (a) Uniform nonzero
distribution; (b) Gaussian nonzero distribution; (c) Bernoulli nonzero distribution.

• First, notice that at the right end of the phase diagram, we have ρ̂(δ = 1) = 1. In other
words, when the matrix A is square, Homotopy always recovers the sparsest solution in
k steps. This is hardly surprising, since, at δ = 1, the matrix A is orthogonal, and the
data y is orthogonal to columns of A off the support of α0, ensuring correct term selection.
In addition, the update step dℓ(I) in (2.7) is equal to sgn(cℓ(I)), implying that the sign
agreement property holds. Thus, k-step termination is guaranteed.

• Second, at the left end of the phase diagram, as δ → 0, we may rely on recent theoret-
ical developments to gauge the behavior of the phase transition curve. In their work on
randomly projected polytopes, Donoho and Tanner showed that an upper bound for the
value ρ(δ) below which ℓ1 minimization recovers the sparsest solution with high proba-
bility, asymptotically behaves like 1/(2 log(1/δ)) as δ → 0 [22]. In particular, this same
upper bound holds in our case, as failure to recover the sparsest solution necessarily implies
failure of the k-step property.

• Lastly, and most importantly, we note that the k-step phase transition for the partial
orthogonal ensembles is stable with increasing n, in the following sense. For δ ∈ (0, 1]
fixed, the range of ρ in which the k-step property holds does not change with n. Evidence
to the stability of the phase transition is given in Figure 9, which demonstrates that for
δ fixed at 0.5, the phase transition occurs at an approximately constant value of ρ. The
implication of this property is that the empirical phase transitions computed here may be
used to estimate the k-step behavior of Homotopy for problem instances of any size.

7 Bridging ℓ1 Minimization and OMP

In the introduction, we alluded to the fact that there is undeniable parallelism in results about
the ability of ℓ1 minimization and Omp to recover sparse solutions to systems of underdetermined
linear equations. Indeed, earlier reports [9, 19, 15, 52, 53, 54] documented instances where, under
similar conditions, both ℓ1 minimization and Omp recover the sparsest solution. Yet, these works
did not offer any insights as to why the two seemingly disparate techniques should offer similar
performance in such cases. This section develops a linkage between ℓ1 minimization and Omp.

As a first step, we clear up some confusion in terminology. Previous work studying the
performance of Omp set conditions on the sparsity k under which the algorithm ‘correctly
recovers the sparsest solution’ [19, 52, 54]. Yet, in effect, what was proven is that Omp ‘selects
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a correct term at each iteration, and terminates with the correct solution after k iterations’; we
now recognize this as the k-step solution property. We note that the k-step solution property
is not, in general, a necessary condition for Omp to correctly recover the sparsest solution; it
is clearly sufficient, however. Its usefulness lies in the simplicity of k-step solutions; when the
k-step property holds, the solution path is the simplest possible, consisting of k correct steps.
Thus, it yields itself naturally to focused analysis.

We now argue that, through a series of simplifications, we can move from ℓ1 minimization
to Omp, at each step maintaining the k-step solution property. This was already alluded to in
Figure 1, which shows the sequence of steps leading from ℓ1 minimization to Omp; the two links
in the sequence are Homotopy and Lars. In the following subsections, we elaborate on each
of the bridging elements.

7.1 ℓ1 Minimization −→ Homotopy

For the phrase ‘algorithm A has the k-step solution property’ to make sense, the algorithm
must have a stepwise structure, building a solution approximation term by term. Thus, we
cannot, in general, speak of ℓ1 minimization as having the k-step solution property, as there are
many algorithms for such minimization, including those with no meaningful notion of stepwise
approximate solution construction. This is where the Homotopy algorithm fits in, bridging
the high-level notion of ℓ1 minimization with the lower-level stepwise structure of Omp. Earlier
work [24, 40] has shown that Homotopy is a correct algorithm for solving the ℓ1 minimization
problem (P1). In addition it builds an approximate solution in a stepwise fashion, thus making
the k-step solution property applicable.

7.2 Homotopy −→ LARS

As noted earlier, the Lars procedure is a simplification of the Homotopy algorithm, achieved by
removing the condition for sign agreement of the current solution and the residual correlations.
This brings us one step closer to Omp; while Homotopy allows for removal of terms from the
active set, both Lars and Omp insert terms, one by one, into the active set, never removing
any active elements.

Interestingly, when the k-step property holds, this simplification changes nothing in the
resulting solution. To see that, recall that Homotopy has the k-step solution property if and
only if it has the correct term selection property and the sign agreement property. Correct term
selection is all that is needed by Lars to reach the solution in k steps; after k correct terms
are inserted into the active set, the algorithm would terminate with zero residual. The sign
agreement property implies that Homotopy would successfully terminate in k steps as well. In
summary, when the k-step solution property holds, the solution paths of Homotopy and Lars

coincide. In particular, the assertion of Theorem 1 holds for Lars as well.

Corollary 2 Let (A, y) be a problem instance drawn from S(Incµ; d, n, k), with k ≤ (µ−1+1)/2.
Then, Lars runs k steps and stops, delivering the solution α0.

Similar conclusions can be made about the assertions of Empirical Findings 1 and 2.

7.3 LARS −→ OMP

We already hinted at the fact that Homotopy and Omp share an inherent affinity. We now
demonstrate that the two methods are based on the same fundamental procedure; solving a
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sequence of least-squares problems on an increasingly large subspace, defined by the active
columns of A.

More precisely, assume we are at the ℓ-th iteration, with a solution estimate xℓ−1 and an
active set I consisting of ℓ− 1 terms. Recall the procedure underlying Omp: It appends a new
term to the active set by selecting the vector aj that maximizes the absolute residual correlation;
j = arg maxj /∈I |aT

j (y −Axℓ−1)|, and I := I
⋃

{j}. It then projects y onto R(AI) by solving

AT
I AIxℓ(I) = AT

I y, (7.12)

thus guaranteeing that the residual is orthogonal to the subspace R(AI). Once y is spanned by
the active columns, the algorithm terminates with zero residual.

While Lars was derived from a seemingly disparate perspective, it in fact follows the same
basic procedure, replacing (7.12) with a penalized least-squares problem. Recalling the dis-
cussion in Section 2, we note that Lars also selects a new term according to the maximum
correlation criterion, and then solves

AT
I AIxℓ(I) = AT

I y − λℓ · s, (7.13)

where s is a vector of length ℓ, recording the signs of residual correlations of each term at the
point it entered the active set, and λℓ is the correlation magnitude at the breakpoint on the
Lars path. Indeed, (7.12) and (7.13) are identical if not for the penalization term on the right
hand side of (7.13).

As it turns out, this modification does not have an effect on the k-step solution property of
the procedure. We offer two examples. First, for the incoherent problem suite S(Incµ; d, n, k);
the statement of theorem 1 hold for Omp as well (see, e.g., Corollary 3.6 in [52]). Second,
for the random problem suite S(USE; d, n, k); Tropp et al. proved results which can now be
reinterpreted as saying that, when k ≤ d/(c log(n)), then with high probability for large n, Omp

has the k-step solution property, paralleling the statement of Empirical Finding 1. We believe,
in fact, that the bound k ≤ d/(2 log(n)) holds for Omp as well.

To summarize, we exhibited a series of transformations, starting with ℓ1 minimization, and
ending with greedy pursuit. Each transformation is characterized clearly, and maintains the
k-step property of the solution path. We believe this sequence clarifies initially surprising simi-
larities between results about ℓ1 minimization and Omp.

8 Homotopy and PFP

Polytope Faces Pursuit was introduced as a greedy algorithm to solve (P1) in the dual space. As
pointed out in [43, 42], although the algorithm is derived from a seemingly different viewpoint,
it exhibits interesting similarities to Homotopy. To study these in more detail, we first briefly
describe the algorithm.

Define the standard-form linear program equivalent to (P1)

(P̄1) min1T x̄ subject to y = Āx̄, x̄ ≥ 0,

where Ā = [A − A]. The equivalence of (P1) and (P̄1) is well established; the solutions x̄ of
(P̄1) and x of (P1) have the correspondence x̄(j) = max{x(j), 0} for 1 ≤ j ≤ n, and x̄(j) =
max{−x(j −n), 0} for n + 1 ≤ j ≤ 2n. The Lagrangian dual of the linear program (P̄1) is given
by

(D̄1) max yT v subject to ĀT v ≤ 1.
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By the strong duality theorem, an optimal solution x̄ of the primal problem (P̄1) is associated
with an optimal solution v to the dual problem (D̄1), such that 1T x̄ = yT v. Pfp operates in
the dual space, tracing a solution to the dual problem (D̄1), which then yields a solution to the
primal problem (P̄1) (or, equivalently, (P1)). To do so, the algorithm maintains an active set,
I, of nonzero coordinates, and carries out a familiar procedure at each iteration: Selection of
a new term to enter the active set, removal of violating terms from the active set (if any), and
computation of a new solution estimate. Specifically, At the ℓ-th stage, Pfp first selects a new
term to enter the active set, via the criterion

iℓ = arg max
i/∈I

{

āT
i rℓ

1− āT
i vℓ

∣

∣ āT
i rℓ > 0

}

, (8.14)

with rℓ = y−Āx̄ℓ the current residual. It then updates the active set, I ← I∪{āi}, and computes
a primal solution estimate, the projection of y onto the subspace spanned by the active vectors,

x̄ℓ+1 = (ĀT
I ĀI)

−1ĀT
I y, (8.15)

and a dual solution estimate
vℓ+1 = ĀI(Ā

T
I ĀI)

−11. (8.16)

Finally, the algorithm verifies that all the active coefficients x̄ℓ+1(I) are non-negative; coordinates
with negative coefficients are removed from the active set.

The affinities between Homotopy and Pfp are not merely cosmetic. In fact, the two
algorithms, derived from seemingly distinct viewpoints, carry out nearly identical procedures.
To highlight these similarities, assume that both algorithms are applied to the standard form
linear program (P̄1). We begin by examining the criteria for selection of a new term to enter the
active set. In particular, assume we are at the ℓ-th stage of the Homotopy algorithm. Recalling
the discussion in Section 2 above, the Homotopy term selection criterion (when applied to (P̄1))
is

i+ = arg min
i∈Ic

+

{

λ− cℓ(i)

1− āT
i vℓ

}

, (8.17)

where vℓ = ĀIdℓ(I) = ĀI(Ā
T
I ĀI)

−11 as in (8.16) above, and min+ indicates that the minimum is
taken over positive arguments. Comparing (8.17) with (8.14), we note that the main difference
lies in the residual; since Pfp projects the data y onto the space spanned by the active vectors,
denoted RI , its residual is necessarily orthogonal to RI . Homotopy, in contrast, does not
enforce orthogonality, and its residual can be expressed as the sum of a component in RI and a
component in the orthogonal complement R⊥

I . Formally,

rℓ = PIrℓ + r⊥ℓ ,

where PI = ĀI(Ā
T
I ĀI)

−1ĀT
I is the orthogonal projector onto RI , and r⊥ℓ = (Id − PI)rℓ is the

component of rℓ in R⊥
I . The component of rℓ in RI obeys

PIrℓ = ĀI(Ā
T
I ĀI)

−1cℓ = λvℓ. (8.18)

Plugging this into (8.17), we get

i+ = arg min
i∈Ic

+

{

λ− āT
i (r⊥ℓ + λvℓ)

1− āT
i vℓ

}

= arg min
i∈Ic

+

{

λ− āT
i r⊥ℓ

1− āT
i vℓ

}

= arg max
i∈Ic

{

āT
i r⊥ℓ

1− āT
i vℓ

∣

∣

∣
āT

i r⊥ℓ > 0

}

,
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Figure 11: Phase Diagrams of Pfp for the Problem Suite S(USE,Uniform; d, n, k). Shaded
attribute is the proportion of successful executions among total trials, for: (a) k-step solution
property; (b) correct term selection property; (c) sign agreement property. Overlaid on each

plot are curves for d/(2 log(n)) (solid), k̂d,n
0.25 (dashed), and the confidence bound for k̂d,n

0.25 with
95% confidence level (dotted).

where the last equality holds because ĀT vℓ < 1 throughout the Homotopy solution path. Thus,
conditional on rPFP

ℓ = r⊥ℓ , the Homotopy selection criterion is equivalent to Pfp’s selection
criterion. Now, since r⊥ℓ = y − PIy, as long as no elements are removed from the active set,
rPFP
ℓ = r⊥ℓ by definition. In summary, the discussion above establishes the following.

Corollary 3 As long as no elements are removed from the active set, the solution path of Pfp

is identical to the Homotopy solution path. In particular, with the sign condition removed,
Pfp is equivalent to Lars.

This finding is interesting in light of the earlier discussion; it implies that when the k-step
solution property holds for Homotopy, it also holds for Pfp. In particular, the statement of
Theorem 1 holds for Pfp as well. Formally,

Corollary 4 Let (A, y) be a problem instance drawn from S(Incµ; d, n, k), with k ≤ (µ−1+1)/2.
Then, Pfp runs k steps and stops, delivering the solution α0.

Similarly, Empirical Findings 1 and 2 hold for Pfp as well. Figure 11 displays phase dia-
grams for the k-step solution property (Panel (a)), correct term selection property (Panel (b)),
and sign agreement property (Panel (c)), when Pfp is applied to instances of the problem
suite S(USE,Uniform; d, n, k). The three properties exhibit clear phase transition at around
d/(2 log(n)). Analogously, the statements in Empirical Findings 2 can be verified to hold for
Pfp as well; we do not bring such evidence here for brevity of space.

9 Recovery of Sparse Solutions

Previous sections examined various properties of Homotopy, all centered around the k-step
solution property. The motivation is clear; The Homotopy algorithm is at peak efficiency
when it satisfies the k-step solution property. Yet, we noted that failure to terminate in k steps
need not imply failure to recover the sparsest solution. We now turn to study this latter property
in more detail.

Definition 5 An algorithm A has the k-sparse Solution Property at a given problem instance
(A, y) drawn from S(E,V; d, n, k) if, when applied to the data (A, y), the algorithm terminates
with the solution α0.
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Earlier papers used a different term for the same concept [18, 15, 55]; they would use the term
ℓ0 equivalence to indicate recovery of the sparsest solution, i.e. equivalence to the solution of
the combinatorial optimization problem

(P0) min
x
‖x‖0 subject to y = Ax.

For the Homotopy algorithm, the k-sparse solution property has been well-studied. Indeed,
since the Homotopy algorithm is guaranteed to solve (P1), it will have the k-sparse solution
property whenever the solutions to (P0) and (P1) coincide. In a series of papers [15, 13, 17],
Donoho has shown that for problem instances from the suite S(USE; d, n, k), the equivalence
between solutions of (P0) and (P1) exhibits a clear phase transition, denoted ρW , that can be
computed numerically. This phase transition provides a theoretical prediction for the condi-
tions under which Homotopy satisfies the k-sparse solution property. Yet, at present, no such
predictions exist for Lars, Omp, or Pfp.

We now present the results of an extensive simulation study, examining the validity of the
k-sparse solution property for Homotopy, Lars, Omp, and Pfp, comparing the performance of
these four closely related algorithms. The study we conduct closely parallels the experiments de-
scribed above. In particular, we measure the k-sparse solution property for the three algorithms,
applied to problems instances from the suites S(USE,Uniform; d, n, k), S(USE,Gauss; d, n, k)
and S(USE,Bernoulli; d, n, k). We generated 100 independent trials at each point on the pa-
rameter grid, indexed by δ = d/n and ρ = k/d, with δ ranging through 40 equispaced points in
[0.1, 1], ρ ranging through 40 equispaced points in [0.05, 1], and n fixed at 1000. The resulting
phase diagrams appear in Figure 12. Parallel results summarizing a similar experiment done for
the URPE are presented in Figure 13. Preliminary inspection of these phase diagrams reveals
that the suggestive similarities between the three algorithms indeed translate into comparable
performance in recovering the sparsest solution. More careful examination commands several
important observations.

• Similarity of Lars and Homotopy. Throughout all the displayed phase diagrams, the
empirical phase transition of Lars closely follows the transition of Homotopy. In other
words, almost anytime ℓ1 minimization successfully recovers the sparsest solution, Lars

succeeds in finding it as well. This is a rather surprising find, as, at least in the USE case,
for k > d/(2 log(n)), Lars is bound to err and add elements not in the support of α0

into its active set. The evidence we present here suggests that inside the ℓ1-ℓ0 equivalence
phase, Lars still correctly recovers the support of α0 and obtains the sparsest solution.

• Universality of Lars and Homotopy. Examining Figure 12, we note that for the
suite S(USE; d, n, k), the performance of Lars and Homotopy is independent of the
underlying distribution of the nonzero coefficients. Universality does not hold for Omp,
whose performance is affected by the distribution of the nonzeros. In particular, Omp’s
worst performance is recorded when the underlying nonzeros have constant amplitude and
a random sign pattern; this has been noted previously in the analysis of Omp [15, 52].

• Increased Performance with S(URPE; d, n, k). Comparison of Figure 13 with Figure
12 reveals that, in general, all four algorithms perform better when applied to problem
instances from the suite S(URPE; d, n, k). Universality, however, no longer holds for this
problem suite. In particular, Homotopy and Lars show a marked increase in performance
when applied to the suite S(URPE,Uniform; d, n, k). In our experiments, we observed
similar phenomena when applying the three algorithms to problems drawn from the suites
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S(PFE; d, n, k) and S(PHE; d, n, k) as well. This is indeed an important finding, as these
suites are used extensively in applications.

10 Stylized Applications

Earlier, we gave theoretical and empirical evidence showing that in certain problem scenarios,
when sufficient sparsity is present, the Homotopy path and the Lars path agree. We now
present examples inspired by concrete applications in NMR spectroscopy and MR imaging, that
demonstrate the performance of the two algorithms in solving sparse approximation problems.
In accord with earlier sections, we shall compare and contrast the results with those obtained
by Omp.

10.1 Spectroscopy

Nuclear Magnetic Resonance (NMR) Spectroscopy is a widely used method of structure de-
termination in modern chemistry; see [35]. In its essence, NMR spectroscopy is based on the
behavior of atomic nuclei in a magnetic field. Thus, an NMR spectrometer records the resonance
frequencies of nuclei when exposed to a strong magnetic field and irradiated with an RF pulse.
The resulting signal is a superposition of all excited frequencies. For an caricature of 1-D NMR
spectra, consider the signal Bumps, depicted in Figure 14(a). It is a synthetic signal, made up of
a few peaks at varying amplitudes. Figure 14(b) shows its wavelet expansion on a scale-by-scale
basis. Clearly, Bumps has relatively few significant wavelet coefficients, and it admits a sparse
representation in a wavelet basis.

As a first example, we consider reconstruction of NMR spectra from partial frequency infor-
mation [46, 47]. In detail, let x be an NMR signal of length n, which admits sparse synthesis in
a wavelet basis, i.e. α = Wx is sparse, with W a wavelet analysis operator. Let Φ be a d × n
matrix drawn from the partial Fourier ensemble, i.e. constructed by selecting d rows of an n×n
Fourier matrix at random. At the sampling stage, we compute y = Φx; In words, y is computed
by sampling d frequencies of x at random. At the reconstruction stage, we solve:

(CS1) min ‖α‖1 subject to y = ΦW T α,

where we used the fact that W is an orthogonal operator, whence x = W T α. Readers familiar
with the notion of Compressed Sensing (CS) [14, 56] will recognize (CS1) as a particular case of
a Compressed Sensing problem. Indeed, work by Donoho [14] has shown that when the signal
x is compressible (i.e. has a sparse representation in a certain basis), the solution of (CS1) is
faithful to the original signal x.

For the purposes of this simulation, the signal Bumps was digitized to n = 1024 samples. We
measured d = 512 random frequency measurements, and applied the Homotopy algorithm to
solve (CS1), as well as Lars, Omp, and Pfp. Figure 15 summarizes the results at several stages
of execution, and Table 5 has corresponding error and timing measures. The results indicate
that all four algorithms faithfully recovered the signal, at roughly the same error. Of the four
algorithms, Omp was fastest, though only marginally, compared to Homotopy and Lars. We
also note that, owing to the rapid coefficient decay of the wavelet expansion of Bumps, already
after 200 iterations, we obtain accurate reconstructions, at a fraction of the time it takes the
execution to complete. This suggests that, in practice, if we have knowledge of the sparsity
structure of the solution, we may enforce early termination without compromising the quality
of reconstruction. As the example in the next section illustrates, the savings are particularly
significant in large-scale applications.
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Figure 12: The ℓ0 Equivalence Property for the Suite S(USE,V; d, n, k). Each panel has plots
of the empirical phase transition curves of Homotopy (dashed), Lars (dash-dotted), Omp

(dotted) and Pfp (solid) alongside the theoretical curve ρW , on a ρ-δ grid, with n = 1000, for:
(a) V = Uniform; (b) V = Gauss; (c) V = Bernoulli.
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Figure 13: The ℓ0 Equivalence Property for the Suite S(URPE,V; d, n, k). Each panel has plots
of the empirical phase transition curves of Homotopy (dashed), Lars (dash-dotted), Omp

(dotted) and Pfp (solid) alongside the theoretical curve ρW , on a ρ-δ grid, with n = 1000, for:
(a) V = Uniform; (b) V = Gauss; (c) V = Bernoulli.
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Figure 14: (a) Signal Bumps, with n = 1024 samples; (b) Its wavelet expansion.
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Figure 15: CS reconstruction of Bumps: Left to right: Solutions of Homotopy, Lars, Omp,
and Pfp; Top to bottom: Solutions after 100 iterations, 200 iterations, and at termination.

10.2 MR Imaging

Magnetic Resonance Imaging (MRI) is a technique based on the same principles as NMR spec-
troscopy. It is used primarily in medical settings to produce high quality images of internal
organs in the human body. Unlike NMR, here we are interested in the spatial location of pro-
tons exposed to a magnetic field. Acquisition of an MR image involves adapting the gradients
of the external magnetic field to get a spatial frequency map of the exposed organ. As MRI
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Algorithm After 100 iters. After 200 iters. Final result
relerr2 Time relerr2 Time relerr2 Time

Homotopy 0.280 0.6 secs 0.105 1.5 secs 0.052 12.4 secs
Lars 0.280 0.5 secs 0.105 1.5 secs 0.049 10.7 secs
Omp 0.120 0.4 secs 0.021 1.3 secs 0.017 7.0 secs
Pfp 0.154 1.5 secs 0.053 3.7 secs 0.050 19.5 secs

Table 5: Error measures and execution times for CS reconstruction of Bumps with Homotopy,
Lars and Omp.

often deals with enormous volumes of data, acquisition time is a key factor in the success of this
technique. Thus, the ability to reconstruct a faithful image from partial frequency information
is of great benefit.

The scenario we consider in this section parallels the spectroscopy example, with some no-
table differences. Most importantly, rather than acquiring 1-D spectra, here we need to map
a 3-D volume corresponding to a certain part of the human body. This implies that a huge
mass of data needs to be sampled and subsequently reconstructed. Thus, speed becomes a
crucial factor; computationally-intensive methods which are acceptable choices for 1-D recon-
struction are rendered useless in the 3-D case. In an attempt to reduce acquisition time and
speed up computations, traditional methods employ frequency sampling on coarser grids, or only
at low frequencies; the results are often blurred or aliased. Here we shall follow the Compressed
Sensing paradigm and sample Fourier space at random, with subsequent reconstruction via ℓ1

minimization.
In detail, we treat the 3-D volume as an array of 2-D slices. Let xj denote one such slice,

column-stacked into a vector of length n. Just as we did in the 1-D case, at the sampling stage,
we collect data yj = Φxj , where Φ is a d×n matrix drawn from the partial Fourier ensemble. In
words, we sample d frequencies of xj at random. Note that in practice, this frequency sampling
is done physically by the MRI scanner; this operation is simulated here with a multiplication
by Φ. At the reconstruction stage, we solve (CS1), with the wavelet operator W replaced by its
2-D counterpart. We do so for each slice xj , until the entire 3-D volume is reconstructed.

In our simulations, we used real data provided to us courtesy of Neal Bangerter of the
MRSRL Lab at Stanford University, see [1] for more details. It is a 3-D volume of a part of a
human leg, containing 230 slices of dimensions 128×128. Figure 16, panels (a),(d) and (g), show
X- and Y-axis projections of the data along with one vertical slice. Clearly, computing the full
Homotopy solution would be prohibitively time-consuming, considering the data size. Hence, to
approximately solve (CS1) at the reconstruction stage, we performed only 800 iterations of Lars.
For comparative purposes, we also performed 800 iterations of Omp. The results are depicted
in the two rightmost columns of Figure 16. Indeed, we see that 800 iterations were sufficient to
obtain a visually faithful result. In particular, all the major arteries appearing in the original
data are also present in the reconstructed data. Comparison of the reconstructions obtained
by Lars and Omp reveals that the reconstruction result of Omp tends to suffer from streaking
artifacts, hindering the readability of the final result. Thus, qualitatively, Lars produced a
better reconstruction.

10.3 Component Separation in a Noisy Environment

In Section 2, we commented that Homotopy may be easily adapted to treat noisy data, by
terminating at a prescribed point on the Homotopy path. We now illustrate the use of this
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(a) X−axis MIP of Original Data (b) X−axis MIP of LARS Output at 800 Iterations (c) X−axis MIP of OMP Output at 800 Iterations

(d) Y−axis MIP of Original Data (e) Y−axis MIP of LARS Output at 800 Iterations (f) Y−axis MIP of OMP Output at 800 Iterations

(g) Original Vertical Slice (h) LARS Output at 800 Iterations (i) OMP Output at 800 Iterations

Figure 16: CS reconstruction of 3-D MRI data: Left column: X- and Y-axis projections of the
original data, and one vertical slice; Middle column: corresponding reconstructions with Lars;
Right column: corresponding reconstructions with Omp.

strategy, in the context of component separation. In the particular example we present here,
we consider the problem of separating a signal contaminated with white noise into its har-
monic and impulsive components. This relatively simple problem, explored in [9, 20], inspired
more ambitious applications such as texture-geometry separation [48] and astronomical image
representation [49].

In detail, let y0 be a signal of length d, composed of a few sinusoids and a few spikes, with a
total of k such components, k ≪ d. Note that y may be written as y = Aα0, with A = [I F ] a
d× 2d matrix representing an overcomplete dictionary composed of the d× d identity matrix I,
and the d× d Fourier matrix F . α0 is then a 2d coefficient vector, with ‖α0‖0 = k. In our noisy
setting, y0 is not directly observable for measurement. Instead, we measure data y = y0+z, with
the noise power ‖z‖2 ≤ ǫn. To solve this underdetermined system for the time and frequency
components, we apply the Homotopy algorithm, stopping when the residual gets below the
noise level ǫn.

Figure 17 presents the results of this simulation. Panel (a) displays a signal y0 of length
d = 512, composed of 2 harmonic terms superposed with 40 spikes, with amplitudes distributed
normally. These are plotted in panels (b) and (c). Panel (d) shows the observed data, buried
in white gaussian noise, with a signal to noise ratio of 3. Thus, the noise power is one third
the signal power. Panels (e)-(h) on the bottom row of Figure 17 show the corresponding output
of the Homotopy algorithm, applied to the data y. As evident from the figure, Homotopy

manages to recover most of the components of α0, leaving mostly noise in the residual. The
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Figure 17: Time-Frequency Separation in the presence of noise: Top row: The original signal, its
time and frequency components, and the noisy signal with SNR = 3. Bottom row: Corresponding
output of Homotopy.

relative reconstruction error is ‖α̂−α0‖2/‖α0‖2 = 0.19. In summary, as this example illustrates,
Homotopy may be straightforwardly adapted to deal with noisy data, to successfully recover
sparse solutions of underdetermined systems.

11 Accompanying Software

SparseLab is a library of Matlab functions we make available on the web at http://sparselab.stanford.edu.
It has been developed in the spirit of reproducible research [4, 10], namely the idea that publica-
tion of computational research demands also the publication of the complete software ennviron-
ment needed for reproducing that research. SparseLab has been used by the authors to create
the figures and tables used in this article, and the toolbox contains scripts which will reproduce
all the calculations of this paper. The current release includes about 400 Matlab files, datasets,
and demonstration scripts.

12 On Approximate ℓ1 Minimization Algorithms

In the belief that true ℓ1 minimization is far too slow for large-scale applications, numerous
authors have explored approximate algorithms based on iterative thresholding or similar ideas;
examples include [23, 11, 48, 49, 25]; related ideas include projection onto convex sets [6]. The
reader should keep in mind that there are applications where such methods indeed operate faster
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than the methods discussed here, while still producing a faithful approximate solution; see, for
example, Section 9 of [23]. On the other hand, the present methods for ℓ1 minimization are
much faster than general purpose optimizers, so much of the apparent advantage claimed for
approximate ℓ1 schemes has been neutralized by the algorithms studied here. Furthermore,
approximate methods inevitably trade off aptitude for speed; in general, the range of sparsities
in which such methods reliably recover the sparsest solution is considerably limited, compared to
ℓ1 minimization. A further advantage of the Homotopy viewpoint is the stimulus it provides for
future research: the empirical phenomena identified here may lead to deep research in polytope
theory, perhaps comparable to the kinds of results in [22].

13 Conclusions

In this paper, we study the Homotopy algorithm, introduced by Osborne et al. [40] and Efron
et al. [24]. It was originally proposed in the context of overdetermined noisy systems. We
propose here to use Homotopy to obtain sparse solutions of underdetermined systems of linear
equations. Homotopy follows a piecewise linear solution path, starting from the zero solution,
and terminating at the solution of (P1). It maintains an active set of column vectors of the
matrix A, adding or removing a vector at each step, and updating the solution accordingly. It
is a particularly effective algorithm for solving ℓ1 minimization problems when the underlying
solution is sparse, and the underlying system is incoherent or random. In such scenarios, it signif-
icantly outperforms state-of-the-art general LP solvers. Moreover, its computational complexity
is then comparable to greedy stepwise algorithms such as Omp. In fact, the similarity between
the Homotopy, Lars, and Omp algorithms illuminates the parallelism evident in results on
the performance of ℓ1 minimization and Omp in recovering sparse solutions to underdetermined
linear systems.

Such claims we made concrete by formally showing that for two matrix classes, determin-
istic incoherent matrices and random uniform spherical matrices, Homotopy has the follow-
ing k-step solution property: If the data admit sparse representation using k columns of A,
Homotopy finds it in exactly k steps. We proved that for problems drawn from the suite
S(Incµ; d, n, k), Homotopy has the k-step solution property whenever k < (µ−1 + 1)/2. We
also observed empirically that for instances of the problem suite S(USE; d, n, k), Homotopy has
the k-step solution property with high probability when k is less than a threshold, empirically
k < d/(2 log(n)) · (1− ǫn).

Using the notions of phase diagrams and phase transitions, we presented empirical evidence
supporting these assertions. We showed that for problem instances drawn from S(USE; d, n, k),
the k-step solution property of Homotopy exhibits an empirical phase transition at d/(2 log(n)),
regardless of the distribution of the nonzeros in the solution. Simulations with the suite
S(RSE; d, n, k) resulted in similar findings. For the PFE and PHE, we noted that Homo-

topy has the k-step solution property at a much wider range of sparsities, compared with the
USE. Thus, in many applications involving PFE and PHE matrices, Homotopy would be par-
ticularly efficient in finding the sparsest solution. Similar conclusions were made for the problem
suite S(URPE; d, n, k).

Comparison of the performance of Homotopy, Lars, Omp, and Pfp in recovering sparse
solutions led to several interesting findings. First, we observed that Lars, an approximation to
Homotopy that only adds terms to its active set, performed remarkably similarly to Homo-

topy. Second, both algorithms exhibited an increase in performance when applied to problem
instances from the suites S(URPE; d, n, k), S(PFE; d, n, k) and S(PHE; d, n, k). The perfor-
mance of Omp was comparable in some cases, yet it was highly affected by the underlying
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distribution of the nonzero coefficients. In particular, when the coefficients follow a random sign
pattern with constant amplitude, Omp’s region of successful recovery was significantly smaller
than that of Homotopy or Lars.

Homotopy extends naturally to deal with noisy data, and produces satisfactory results
even when it is stopped before completing the solution path. Examples inspired by applications
in NMR spectroscopy and MR imaging were given to demonstrate its usefulness in practical
scenarios. These examples and all the simulations in this paper are reproducible with the
accompanying software.

Note

At one point, we made an effort to include Iddo Drori in this project. Drori has since presented
simulation results related to some of our work in Section 5 above in a talk at the 2006 ICASSP
meeting.
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