
Fast Sparse Matrix-Vector Multiplication on GPUs:
Implications for Graph Mining

Xintian Yang, Srinivasan Parthasarathy, P. Sadayappan
Department of Computer Science and Engineering

Ohio State University, Columbus, OH 43210

{yangxin, srini, saday}@cse.ohio-state.edu

ABSTRACT

Scaling up the sparse matrix-vector multiplication kernel
on modern Graphics Processing Units (GPU) has been at
the heart of numerous studies in both academia and indus-
try. In this article we present a novel non-parametric, self-
tunable, approach to data representation for computing this
kernel, particularly targeting sparse matrices representing
power-law graphs. Using real web graph data, we show how
our representation scheme, coupled with a novel tiling algo-
rithm, can yield significant benefits over the current state
of the art GPU efforts on a number of core data mining al-
gorithms such as PageRank, HITS and Random Walk with
Restart.

1. INTRODUCTION
Over the last decade we have witnessed a revolutionary

change in the way commodity processor architectures are
being designed and implemented. CPUs with superscalar
out-of-order execution, vector processing capabilities, and
simultaneous multithreading, chip multiprocessing (CMP),
and high-end graphics processor units (GPU) have all en-
tered the mainstream commodity market. Data intensive
algorithms often require significant computational resources,
and thus stand to benefit significantly from such innovations
if appropriately leveraged.
In this article we develop a novel approach to facilitate

the efficient processing of key graph-based data mining al-
gorithms such as PageRank [15], HITS [10] and Random
Walk with Restart[18] on modern GPUs. A common feature
of these algorithms is that they rely on a core sparse ma-
trix vector multiplication kernel (SpMV). Implementations
of this kernel on GPUs have received much attention recently
from the broader scientific and high performance computing
communities [5, 2, 6] including an industrial strength effort
from NVIDIA research [3].
The key difference between past work and ours is that

here we are interested in the processing of sparse matrices
that represent large graphs – typically with power-law [12]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 4
Copyright 2011 VLDB Endowment 2150-8097/11/01... $ 10.00.

characteristics. This difference is also central to the specific
architecture-conscious approach we propose for processing
the SpMV kernel. We transform and represent the matrix
in such a way so as to facilitate tiling – a key strategy used
to enhance temporal locality. Additionally we rely on a com-
posite storage algorithm that leverages the skew in the de-
gree distribution afforded by the fact that these matrices
represent power-law graphs. Architectural features of the
GPU such as the texture cache are also effectively leveraged
in the processing of the kernel. Moreover, we also demon-
strate how the basic approach can be extended to handle
web-scale graphs with billions of edges that do not fit in
the memory of a single GPU by suitably leveraging multiple
GPUs.

The method summarized above relies on significant pro-
grammer expertise to tune two key parameters of the ap-
proach. To alleviate this we present a systematic mechanism
for tuning the parameters automatically at runtime depend-
ing on input matrix characteristics. Unlike existing work on
parameter auto-tuning for SpMV kernel [6, 19], an impor-
tant side effect of our approach is a reliable performance
model for predicting overall performance of the kernel.

We present a comprehensive empirical evaluation of the
proposed methods on three data mining algorithms and the
base SpMV kernel on a range of real datasets including sev-
eral web-scale graph datasets. We find that on moderately
sized datasets that fit on a single GPU, our SpMV kernel as
well as the graph mining methods that rely on this kernel
– HITS, PageRank and Random Walk with Restart – are
typically 1.8 to 2.1 times faster than an industrial strength
state-of-the-art GPU competitor and anywhere from 18 to
32 times faster than a similarly structured and optimized
CPU implementation. We find that our methodology can
scale quite comfortably to webscale datasets with billions of

edges, on multiple GPUs with parallel efficiencies of up to
70%. Finally, we empirically demonstrate the effectiveness
of our autotuning approach both in terms of its ability to

correctly select parameters for our kernel on a wide range
of datasets, and in terms of its ability to reliably predict the

absolute performance of the kernel under different paramet-
ric settings, suggesting it can be used for adaptive algorithm
designs in next generation hybrid architectures[16].

2. RELATED WORK
Several existing efforts have targeted optimizing the SpMV

kernel for the GPU [3, 2, 6]. However, none of the above
takes into account the skew of the non-zero distribution
present in matrices representing power-law graphs. The per-

231

formance of previously reported implementations is low on
such matrices due to their power-law characteristics.
Bell and Garland [3] propose representations of sparse ma-

trices on the CUDA platform in NVIDIA’s SpMV library.
Their library includes CSR, CSR-vector, COO, ELL, HYB,
DIA and PKT formats, and is the most closely related work
to our research (see Appendix B). Choi [6] proposes a
blocked ell-pack format in which the non-zeros are stored
in blocks and the blocks are indexed with ELL format. This
introduces high memory overhead on power-law matrices.
Because of the importance of the SpMV kernel, researchers

have put substantial efforts on optimization techniques over
various platforms. Vuduc et al [19] study optimizations and
performance auto-tuning in single core CPUs. Williams [20]
compares SpMV kernels on emerging multicore platforms.
Previous studies emphasize performance optimization of

the SpMV kernel on various platforms. However, they re-
quire parameter tuning to achieve high performance, which
depends on the characteristics of the input matrices. There-
fore, an important issue is the development of a performance
model to guide the tuning. Hong [8] proposed an analyti-
cal model of GPU architecture. An adaptive performance
modeling tool based on the work flow graph of a GPU ap-
plication is proposed by Baghsorkhi [1]. Choi [6] proposed
a model-driven autotuning framework in their SpMV work.

3. METHODOLOGY
In this section we first present optimization techniques for

SpMV kernel on power-law matrices within a single GPU.
Next, we show how our SpMV kernel can be extended to
handle out-of-core matrices on a multi-GPU cluster. Finally,
we present a systematic mechanism for automatically tuning
the parameters in our methods. We assume that readers are
familiar with the CUDA architecture (Appendix A).

3.1 Single-GPU SpMV
Our optimizations are based on a series of observations

from benchmarks that demonstrate the limitations of previ-
ous work. We propose solutions that target these limitations
and thereby improve the performance.
The SpMV kernel is a bandwidth limited problem since

the floating point operations per memory access is low. When
computing the product of a sparse matrix A and a vector x,
the memory accesses to matrix A are optimized to be fully
coalesced in NVIDIA’s SpMV library. But the accesses to
vector x have never been optimized. Also vector x is the
only reusable memory in the SpMV kernel.

Observation 1: Each row accesses random elements
in vector x. In the adjacency matrix of a power-law graph,
the column indices of the non-zeros on each row are not
continuous, and are relatively random, which leads to non-
coalesced memory addresses when accessing x. Previous
work [3, 2] has bound the entire vector x to the texture mem-
ory and utilizes the cache of texture memory to improve the
locality. But the size of x is usually much larger than the
size of the texture cache. The resultant cache misses reduce
memory bandwidth utilization due to the long latency of
non-coalesced global memory accesses.

Solution 1: Tiling matrix A and vector x with tex-
ture cache. Suppose we divide matrix A into fixed width
tiles by column index and segment vector x correspondingly,
so that each tile of A only needs to access one segment of x.

If one segment of x can fit in the texture cache, once the ele-
ments are fetched into the cache, none of them will be kicked
out until the computation of this tile finishes. Therefore, we
can get maximum reuse of x.

The texture cache size is a key factor in determining the
width of the tiles. To estimate the texture cache size (since
this is not provided by the manufacturer) on our Tesla GPU,
we conduct benchmarking experiments as follows. We mod

the column indices of a large sparse matrix by tile width, so
all accesses to vector x are mapped to one tile. We vary the
tile width from 100K to 1K and run the multiplication. The
performance improves most significantly when tile width =
64K, corresponding to 256 KB of cache size. So our tile
width is fixed to 64K columns.

The performance of tiling the entire matrix A and vector x
is still low. Since we divide all the columns of matrix A into
tiles, there could be too many tiles when the matrix is large.
Each tile needs to add its partial result to the final result y,
leading to non-coalesced memory accesses overhead. Also,
the write-back result of one tile has to be visible to the next
tile before the next tile can start; otherwise, memory read-
after-write conflicts could happen. To avoid such memory
conflicts, we restart a kernel for each tile, which also causes
an overhead. Therefore, tiling the columns of the matrix A
fails to improve the performance of the SpMV kernel.

Observation 2: Column lengths follow a power-law
distribution. Suppose a matrix is the adjacency matrix of
a power-law graph, the number of non-zeros in the columns
of the matrix will follow a power-law distribution. So there
are large number of columns with few non-zeros. In tiles
containing such columns, we cannot get much reuse of vector
x, but we still need to restart large number of kernels to
compute them and incur the overheads. On the other hand,
the long columns in the power-law distribution concentrates
large portion of the non-zeros in the matrix. There is a lot
of memory reuse of vector x in such columns. The denser
the columns, the more the benefits. If we can first tile such
columns greedily, we can finish the majority of the total
computation efficiently in the first few tiles. The overall
performance of the entire matrix will be improved.

Solution 2: Reorder columns by column lengths and
partially tile A. Our idea is to first reorder the matrix
columns in decreasing order of length. We can divide the re-
ordered matrix into two sub-matrices by setting a threshold
on column length. Long columns form a denser sub-matrix;
the remaining short columns form a sparser sub-matrix. The
denser sub-matrix contains a lot more non-zero elements
and fewer columns than the sparser sub-matrix. Accord-
ing to Amdahl’s law, the overall performance of the SpMV
kernel will be improved if the computation in the denser
sub-matrix can be finished efficiently. Now we can tile the
denser sub-matrix with texture cache. The non-zero ele-
ments are concentrated in a small number of tiles so that
we can still gain the benefits from x vector caching as well
as avoid the overhead of initializing too many tiles. Here
we introduce a threshold parameter to partition the matrix
into two sub-matrices. We will discuss how to automatically
determine this parameter based on the distribution of the
column lengths of the matrix in Section 3.3 .

Figures 1(a) to 1(c) illustrate the above transformation
procedure on a small sparse matrix. Figure 1(a) is the origi-
nal matrix; Figure 1(b) reorders the columns of the matrix in
decreasing order of column lengths. In this example, we set

232

(a) The original sparse
matrix and column length.

(b) Reorder columns by
decreasing order of length

(c) Tiling the first 4
columns.

(d) Composite storage of
Tile 0

Figure 1: Illustrative example of tiling and composite storage. X – non-zeros

the column length threshold to 2. Columns with more than
or equal to 2 non-zero elements will be placed in the denser
sub-matrix; the other columns with only 1 non-zero element
will be placed together in the sparser sub-matrix. Suppose
the texture cache can only hold 2 floating point numbers in
this example, the denser sub-matrix with 4 columns will be
partitioned into 2 tiles as shown in Figure 1(c).
Amongst all the kernels in NVIDIA’s SpMV library, HYB

and COO perform best on power-law matrices. The compu-
tation in the sparser matrix is run under the HYB kernel,
because HYB has the best performance. The computation
within each tile of the denser matrix will be performed us-
ing COO kernel. The resulting vector y from the denser and
sparser sub-matrices will be combined to the final result.

Observation 3: Performance of COO kernel is lim-
ited by thread divergence and serialization. When
computing each tile, the COO kernel cannot utilize the mas-
sive thread level parallelism in CUDA efficiently although it
is more efficient than the CSR-vector and ELL kernel on
such data. In the COO kernel, the inputs are three arrays
storing the row indices, the column indices and the values
of non-zero elements in the matrix. These three arrays are
all divided into equal length intervals. Each interval is as-
signed to one warp. Note that this partition only equally
distributes workload to warps. It does not consider that a
row may cross the boundary between two warps. Each warp
of threads iterates over an interval in a strided fashion. The
stride size equals warp size, and a thread within a warp only
works on one element in one stride. A thread first fetches
the value in the x vector based on the column index, and
then multiplies the x value with the element in matrix A and
stores the result in a shared memory space reserved for it.
The next step is the sum reduction of the multiplication re-
sults within one stride by a binary reduction operation. But
one stride can contain non-zeros from more than one row.
When the reduction operation tries to add two operands, it
has to first check whether the two operands are from the
same row in the original matrix. If not, this warp of threads
will be serialized due to the thread divergence. This leads
to low thread level parallelism in the COO kernel.

Observation 4: Performances of CSR-vector and ELL
kernel are limited by imbalanced workload. The CSR-
vector kernel performs the best when the rows of a matrix
are long and with similar length. Non-zeros are stored in
row major in CSR format. CSR-vector kernel assigns one
warp of threads per row. Each warp iterates on the row with
stride size the same as warp size, and performs multiplica-
tion and summation operations. After the last iteration on
this row, the threads in a warp perform a binary reduction

to obtain the final result of this row. In all the summation
and reduction operations, the threads do not need to check
whether the two operands are from the same row. How-
ever, CSR-vector kernel is most efficient when the number
of non-zeros in a row is an integer multiple of the warp-size.

The ELL kernel achieves peak performance if there are
large number of short rows with similar lengths in the sparse
matrix. In the ELL format, all rows have the same length
and 0s are padded to the rows shorter than this length.
The non-zeros are stored in column major order. A warp
of threads is assigned to work on 32 consecutive rows, with
each thread working on the multiplication and reduction of
one row. The threads within a warp iterate over the columns
efficiently with hardware synchronization.

Observation 5: Tile row lengths follow power-law.
Due to the scale-free property of power-law graphs, we ob-
serve that after tiling, the row length within a tile also fol-
lows a power-law distribution. We propose to address this
fact via a novel storage format of matrix A within each tile
to further improve the efficiency of SpMV kernel.

Solution 3: Composite tile storage scheme. Our com-
posite storage scheme combines the CSR and ELL formats
as follows. Our algorithm starts by ranking the row lengths
from high to low. A workload size is defined as the total
number of non-zeros in the longest row or several long rows
at the top of the ranking, depending on the dataset. We
will discuss the auto-tuning of this parameter in Section 3.3.
Then rows in a tile will be partitioned into approximately
balanced workloads. This can be implemented by traversing
the row length ranking from top to bottom. A new row is
packed into a workload until it exceeds the workload size,
then a new workload is initialized. Each workload can be
viewed as a rectangle, where the width w is the length of the
first row (the longest row in this workload) and the height
h is the number of rows in this workload. If w ≥ h, this
workload will be stored in row major in global memory and
computed by CSR-vector kernel; otherwise, it will be stored
in column major and computed by ELL kernel. Note that if
a workload is stored in row major, all rows will be padded to
the same length as w with 0s; and 0s will also be padded to
ensure that w (or h) is an integer multiple of warp size when
a workload is stored in row (or column) major. After the
above partition and transformation of storage format, each
workload is assigned to a warp of threads and computed
with the most suitable kernel.

The above composite storage scheme is designed for tiles
of the denser sub-matrix in the original matrix. However,
it can be used for all matrices whose row lengths follow a
power-law distribution. We observed that the row lengths in

233

the sparser sub-matrix also follow a power-law distribution.
Therefore, we also transform the sparser sub-matrix as one
matrix tile into the composite storage format.
Figure 1(d) illustrates how tile 0 from Figure 1(c) is trans-

formed to our composite storage on a fictitious architecture
with two threads per warp. The rows in tile 0 are first re-
ordered by row length. Suppose we set the workload size to
be 4. The first two rows are packed into the first workload,
stored in row major and assigned to warp 0 for computa-
tion. The two threads in warp 0 first do multiplication and
reduction on row 0 using CSR-vector kernel and move to row
1 together. The next two rows are packed together, stored
and computed by warp 1 in a similar fashion. The remain-
ing four single element rows are stored in column major and
computed by warp 2. The two threads in warp 2 start from
the first two rows vertically using ELL kernel and then move
to the last two rows.

Elimination of Partition Camping: The global mem-
ory is divided into 8 memory partitions of 256-byte width.
Concurrent memory requests to the global memory should
be distributed uniformly amongst partitions. The term par-

tition camping [14] is used to describe the situation when
global memory accesses are congested and queued up at
some partitions while the other partitions are idle. All data
in strides of 2048 bytes (or 512 floats) map to the same par-
tition. In our tile-composite format, if the workload size
is an integer multiple of 512 floats, then the start memory
addresses of all workloads are mapped to the same parti-
tion. All warps will queue up at each partition when the
warps iterate on their own workload. Thus, we will have the
problem of partition camping. To avoid this problem, we
add 256 bytes of memory to the end of each workload if the
workload size is an integer multiple of 512 floats.

Sorting Cost: Sorting is used to re-structure the matrix
to improve memory locality. The cost of sorting is relatively
cheap when the rows and columns follow power-law. The
rows and columns can be bounded by some small number k
in the long tail of the power law distribution. These rows
or columns can be sorted by counting sort in linear time [7].
The remaining rows or columns can be sorted very quickly.
Moreover, we only need to perform the sorting once as a
data preprocessing step. In applications such as the power
method where the SpMV kernel is called iteratively until the
result converges, the cost of sorting can be amortized.

3.2 Multi-GPU SpMV
In this section, we show how our SpMV kernels can scale

to large web graphs that cannot fit in the memory of a sin-
gle GPU. To handle out-of-core matrices, we can either use
a single GPU to work on chunks of the matrix in serial, or
distribute the chunks to multiple GPUs. Because the single
GPU strategy has to move the data from CPU to GPU in
every iteration, the bandwidth of the PCI-Express bus from
CPU to GPU (8GB/s) will become the performance bottle-
neck in the single GPU kernel, because our best kernel can
comfortably achieve 40GB/s bandwidth (see Figure 2(b)).
Hence we devise a method that can use a multi-GPU clus-
ter to compute SpMV kernel on large-scale dataset.
In the cluster, each node keeps one local partition of the

matrix. At the end of each iteration, all nodes need to broad-
cast their local result vector y to the other nodes, so that
the other nodes can update their local copy of the vector x
for the next iteration. The communication cost of broad-

casting, decided by the partition scheme, is the key factor
that limits the scalability of the multi-GPU SpMV kernel.
Algorithms such as matrix partitioning and graph clustering
can be used to minimize this cost. But those algorithms are
often more expensive than the iterative SpMV kernel which
would be self-defeating. Hence we only consider simple par-
tition schemes such as partition by rows, by columns and by
grids.

The communication cost is lower if the matrix is parti-

tioned by rows rather than by columns. Suppose we have
N rows and P processors. If the matrix is partitioned by
rows, each processor only needs to send out N/P elements
of vector x. But if partitioned by columns, all processors
need to send out N elements. Also partitioning by rows
does not necessitate any reduction operations after vector
x is gathered. For similar reasons, we can show that parti-
tioning by rows is superior to partitioning by grids. In our
multi-GPU SpMV kernel, we choose to partition the matrix
by rows with a partition scheme that can assign approxi-
mately equal number of rows and equal number of non-zeros
in each partition. Such scheme can guarantee both balanced
computation workload (number of non-zeros) and balanced
communication cost (number of rows) on each node. We
use bitonic partitioning [17] for this task. The intuition of
bitonic partitioning is as follows: The matrix rows are first
sorted by length. Each iteration of the algorithm processes
P rows and assigns them to P processors. The processor
that got the longest row in the previous iteration will get
the shortest row in the current iteration.

Any SpMV kernel can be plugged into this multi-GPU
framework to perform local computation. Because power-
law graphs are known to be scale-free, we observe that the
rows and columns of each partition of a power-law matrix
also follow power-law. Hence we can expect our optimized
SpMV kernel for power-law matrices to be a good fit for the
local computations at each GPU in the cluster.

We next introduce an automatic parameter tuning method
to find the optimal parameters for each local kernel, since
it is prohibitive to use exhaustive search to find optimal pa-
rameter settings for the kernels on every node.

3.3 Automatic Parameter Tuning
The practical utility of our optimization approach is some-

what limited by the need to carefully tune two parameters
– the number of tiles and the partitioning strategy of each
tile. We address this limitation as follows.

The first parameter we need to determine is the number
of tiles in the composite kernel. It turns out that this pa-
rameter is relatively straightforward to estimate. The per-
formance gain of the tiling strategy hinges on the reuse that
comes from the temporal locality of the texture cache when
accessing vector x. If a matrix column has only one non-zero
element, there is no reuse benefit. It turns out that if there is
any reuse, however small, tiling is typically beneficial. Thus,
a new tile should not be added if its first column has only a
single element (line 7–8 Algorithm 1 in Appendix E).

Next we need to determine how to partition each tile
into small rectangular workloads and assign each workload
to a warp of threads in the SpMV kernel. Since the tile-
composite kernel requires a balanced workload for each warp,
the size of one workload directly decides the partition of the
tile. The problem of partitioning can be transformed to find-

ing the optimal workload size. Considering the search space

234

of the workload size, the lower bound is the length of the
first row in the tile. This is because the rows within each
tile are reordered in decreasing order of row lengths, and the
longest row cannot be partitioned into two workloads.
The upper bound of the workload size is the total number

of non-zeros in the tile divided by the maximum number
of active warps available (960 on the Tesla GPU) to fully
utilize the GPU resources. Apart from the upper and lower
bounds, an additional constraint is that the workload size
must be an integral multiple of the first row in this tile (line
11 Algorithm 2 in Appendix E). This is because the first
workload of this tile must be a rectangle area of non-zeros
where each row is padded to the same length as the first
row. These constraints dramatically reduce the search space
of viable workload size settings. We must now estimate the
performance under each setting and return the one that is
predicted to perform the best (Algorithm 2 in Appendix E).
We next describe our performance model which has broader
utility beyond just our use for parameter setting.

Performance Model: Our model relies on an execution

model of CUDA kernels - which forms an offline compo-

nent in our model - and the non-zero element distribution

of the input matrix - which is an online component. The
offline component seeks to create a lookup table indexed on
the rectangular shape (w columns, h rows) of a workload
and its corresponding performance. At runtime the online
component given a particular input matrix tile computes
an estimate of its runtime cost for different viable workload
sizes. The lowest cost option is selected as the partitioning
strategy. We next detail both steps.
Given a rectangle workload whose shape is defined by w

and h, we construct a lookup table establishing a mapping
from the shape of the workload to its performance on one
thread warp. We run offline benchmarks to establish this
mapping as follows. Each benchmark is for one combina-
tion of w and h, and we artificially construct a matrix in
tile-composite format, in which all workloads are set to the
same w by h shape and there are large number of such work-
loads to fill the computation pipeline and to hide the mem-
ory latency. We measure the performance of all realizable
combinations of w and h. This may seem to be an exhaus-
tive process but fortunately we have several constraints that
limit the combinations we need to evaluate. Moreover it is a
one time offline cost that is independent of the dataset. The
first constraint is the upper bound of the workload size. In
practice, we can choose a large enough upper bound to cover
all possible workloads. The second constraint is that either
h or w must be a multiple of 32. Therefore the total number
of combinations of w and h is relatively small and finite. To
reiterate, we only need to construct this mapping once for a
given GPU architecture (e.g. Tesla) and this mapping can
be repeatedly used for any input data matrix.
In the online component of our model, given a particular

input matrix tile we first identify viable workload sizes based
on the upper and lower bounds as noted above. Then for a
specific workload size we partition the tile into workloads of
potentially different shapes but of roughly the same size, in
the same way as the tile-composite kernel (Figure 1(d), line
8 – 9 Algorithm 3 in Appendix E). We then estimate the
performance of the entire tile as the average of the perfor-
mance of all its constituent workloads as follows.
After we establish the mapping from w and h to a per-

formance number, we simulate the computation of a matrix

tile by looking up performance numbers from the mapping
instead of running the actual tile-composite kernel. Here
we need to consider the execution model of CUDA hard-
ware. Each streaming multiprocessor (SM) can only serve
MAX ACT WARP/SM number of active warps at a time.
So if the total number of warps is larger than the maximum
number of active warps on a GPU, the thread warps will
be divided into iterations so that each iteration can fit in
all the SMs on the GPU. The number of iterations can be
computed as (line 5 Algorithm 3 in Appendix E):

I =

⌈

TOTAL WARP

MAX ACT WARP/SM ∗NUM SM

⌉

(1)

The total running time will be the sum of the running time
in each iteration (line 19 Algorithm 3 in Appendix E):

t =
I

∑

i=1

ti (2)

The running time of each iteration i is computed as the
total size of the workload in this iteration divided by the
average performance of all the warps in this iteration (line
18 Algorithm 3 in Appendix E):

ti = Size(i)/Pi (3)

where Size(i) is the total size of all the workloads in iteration
i (line 13 Algorithm 3 in Appendix E),

Size(i) =
∑

warp(j)∈Iter(i)

wj ∗ hj (4)

and Pi is estimated by the average performance of all warps
in this iteration (line 18 Algorithm 3 in Appendix E),

Pi =

∑

warp(j)∈Iter(i) Performance(wj , hj)

Total Warps(i)
(5)

For given wj and hj , Performance(wj , hj) can be found in
the mapping we established from the offline benchmarks.

Based on Equation 1 – 5, we can calculate the prediction
of the total running time of computing a matrix tile with the
given workload size. Our parameter auto-tuning method
will call the above performance model as a subroutine to
estimate the optimal setting of workload size in each tile
(line 7 Algorithm 2 in Appendix E).

Note that the thread block size and the number of thread
blocks are parameters in all CUDA kernels. In our tile-
composite kernel, we assume full occupancy of all multipro-
cessors, which means there are 32 active warps on each SM
at any time. This assumption is reasonable because if there
are fewer warps on each SM, the performance will decrease.
The maximum size of a thread block is 512 (=16 warps),
and each SM can have 8 active thread blocks at maximum.
So the 32 active warps on each SM can only be organized
as 8 blocks with 4 warps per block, 4 blocks with 8 warps
per block, or 2 blocks with 16 warps per block. In practice,
the three configurations yield similar performance because
the physical executions of the warps are the same on the
hardware. In our experiments, we choose 8 warps per block.

The above performance modeling method is designed for
the tiling part of the tile-composite kernel. A similar method
is used to model the sparse part of the matrix by running
offline benchmarks without using the texture cache.

235

(a) Performance (b) Bandwidth

Figure 2: SpMV kernels comparison on matrices representing power-law graphs.

4. EXPERIMENTS
In this section, we present experimental results of our op-

timizations on SpMV kernels and auto-tuning method. The
details of the datasets and the hardware configurations are
introduced in Appendix C.

4.1 Single-GPU SpMV Kernel
We compare a CPU implementation of the CSR kernel,

all six GPU kernels from NVIDIA’s SpMV library, Baskaran
and Bordawekar’s optimized CSR GPU kernel (BSK & BDW)
and our two optimized GPU kernels (TILE-COO and TILE-
COMPOSITE) on the matrix datasets in Table 2. We report
the speed of execution in GFLOPS and bandwidth in GB/s.
The running time is averaged over 500 iterations. All kernels
are run in single precision. Binding the entire vector x to
texture cache performs consistently better than not binding
in all NVIDIA’s kernels [3] and BSK & BDW’s kernel [2]. So
we only report the performance of these kernels with texture
cache binding. We use 256 threads per thread block. This
setting is default in NVIDIA’s SpMV library. Under this
setting, there are enough warps in each thread block to hide
the memory latency. In our tiling method, we have to set
a threshold to decide the number of tiles. In this section,
we choose this parameter by exhaustive search to present
the best performance that can be achieved by our kernel.
Later, we will examine the performance under auto-tuning.
The performance of the SpMV kernels on power-law matri-
ces are shown in Figure 2. The results on the other matrices
are presented in Figure 7 Appendix D.
Performance on power-law matrices: Our tile-coo

and tile-composite methods clearly dominate the other ker-
nels on the Flickr, LiveJournal and Wikipedia datasets. Our
tile-composite kernel has an average 1.95x speedup over
NVIDIA’s best kernel – HYB kernel on these datasets. On
Webbase and Youtube datasets, which are small power-law
matrices, COO and HYB kernel perform close to our opti-
mizations. Our Tile-composite kernel is about 13% faster
on Webbase and 36% faster on Youtube than the NVIDIA
HYB kernel. From Table 2, we can see the numbers of rows
and columns are low in the Webbase and Youtube matrices,
and also the numbers of non-zeros per row and column are
low. These properties of the Webbase and Youtube matrices
hide the advantages of our optimizations for the following
reasons. First, there is little reuse of vector x if non-zeros
per column is low. This leads to lesser benefit from our tiling
optimization. Second, when the number of columns is small,
COO and HYB kernel have better probability of cache hits
when they bind the entire vector x to the texture cache.
Third, the total number of non-zeros in a tile is low so our
composite storage scheme will pad more zeros and thereby
cause memory access overhead. We do not report perfor-

Graph CPU COO HYB TILE-COO TILE-Comp
Flickr 23.99 1.67 1.60 0.90 0.83
LiveJournal 82.23 6.19 5.57 3.75 3.44
Wikipedia 52.12 2.99 2.83 1.76 1.63
Youtube 11.81 0.72 0.66 0.68 0.65

Table 1: Running time of PageRank (in seconds)

mance of NVIDIA’s PKT kernel on these datasets since the
partition step within this kernel does not produce balanced
enough packets and leads to kernel failure.

4.2 Graph Mining Applications
In this section we discuss how the single GPU performance

of our SpMV kernel translates to performance on impor-
tant graph mining algorithms. Due to space limitations, in
this section we present results for PageRank, similar results
for Random Walk with Restart (RWR) and HITS are pre-
sented along with implementation details for all three algo-
rithms in Appendix F. We implement these algorithms using
four SpMV kernels: COO, HYB, TILE-COO, and TILE-
Composite kernels. These four kernels are generally the top
performing kernels from the experimental results presented
in the previous section.

(a) PageRank Performance (b) PageRank Bandwidth

Figure 3: Performance and bandwidth of PageRank.

We run Equation 6 of Appendix F iteratively with the
SpMV kernels and check whether p converges on the 4 graph
datasets in Table 2. The speed and bandwidth performance
of PageRank based on the four kernels are shown in Fig-
ure 3(a) and Figure 3(b). The total running time on each
graph is shown in Table 1 in comparison to a CPU imple-
mentation of PageRank. Our tile-coo and tile-composite
kernel achieve about 2x speedup over COO and HYB kernel
on Flickr, LiveJournal and Wikipedia graphs. Our optimiza-
tions are marginally better than NVIDIA’s COO and HYB
kernel on the Youtube graph (reasons noted earlier). Com-
pared with the CPU PageRank, all GPU implementations
achieve between 18x and 32x speedup. Similar results are
observed for HITS and RWR as noted in Appendix F.

236

(a) it-2004 and web-2001 (b) sk-2005 and uk-union

Figure 4: Scalability of multi-GPU PageRank on web graphs and comparison with NVIDIA’s HYB.

4.3 Multi-GPU PageRank on Web Graphs
Figure 4 shows the performance of computing PageRank

with the multi-GPU framework introduced in Section 3.2 on
the four web graph datasets in Table 3. The solid lines show
the performance of using the Tile-Composite kernel; the dot-
ted lines indicate the performance of using NVIDIA’s HYB
kernel. The lines for the sk-2005 and uk-union datasets start
from 3 and 6 GPUs, because these datasets are very large
and can only fit in the memory of at least 3 and 6 GPUs re-
spectively. We observe that our multi-GPU framework and
partition scheme can comfortably handle web graphs with
billions of edges. For example on 10 GPUs, the distributed
GPU implementation of PageRank can achieve about 23G-
FLOPS performance with 70% parallel efficiency (on sk-
2005) with the Tile-Composite kernel. On the two small
datasets, it-2004 and web-2001, our Tile-Composite kernel
achieves about 80% parallel efficiency with 4 GPUs and
60% parallel efficiency with 6 GPUs. All curves tend to
flatten out after a point. This is because the workload size
per GPU is low and the communication overheads begin to
dominate and limit speedup. We should also emphasize that
the performance of Tile-Composite kernel is about 1.55x
faster than HYB kernel on all datasets.

4.4 Parameter Auto-tuning
Next we will present experimental results to validate the

auto-tuning method and the performance model introduced
in Section 3.3. In these experiments we use the five matrices
representing power-law graphs in Table 2. In our offline
benchmarks, we set the upper bound of the workload size to
32768. This number is sufficiently large for most practical
matrices that fit on the Tesla architecture, because there
will be at least 960 warps (full occupancy) in each kernel,
which correspond to about 31M non-zero entries in each tile.
In the first experiment we compare our heuristic approach

for determining the number of tiles in our composite strat-
egy. Figure 5(a) shows the number of tiles from the exhaus-
tive search and the auto-tuning method. On the Webbase
and Wikipedia matrices, our auto-tuned parameters are ex-
actly the same as exhaustive searched results. We can see
that our predicted number of tiles are very close to the op-
timal numbers on the other three datasets.
Figure 5(b) presents the optimal performance number by

exhaustive search versus the performance number produced
by using the auto-tuned number of tiles and partitioning
strategies. The blue bars represent the optimal performance
of exhaustive search; the yellow bars represent the results
by running the tile-composite kernel with the auto-tuned
parameters. On the Webbase and the Wikipedia matrices,

the auto-tuning method achieves optimal performance. On
the other datasets, the auto-tuned performance is within 3%
of the optimal performance which is an excellent result.

Our auto-tuning method only needs the performance mod-
el to predict the relative performance trend under different
parameter settings so as to automatically select the opti-
mal parameter. However we also want to evaluate how ac-
curately our performance model can predict the absolute
performance. Figure 5(c) presents the measured and the
predicted performance with the same parameters produced
by auto-tuning. The blue bars are the results by running the
kernel on the GPU, while the yellow bars are the simulation
results using our performance model. We can see the pre-
dictions are accurate, and they are all within roughly 20%
of the measured results. The error is largely attributable
to the fact that we use the average performance of the dif-
ferent warps to estimate the overall performance, and the
fact that the lookup table relies on synthetic benchmarks
in which all workloads are of the same shape. To reiterate
we should note that this error in prediction of actual perfor-
mance does not significantly impact our auto-tuning method
since their relative performance is what matters.

5. DISCUSSION
The power-law property is commonly observed in the data-

sets of graph mining problems. Our work is intended to find
a better representation of matrices on GPU that is suit-
able for power-law graphs. Our extensive experiments have
demonstrated the effectiveness of our optimizations on ma-
trices representing power-law graphs. Next, we discuss the
broader applicability of our optimization techniques.

Tiling: Our partially tiling optimization employs a greedy
heuristic. The benefit of tiling comes from the fast accesses
of the vector x from the texture cache. The cost of each
tile is the random writes to the resulting vector y. Both the
benefit and the cost increase with the number of non-zeros
in a tile. But the cost of random writes is bounded by the
length of the vector y. After the cost of a tile reaches this
bound, the more non-zero elements, the more benefit. Our
tiling optimization starts with the densest columns, which
is the most beneficial, and greedily finds the following tiles.
If the non-zeros of a matrix concentrate in the first few tiles,
our partially tiling optimization can efficiently finishes the
majority of computation work without paying extra cost for
the sparse columns. Power-law matrices are a subset of such
matrices. Our experimental results are consistent with the
above discussion. The only difference between COO and
tile-coo kernel is tiling. On power-law matrices, tile-coo ker-
nel performs consistently better than COO (Figure 2). On

237

(a) (b) (c)

Figure 5: Performance auto-tuning and modeling. (a)Auto vs Exhaustive searched number of tiles. (b)Auto
vs Exhaustive searched performance. (c)Predicted vs Measured performance of autotuned kernels.

non-power-law matrices, tile-coo kernel is better than COO,
but the benefit is very marginal (Figure 7 in Appendix D).
Composite Storage: Our composite storage optimiza-

tion consists of two parts: combination of CSR and ELL
storage, and padding workload to warp size. The tile-compo-
site kernel performs better than tile-coo kernel on both power-
law and non-power-law matrices. This storage scheme can
be applied to general matrices, although memory overhead
of padded zeros should be considered as a constraint.
Performance Modeling: Our performance model im-

proves the practical utility of the proposed optimizations.
We only need to build the performance model once for the
same hardware. The model does not rely on the power-law
property of the matrix. Given an arbitrary matrix, we can
get a relatively accurate prediction of the performance of
our tile-composite kernel from the performance model be-
fore conducting large-scale experiments. More importantly,
the CSR, CSR-vector and ELL kernels from NVIDIA can
be modeled as special cases of our tile-composite kernel un-
der the framework of our performance model. The CSR
and CSR-vector kernel can be treated as the tile-composite
kernel with a single tile and only CSR storage in the com-
posite storage scheme; The ELL kernel can be seen as the
tile-composite kernel with a single tile and with only ELL
storage. With the generality of our performance model, the
performance of different kernels can be predicted by plug-
ging in the data to the model first. The best predicted kernel
can be chosen to perform real computation of the data.

6. CONCLUSIONS
We proposed architecture conscious optimizations for the

sparse matrix-vector multiply kernel on GPUs and stud-
ied the implications of this effort for graph mining. Our
optimizations take into account both the architecture fea-
tures of GPUs and the characteristics of graph mining ap-
plications. Our tiling approach utilizes the texture cache
on GPUs more efficiently than previous work and provides
much better memory locality. Our tiling with composite rep-
resentation leverages the power-law characteristics of large
graphs. We have obtained significant performance improve-
ment over the state-of-the-art on such graphs. We also
present empirical evaluations of applying our optimizations
to PageRank, Random Walk with Restart and HITS algo-
rithms. On these algorithms, our best kernel is 1.8 to 2.1
times faster than an industrial strength GPU competitor
and from 18 to 32 times faster than a similar CPU im-
plementation. The high performance of our optimizations
relies on carefully tuning of parameters. We proposed a
performance model to automatically tune our tile-composite

kernel. We further extend our optimizations to handle web
graphs on an MPI-based cluster.
Acknowledgments: This work is supported in part by
grants from National Science Foundation CAREER-IIS-034-
7662, RI-CNS-0403342, CCF-0702587 and IIS-0917070.

7. REFERENCES
[1] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and

W.-m. W. Hwu. An adaptive performance modeling tool for
gpu architectures. In PPoPP, pages 105–114, 2010.

[2] M. M. Baskaran and R. Bordawekar. Optimizing sparse
matrix-vector multiplication on gpus. Technical Report
RC24704, IBM, 2008.

[3] N. Bell and M. Garland. Implementing sparse matrix-vector
multiplication on throughput-oriented processors. In SC, pages
1–11, 2009.

[4] P. Boldi, B. Codenotti, M. Santini, and S. Vigna. Ubicrawler:
A scalable fully distributed web crawler. Software: Practice &
Experience, 34(8):711–726, 2004.

[5] L. Buatois, G. Caumon, and B. Levy. Concurrent number
cruncher: a gpu implementation of a general sparse linear
solver. Int. J. Parallel Emerg. Distrib. Syst., 24(3):205–223.

[6] J. W. Choi, A. Singh, and R. Vuduc. Model-driven autotuning
of sparse matrix-vector multiply on gpus. In PPOPP, pages
115–126, 2010.

[7] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson.
Introduction to Algorithms. McGraw-Hill, 2001.

[8] S. Hong and H. Kim. An analytical model for gpu architecture
with memory-level and thread-level parallelism awareness.
SIGARCH Comput. Archit. News, 37(3):152–163.

[9] G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM J. Sci.
Comput., 20(1):359–392, 1998.

[10] J. M. Kleinberg. Authoritative sources in a hyperlinked
environment. Journal of ACM, 46(5):604–632, 1999.

[11] A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee. Growth of the flickr social network. In
WOSN, pages 25–30, 2008.

[12] M. E. J. Newman. Power laws, pareto distributions and zipf’s
law. Contemporary Physics, 46:323–351, 2005.

[13] NVIDIA. Nvidia cuda programming guide 2.0. www.nvidia.com.

[14] NVIDIA. Optimize matrix transpose in cuda. www.nvidia.com.

[15] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank
citation ranking: Bringing order to the web. Technical Report
1999-66, Stanford InfoLab.

[16] S. Parthasarathy, S. Tatikonda, G. Buehrer, and A. Ghoting.
Architecture conscious data mining: Current directions and
future outlook. In Next Generation of Data Mining. Chapman
and Hall, 2008.

[17] S. Parthasarathy, M. J. Zaki, M. Ogihara, and W. Li. Parallel
data mining for association rules on shared memory systems.
Knowl. Inf. Syst., 3(1):1–29, 2001.

[18] H. Tong, C. Faloutsos, and J.-Y. Pan. Random walk with
restart: fast solutions and applications. Knowl. Inf. Syst.,
14(3):327–346, 2008.

[19] R. W. Vuduc. Automatic performance tuning of sparse matrix
kernels. PhD thesis, University of California, Berkeley, 2003.

[20] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and
J. Demmel. Optimization of sparse matrix-vector multiplication
on emerging multicore platforms. Parallel Computing,
35(3):178–194, 2009.

238

APPENDIX

A. GPU BACKGROUND
In this section, we discuss the hardware architecture and

the programming model of CUDA GPUs. Figure 6 illus-
trates the organization of the computing hardware and the
memory hierarchy in CUDA GPUs.
A CUDA device consists of a set of streaming multipro-

cessors (SMs), each one equipped with one instruction unit
and 8 streaming processors (SPs). The parallel region of a
CUDA program is partitioned into a grid of thread blocks

that run logically in parallel. The programmer can decide
the dimensions of the grid and the block. Thread blocks
are distributed evenly on the multiprocessors. A warp is
a group of 32 threads that run concurrently on a SM. The
execution of the threads follows a single instruction mul-

tiple threads (SIMT) model.The instruction unit on a SM
issues one instruction for all the threads in the same warp
at each time [13]. The SPs executes this instruction for all
the threads in the warp. Different warps within a block are
time-shared on the hardware resources. A kernel is the code
in the parallel region to be executed by each thread. Con-
ditional instructions cause a divergence in the execution if
threads in the same warp take different conditional paths.
The threads are serialized in this situation.
There are various memory units on a CUDA device. The

device memory, which is also called the global memory, is
a large memory which is visible to all threads on the de-
vice [13]. The access latency of the global memory is high.
Memory requests of a half warp (16 threads) are served to-
gether at a time. When accessing a 4- or 8-byte word, the
global memory is organized into 128-byte segments [13]. The
number of memory transactions executed for a half warp
is the number of memory segments requested by this half
warp.1 The requests from the threads in the half warp are
coalesced into one memory transaction if they are access-
ing addresses in the same segment. When the addresses
accessed by the half warp are all in one segment, this re-
quest is fully coalesced. The global memory is divided into
8 equally-sized memory partitions of 256-byte width. Con-
current memory requests to the global memory by all the
active warps should be distributed uniformly amongst par-
titions. The term partition camping [14] is used to describe
the situation when global memory accesses are congested
and queued up at some partitions while the other partitions
are idle. While coalescing concerns global memory accesses
within a half warp, partition camping concerns global mem-
ory accesses amongst all active half warps. The constant
and texture memories are read-only regions in the global
memory space with on-chip caches. The programmer can
bind a region of the global memory to either the constant or
the texture memory before the kernel starts. Each multipro-
cessor is equipped with an on-chip scratchpad memory [13],
which is called the shared memory. The shared memory has
very low access latency. It is only visible to the threads
within one block and has the same lifetime as the block [13].
The shared memory is organized into banks. If multiple ad-
dresses in the same bank are accessed at the same time, it
leads to bank conflicts and the accesses are serialized. There
are also a set of registers shared by the threads in the block.

1Devices with Compute Capability lower than 1.2 have
stricter requirements.

Matrix Rows Columns NNZ Power-law?
Dense 2K 2K 4M No
Circuit 171K 171K 0.96M No
FEM/Harbor 47K 47K 2.4M No
LP 4.3K 1M 11M No
Protein 36K 36K 4M No
Webbase 1M 1M 3M Yes
Flickr 1.7M 1.7M 22.6M Yes
LiveJournal 5.2M 5.2M 77M Yes
Wikipedia 1.9M 1.9M 40M Yes
Youtube 1.1M 1.1M 4.9M Yes

Table 2: Matrix and Graph Datasets

B. NVIDIA’S SPMV LIBRARY
The Sparse Matrix-Vector Multiplication (SpMV) kernel

computes a vector y as the product of a n by m sparse
matrix A and a dense vector x. The compressed sparse row

(CSR) format stores non-zeros in the same row contiguously
in memory, and all rows are stored in one data array, with
another array holding the column indices of the non-zeros.
A third array of row pointers marks the boundary of each
row. The corresponding CSR kernel [3] assigns the compu-
tation of each row to a thread. With power-law graphs, it
is hard to balance the workload among threads within one
thread block. So all the threads in one block will wait for the
thread which is assigned to the longest row. To improve this
method, CSR-vector format [3] uses a warp of 32 threads to
work on each row. This strategy only helps the rows with
more than 32 non-zeros, but most of the nodes in power-law
graphs have degree lower than 32. The computation re-
sources of the warps assigned to such rows will therefore be
wasted. Baskaran and Bordawekar [2] further optimized the
CSR-vector format by using a half warp for each row to im-
prove global memory accesses, and also a padding technique
is used to ensure the memory requests are fully coalesced.
But there are still considerable amount of threads wasted on
the rows with less than half a warp of non-zero elements.

Besides the CSR format, the coordinate (COO) and ell-

pack (ELL) formats are also used in Bell and Garland’s
SpMV kernel. In COO format, all the non-zeros in matrix
A are combined into a long vector grouped by row index,
and the kernel first computes the multiplication of each non-
zeros with the corresponding elements of vector x in the first
pass; then the segmented reduction of the rows is done on
this long vector by thread warps. In the reduction phase, be-
cause the length of each row is not necessarily a multiple of
warp size, synchronization points are heavily used and warp
thread divergence is frequent. However, the COO kernel is
the most insensitive to variable row length in the matrix ac-
cording to the previous study [3]. The ELL format requires
the number of non-zeros on each row is bounded by some
small number k, so that the matrix A can be represented
by a dense n by k matrix M , in which only non-zeros in A
are stored, and the corresponding column indices of these
non-zeros are also stored in a separate matrix. In the ELL
kernel, M is stored in column major, and the thread assigned
to each row can access global memory very efficiently. Zeros
are added to rows with fewer than k non-zeros, so k cannot
be large, otherwise it will introduce large overhead to access
these zeros. The ELL format cannot be directly applied
to graph mining algorithms, where the node degree in the
graph cannot be bounded by a small number k. However,
ELL and COO formats can be mixed together to represent a
matrix, where the first k non-zeros of each row are stored in

239

ELL format and the others are stored in COO format. This
is the hybrid (HYB) kernel of NVIDIA’s SpMV Library [3].
There are two other formats in NVIDIA’s SpMV Library [3].
The diagonal (DIA) format is only applicable to matrices in
which all non-zeros fall into a band around the diagonal.
The packet (PKT) format first uses Metis [9] to cluster non-
zeros into dense sub-blocks, then a sub-block is loaded into
shared memory and processed by a thread block as a dense
sub-matrix. But the code of these two kernels cannot run
on matrices of power-law graphs in our experiments.

Figure 6: Hardware Organization and Memory Hi-
erarchy of a CUDA Device [14]

C. DATASET AND HARDWARE DETAIL
Datasets: In our single GPU experiments, we use four

web-based graph datasets, including user link relationship
graphs from Flickr, LiveJournal and Youtube and a web-
page link relationship graph from Wikipedia [11]. All graphs
exhibit power-law characteristics. In addition to the graph
datasets we also include results on six popular unstructured
matrix datasets used in previous studies [3]. Among these,
one is a 2000 by 2000 dense matrix, which while not sparse,
is a useful benchmark to show the maximum bandwidth that
each kernel can achieve. Details of these graphs (represented
in an adjacency matrix) and matrices are shown in Table 2.
In the four graph datasets, the number of non-zeros (NNZ)
is the number of directed links and the number of rows (or
columns) is the number of nodes in the graphs. In our
multi-GPU experiments, the web graph datasets used are
provided in Table 3. These web graphs were crawled using
UbiCrawler [4] developed by the Laboratory for Web Algo-

rithmics at the Univerita Degli Studi Di Milano. None of
these datasets can fit in the memory of one GPU.
Hardware configuration: Our experiments are run in

an MPI-based cluster environment. On the CPU side, each
node has an Opteron X2 2218 CPU with 8 GB of main
memory. On the GPU side, each node is equipped with two

Graph Nodes Edges Power-law?

it-2004 41,291,594 1,150,725,436 Yes
sk-2005 50,636,154 1,949,412,601 Yes
uk-union 133,633,040 5,507,679,822 Yes
web-2001 118,142,155 1,019,903,190 Yes

Table 3: Web Graph Datasets

NVIDIA Tesla C1060 GPUs. Each GPU has 30 multiproces-
sors with 240 processing cores and 4 GB of global memory.
The single GPU experiments are run on a single node and a
single GPU. The multi-GPU experiments are run on multi-
ple nodes, and each node uses a single GPU. The CPU code
is complied with the gcc compiler version 4.1.2. The GPU
code is compiled with CUDA version 3.0.

D. PERFORMANCE ON UNSTRUCTURED

MATRIX AND COMPARISON WITH CPU
Performance on Unstructured Matrix Data: The

speed and bandwidth performance of different kernels on
non-power-law matrices are shown in Figure 7. We immedi-
ately observe that our methods while comparing favorably
on some of the kernels do not always perform as strongly as
the best. In fact on these datasets, interestingly, there is no
single kernel that outperforms all others.

Our tiling with composite storage kernel performs the best
on the 2000 by 2000 dense matrix with 17.57 GFLOPS speed
and 105.5 GB/s bandwidth. This bandwidth utilization is
higher than the peak bandwidth of 102 GB/s in the official
hardware specification from NVIDIA website. This some-
what surprising result is due to the effect of texture binding
of vector x allowing for elements in x to be directly fetched
from the cache. Our tiling with composite storage kernel
runs 30% faster than CSR-vector kernel on the dense ma-
trix. This is because we pad the storage of the matrix in
global memory to ensure that all global memory accesses
are fully coalesced. The CSR-vector format concatenates all
rows together. If one row is not padded to an integer multi-
ple of the warp size, all global memory accesses after this row
will not be fully coalesced resulting in a loss in performance.

Baskaran and Bordawekar’s CSR kernel performs best on
FEM/Harbor and Protein dataset. Their kernel achieves
12.76 GFLOPS speed and 78.6 GB/s bandwidth on FEM/H-
arbor, and 15.74 GFLOPS speed and 95.5 GB/s bandwidth
on Protein. The bandwidth utilizations are close to the max-
imum on these two datasets. HYB kernel performs best
on the other two non-power-law matrices. It achieves 5.98
GFLOPS speed and 45.4 GB/s bandwidth on Circuit, and
8.45 GFLOPS speed and 61.6 GB/s bandwidth on LP. On all
four non-power-law matrices, our tiling with composite stor-
age kernel is amongst the top four in speed and bandwidth.
Our tiling with composite storage kernel is only 10.5% slower
than HYB kernel on Circuit matrix.

The non-zero elements present a relatively balanced dis-
tribution in these non-power-law matrices, not as biased as
power-law matrices. Our methods first reorder the columns
and partition the matrices into a denser and a sparser sub-
matrix. This partition will not produce a dense enough ma-
trix in which most of the non-zeros in the original matrix
are concentrated. This phenomenon leads to the low perfor-
mance of our methods on non-power-law matrices, because
the tiling of the denser matrix still requires overhead, but
does not gain benefit in performance.

240

(a) Performance (b) Bandwidth

Figure 7: SpMV kernels comparison on unstructured matrices from NVIDIA’s SpMV Library [3].

Comparison with CPU SpMV: Previous works [3, 6]
have already illustrated the benefits of GPU vs CPU. Our
main point is to demonstrate the benefits of our approach
over other GPU work on power-law graphs. The CPU re-
sults are included for the completeness of our evaluation.
We implemented CSR SpMV kernel on the CPU. CSR for-
mat is the most efficient on CPU among different sparse
matrix formats. We ran experiments with the CPU kernel
on all datasets in Table 2. The GPU kernels significantly
outperform the CPU kernel in almost all settings. GPU
CSR kernel is the slowest kernel on GPU. It is slower than
CPU kernel on the Dense matrix data because the clock rate
of one GPU processor is lower than CPU. The GPU kernels
perform dominantly faster than CPU kernel in all the other
formats with speedups ranging from 2.05x to 37.31x.

E. AUTOTUNING PSEUDOCODE

Algorithm 1 Tile-Composite Kernel Auto-tuning

1: Input: n by n matrix M sorted by column lengths
2: Output: number of tiles and partition size of each tile
3: TILE WIDTH ← 64K;NTile← 0
4: while NTile < n/TILE WIDTH do

5: StartCol← NTILE × TILE WIDTH
6: if M.ColLength[StartCol] ≤ 1 then

7: break;
8: else

9: for i = StartCol to StartCol + TILE WIDTH do

10: InsertCol(M.Tile[NTile],M.Col[i])
11: end for

12: WL = Partition(M.Tile[NTile])
13: NTile← NTile + 1
14: end if

15: end while

16: Return: NTile,WL

Algorithm 2 Partition(T): Partition of one tile of matrix

1: Input: one tile T from the matrix sorted by row lengths
2: Output: optimal workload size to partition T
3: WLlow ← T.RowLength[0] {Workload lower bound}
4: WLup ←

T.NNZ
MAX ACT WARP

{Workload upper bound}

5: OptWL← 0;OptT ime← +∞;WL← WLlow

6: while WL ≤ WLup do

7: Time = PM(T,WL){Performance Modeling of T with WL}
8: if Time < OptT ime then

9: OptT ime← Time;OptWL← WL
10: end if

11: WL← WL + T.RowLength[0]
12: end while

13: Return: OptWL,OptT ime

F. GRAPH MINING ALGORITHMS
A large class of graph mining algorithms leverage the

SpMV kernel iteratively to perform computation until the
algorithms converge, e.g. PageRank [15], HITS [10] and

Algorithm 3 PM(T,WL): Performance Modeling of tile
T given workload size

1: Input: tile T and workload size WL
2: Output: Total run time
3: NWarp =

⌈

T.NNZ
WL

⌉

4: MAX ACT WARP ←MAX ACT WARP/SM ∗NUM SM

5: I =
⌈

NWarp
MAX ACT WARP

⌉

{Number of iterations}

6: i← 0; j ← 0 {Row Index; Warp Index}
7: while i < T.NumRow do

8: {Partition T with workload = WL}
9: wj ← T.RowLength[i];hj ←

WL
wj

10: Padding(wj , hj ,WarpSize){Padding w or h}

11: IterId = j
MAX ACT WARP

12: P [IterId]← P [IterId] + Performance(wj , hj)
13: Size[IterId]← Size[IterId] + wj × hj

14: Cnt[IterId]← Cnt[IterId] + 1
15: j ← j + 1, i← i + hj

16: end while

17: for i = 0 to I − 1 do

18: P [i]←
P [i]

Cnt[i]
; t[i]←

Size[i]
P [i]

19: TotalT ime← TotalT ime + t[i]
20: end for

21: Return: TotalT ime

Random Walk with Restart [18]. These algorithms first
transform the adjacency matrix of a graph and then oper-
ate on the transformed matrix. The graph dataset used by
these algorithms usually have strong power-law properties,
hence the number of non-zeros on each row or column of the
corresponding matrix will follow a power-law distribution.
The skew of the distribution leads to poor load balancing
and low memory access efficiency on GPU.

In this section, we describe three data mining algorithms
which can be written in the form of matrix-vector multi-
plication. These algorithms essentially compute the power
method for different matrices related to the link structure
of the graphs. Within one iteration of the power method,
the running time is dominated by the time required to com-
pute the matrix-vector product. These algorithms usually
operate on large power-law graphs. Hence they can be sped
up using our sparse matrix representation and computed by
our SpMV kernels.

PageRank: The PageRank algorithm models the link
structure of web graphs by the random walk behavior of a
random surfer [15]. The web graph can be represented by
a directed graph G = (V,E), where V is a set of n vertices
and E is the set of directed edges. The adjacency matrix
A is defined as A(u, v) = 1 if edge (u, v) ∈ E; otherwise,
A(u, v) = 0. Matrix W denotes the row normalized matrix
of A. The PageRank vector p is computed iteratively using
the following equation until it converges:

p(k+1) = cWT p(k) + (1− c)p(0) (6)

241

(a) HITS Performance (b) HITS Bandwidth (c) RWR Performance (d) RWR Bandwidth

Figure 8: Performance and bandwidth of HITS and RWR on graph datasets.

Graph CPU COO HYB TILE-COO TILE-Comp
Flickr 4.97 0.40 0.38 0.23 0.21
LiveJournal 44.88 3.82 3.33 2.41 2.24
Wikipedia 39.36 2.73 2.45 1.52 1.37
Youtube 4.35 0.33 0.30 0.26 0.25

Table 4: Running time of HITS (in seconds)

where c is a damping factor (set to 0.85), p(0) is initialized
as a n by 1 vector with all elements set to 1/n.
HITS: HITS is a link analysis algorithm of web pages [10].

It gives each web page two attributes: authority and hub. It
rates web pages by assigning authority score and hub score
to each web page. Let matrix A be the adjacency matrix of
a directed graph G = (V,E) or G may be a query specific
subgraph of the whole web graph. Then the authority score

vector −→a and hub score vector
−→
h are recursively defined as

−→a (k+1) = AT−→h (k) −→
h (k+1) = A−→a (k) (7)

This recursive definition with two matrix-vector products
can be rewritten as one matrix and vector multiplication by

[−→a
−→
h

](k+1)

=

[

0 AT

A 0

] [−→a
−→
h

](k)

(8)

The power method can be used to solve this eigen vec-

tor problem. Elements in −→a (0) and
−→
h (0) vectors are all

initialized to 1/|V |. In each iteration, a 2|V | by 2|V | ma-
trix in Equation 8 is multiplied by a vector combined with
−→a and

−→
h . Then the first and second half of the resulting

vector are normalized to sum to 1 separately. Each normal-
ization requires a reduction operation on the vector and a
division of the vector by a constant. A convergence check is
also needed at the end of each iteration. Each iteration of
our HITS implementation involves one SpMV kernel, three
parallel reduction kernels (two for normalization and one
for convergence check) and two vector division by constant
kernels. The vector division by constant kernel can be im-
plemented very efficiently in the same way as vector addi-
tion. On our implementation of the HITS algorithm we com-
pare the performance of our four GPU SpMV kernels on the
four graph datasets. The speed and bandwidth performance
are shown in Figure 8(a) and Figure 8(b). Our TILE-COO
and TILE-Composite kernels perform better than COO and
HYB kernels in all four datasets. On Flickr, LiveJournal
and Wikipedia, the speedups are similar to those observed
in PageRank algorithm. On Youtube, our optimizations are
actually a bit faster when compared to the NVIDIA kernels
in spite of the relatively small size of the dataset. Combin-
ing the two matrices into one in the HITS algorithm results
in a larger and sparser matrix making it more amenable to

Graph CPU COO HYB TILE-COO TILE-Comp
Flickr 8.25 0.59 0.56 0.33 0.29
LiveJournal 36.99 2.85 2.60 1.73 1.52
Wikipedia 23.23 1.46 1.35 0.71 0.62
Youtube 2.32 0.14 0.13 0.14 0.13

Table 5: Average running time of Random Walk
with Restart (in seconds) on 25 random query nodes

our optimizations. The total running time compared with
CPU implementation is listed in Table 4. We observe a 17x
to 29x speedup of the GPU implementations over the corre-
sponding CPU implementation.

Random Walk with Restart: RandomWalk with Rest-
art (RWR) is an algorithm that tries to measure the rele-
vance between two nodes in an undirected graph [18]. Given
a query node i in the graph, the relevance score from all
other nodes to node i forms a vector −→ri . In RWR, vector −→ri
is computed by the following equation:

−→ri
(k+1) = cW−→ri

(k) + (1− c)−→ei (9)

where c is a restart probability parameter (set to 0.9 in our
experiment), W is the column normalized adjacency matrix
and −→ei is a vector whose ith element is 1 and all the other
elements are 0. Vector −→ri can be computed using the power
method. In each iteration, there is a matrix-vector mul-
tiplication followed by a vector addition and a convergence
checking operation. In our implementation, we use the GPU
SpMV kernels for matrix-vector multiplication, and GPU
parallel reduction for checking convergence in the same way
as PageRank. An efficient vector addition kernel is also im-
plemented by assigning one GPU thread to compute one
element in the resulting vector. Note that RWR is an inter-
active application, we randomly select 25 query nodes and
the performance is reported by averaging (arithmetic mean)
the result of each query. The number of computations per
iteration is the same whichever node is selected as query,
so the experiment results of the randomly selected 25 query
nodes can reflect the speed of different kernels. Since RWR
operates on undirected graphs, we treat each link in our di-
rected graph datasets as an undirected link. The speed and
bandwidth performance of RWR implementations on four
graph datasets based on four GPU SpMV kernels are shown
in Figure 8(c) and Figure 8(d). The total running time is
listed in Table 5. We observe similar performance results
as in the case of PageRank. Our optimized TILE-COO and
Tile-Composite kernels are 1.5x to 2.0x as fast as COO and
HYB kernels on Flickr, LiveJournal and Wikipedia graphs.
The four kernels perform about the same on Youtube graph.
All GPU implementations are 13x to 37x faster than CPU
implementation. The best speedup is achieved by our TILE-
Composite kernel on Wikipedia graph.

242

