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Abstract

Sparse representation has found applications in numer-

ous domains and recent developments have been focused

on the convex relaxation of the ℓ0-norm minimization for

sparse coding (i.e., the ℓ1-norm minimization). Neverthe-

less, the time and space complexities of these algorithms

remain significantly high for large-scale problems. As sig-

nals in most problems can be modeled by a small set of pro-

totypes, we propose an algorithm that exploits this property

and show that the ℓ1-norm minimization problem can be

reduced to a much smaller problem, thereby gaining signif-

icant speed-ups with much less memory requirements. Ex-

perimental results demonstrate that our algorithm is able to

achieve double-digit gain in speed with much less memory

requirement than the state-of-the-art algorithms.

1. Introduction

Recent years have witnessed a considerable resurgence

of interest in sparse representation [27, 21, 5]. Much of

its popularity as well as effectiveness come from the fact

that signals in most problems are structured and can be well

represented by a small set of basis vectors. It plays an im-

portant role in the success of recent developments in dic-

tionary learning [2, 5] and compressive sensing [8, 9, 13],

among others. Given a set of basis vectors (i.e., a dictio-

nary), finding a sparse representation of a signal is often

posed as an optimization problem with either ℓ0-norm or ℓ1-

norm, which usually results in solving an underdetermined

linear system. Each sample is then represented as a sparse

linear combination of the basis vectors. The complexity

of solving ℓ0-norm minimization problems is known to be

NP-hard and numerically unstable. Greedy algorithms such

as matching pursuit [25], and orthogonal matching pursuit

(OMP) [10, 29] have been proposed to approximate the ℓ0-

norm solution. Although these methods are rather simple

and efficient, the solutions are sub-optimal. Recent devel-

opments in sparse coding have shown that, under certain as-

sumptions, the solution of ℓ0-norm minimization problem is

equivalent to ℓ1-norm minimization problem which can be

solved by convex optimization [11, 13]. Numerous algo-

rithms have been proposed for ℓ1-regularized sparse coding

[7, 8, 9, 13, 12, 32]. As these algorithms often recast the

original problem as a convex program with quadratic con-

straints, the computational cost for practical applications

can be prohibitively high.

For numerous problems in computer vision, machine

learning, signal processing, and computer graphics, one

simple yet effective approach is to assume that the samples

of the same class can be modeled with prototypes or ex-

emplars. Such prototypes can be either the samples them-

selves, or learned from a set of samples (e.g., eigenvectors

and means from vector quantization). Examples abound. In

visual processing, it has been shown that prototypical mod-

els are capable of capturing intra-class variations such as ap-

pearance [26] and lighting [3]. In graphics, prototypes are

learned from images and utilized for synthesizing videos

for animation [16]. Prototypical representations have also

been exploited in signal processing, clustering, dimension-

ality reduction, dictionary learning compressive sensing, vi-

sual tracking and motion analysis , to name a few [5]. In this

paper, we assume that samples from one class can be mod-

eled with a small set of prototypes from the same class.

Among the above-mentioned prototype learning algo-

rithms, the method of optimal directions (MOD) [15] and

K-SVD algorithms [14] are of great interest as they are able

to represent each sample with a sparse combination of dic-

tionary atoms or prototypes. Assuming that we are given a

learned dictionary, we can first approximate the basis vec-

tors with sparse representation using the prototypes in this

dictionary. As will be explained later in this paper, the orig-

inal sparse representation problem can then be reduced to

a much smaller problem with ℓ1-norm constraints. By ex-

ploiting the linear constraints of these prototypes and basic

concepts in linear algebra, we show that the original ℓ1-

norm minimization problem can be reduced from a large

and dense linear system to a small and sparse one, thereby

obtaining significant speed-up. We apply the proposed al-

gorithm to several large data sets and demonstrate that it is

able to achieve double-digit gain in speed with much less

memory requirement than the state-of-the-art sparse coding

methods.



2. Sparse Representation with Prototypes

In numerous problems we are often given a set of la-

beled samples for each class and the goal is to correctly

infer the class of unseen samples by using the knowledge

learned from the given samples. Suppose that we collect ni

samples from the i-th of K distinct signal classes, we define

a matrix Φi ∈ IRm×ni for class i as columns of samples:

Φi = [φi,1,φi,2, · · · ,φi,ni
], (1)

where φi,j ∈ IRm stands for the j-th sample of the class

i. We then concatenate all samples for all K classes into a

matrix Φ ∈ IRm×N :

Φ = [Φ1,Φ2, · · · ,ΦK ], (2)

where N is the total number of samples from all classes.

Given a sufficient number of samples for class i, an ob-

served sample y can be well approximated by a linear com-

bination of the samples if y belongs to class i:

y = ci,1φi,1 + ci,2φi,2 + · · ·+ ci,ni
φi,ni

, (3)

where the scalar ci,j represents the weighted contribution

of the j-th sample in reconstructing the observed sample y.

However, we do not know which class the sample y belongs

to in most circumstances. Thus, we can rewrite the linear

representation of y using all samples compactly as:

y = Φx, (4)

where x = [0, · · · , 0, ci,1, · · · , ci,ni
, 0, · · · , 0]⊤ is a sparse

coefficient vector. Usually, Φ is a fat and dense matrix as

illustrated in Figure 1(a).

2.1. Solving Inverse Linear System

With the formulation in (4), each observed sample y can

be represented with the corresponding coefficient vector x

by solving the linear system y = Φx. If the dimension of

the observation data y is larger than the number of all sam-

ples (i.e., m > N ), then the unique solution can usually be

obtained by solving the overdetermined system. However,

in most applications, the linear systems are ill-conditioned

or underdetermined, resulting in infinitely many solutions to

this inverse problem (as shown in Figure 1(a)). Therefore,

regularization constraints are of critical importance for ob-

taining useful solutions. For example, solutions can be ob-

tained by solving the following minimum ℓ2-norm problem:

min
x

‖x‖2 subject to y = Φx, (5)

and the minimum ℓ2-norm solution can be obtained by

x̂2 = (ΦT
Φ)−1

Φ
Ty. However, the minimum ℓ2-norm so-

lution x̂2 is usually dense (i.e., with many nonzero entries),

thereby losing the discriminative ability to select the most

relevant samples for representing the observed sample y.

Since an observed sample is assumed to belong to one

certain class, it can usually be well represented using other

(a) (b)

(c) (d)

Figure 1. Sparse representation algorithms. (a) The original prob-

lem that solves y = Φx where Φ is a dense fat matrix. (b) The

proposed method solves wỹ = Wx where W is a tall sparse matrix.

(c) The proposed method further reduces W to a tall skinny matrix

WR and solves wỹ = WRxR. (d) The proposed method reduces

the matrix W to a tall skinny matrix WR with relaxed constraints

and solves wỹ = WRxR.

samples from that class. Such property has been exploited

extensively in the literature, e.g., local linear embedding,

image clustering, spectral methods, and face recognition

[5]. With a sufficiently large number of samples for each

class, the coefficient vector x is expected to be very sparse,

i.e., only a small portion of entries are nonzero. Regular-

ized via sparsity constraints, we seek a representation for

an observed sample y:

min
x

‖x‖0 subject to y = Φx, (6)

where ‖ · ‖0 : IRN → IR counts the number of nonzero

entries. However, solving the ℓ0-norm minimization of an

underdetermined system is both numerically unstable and

NP-hard [5].

Recently, theories developed from sparse representation

and compressive sensing [8, 9, 13] suggest that if the solu-

tion of x is sparse enough, then the sparsest solution can be

recovered via the ℓ1-norm minimization:

min
x

‖x‖1 subject to y = Φx, (7)

where the ℓ1-norm sums up the absolute weights of all en-

tries in x. Note that the equality constraint in (7) can be re-

laxed to allow small noise, and the sparest solution x0 can be

approximately recovered by finding the minimum ℓ1-norm

vector, x, that best explains the observed sample y:

min
x

‖x‖1 subject to ‖y −Φx‖2 ≤ ǫ, (8)

where ǫ is the allowed error tolerance. The problems

of solving (7) and (8) are convex programs which can

be solved by recasting them as linear programs (LP) and

second-order cone programs (SOCP) [7, 5], respectively.



2.2. Feature Extraction by Linear Transformation

Since directly operating on the original space of image

observations is computationally expensive due to extremely

high data dimensions, numerous feature extraction methods

have been proposed to project the original data onto a low

dimensional feature space. Thanks to the fact that most fea-

ture extraction methods require or can be approximated by

linear transformations, the mapping from the image obser-

vation space to the feature space can be characterized by a

matrix T ∈ IRd×m, where d << m. For example, T can

be the projection matrix obtained from principal component

analysis or simply a downsampling matrix.

Applying T on both sides of (4), we have

ỹ = Ty = TΦx = Fx, (9)

where ỹ = Ty is the feature vector of the observed sample

y and F = TΦ = [f1,1, f1,2, · · · , fi,ni
, · · · , fK,nK

] contains

the feature vectors of all samples. As the system of linear

equations ỹ = Fx is underdetermined and the solution x

is expected to be sparse, we can recover the solution x by

solving an ℓ1-norm minimization problem similar to (8):

min
x

‖x‖1 subject to ‖ỹ − Fx‖2 ≤ ǫ. (10)

3. Fast Sparse Approximation with Prototypes

While sparse representations have demonstrated much

success in numerous applications [17, 14, 22, 30, 34, 33, 5],

solving the convex programs in (7) or (8) remains a chal-

lenging problem [11, 13, 5, 32]. Furthermore, a sufficiently

large number of samples are often necessary in order to ob-

tain good approximation. The high computational overhead

obstructs sparse representations for large-scale real-world

problems.

In this section, we present a fast algorithm by exploiting

the structure of the basis matrix F using sparse approxima-

tion. The proposed algorithm is motivated by the recent

advances in designing overcomplete dictionary for sparse

signal representation [2, 5]. Using either pre-defined dictio-

naries (e.g., overcomplete DCT and wavelets) or adaptive

dictionaries learned from data (e.g., K-SVD [2] and MOD

[15]), the basis matrix F consisting of feature vectors of

all samples can be well approximated by a linear combi-

nation of a small number of dictionary atoms with their cor-

responding sparse coefficients. With sparse approximation

on the basis matrix F, the problem becomes searching for

the sparsest solution on a sparse dictionary. Consequently,

the original ℓ1-norm minimization problem with a large and

dense matrix in (10) can be reduced to one with a small and

sparse matrix, which can be solved very efficiently com-

pared to the original one. We first briefly describe the most

relevant works on dictionary learning for sparse representa-

tion, and then present how this can be utilized for fast ℓ1-

norm minimization.

3.1. Learning Overcomplete Dictionary for Sparse
Representation

Sparse and redundant modeling of signals has been

proven to be very effective for signal reconstruction and

classification. Using an overcomplete dictionary D ∈
IRd×L that contains L prototypes or atoms as column vec-

tors, the signal f ∈ IRd can be represented (or well ap-

proximated) by a sparse linear combination of these atoms.

Specifically, there exists a sparse coefficient vector w such

that the reconstruction of f can be either exact f = Dw,

or approximated f ≈ Dw. Numerous algorithms have

been proposed for the design of dictionaries, including

predefined and adaptive ones. Predefined dictionaries in-

clude overcomplete DCT, wavelets, curvelts, contourlets,

steerable wavelets filters, short-time Fourier transforms, etc

[5]. Recently, adaptive dictionary learning algorithms have

been shown to achieve superior performance over the pre-

defined dictionaries in several image processing applica-

tions, including denoising [14], compression [6], inpainting

[23, 24], and super resolution [34]. Among all the existing

dictionary learning algorithms [27, 28, 21, 18, 15, 2], the

recently proposed K-SVD [2] is one of the most efficient

algorithms due to its simplicity and effectiveness.

Given a set of samples {fi}Ni=1, the K-SVD algorithm

finds the best dictionary D to represent the samples as sparse

decompositions by minimizing the reconstruction error in

ℓ2-norm:

min
D,W

‖F − DW‖2F =
K∑

i=1

ni∑

j=1

‖fi,j − Dwi,j‖22

subject to ‖wi,j‖0 ≤ S0, (11)

where wi,j is the sparse representation for j-th samples of

class i, and S0 indicates the maximum allowed nonzero en-

tries in wi,j (i.e., the coding length). The sparsification pro-

cess alternates between the sparse coding and the dictionary

update stages iteratively to minimize the objective function

in (11). The detailed derivations of the K-SVD algorithm

can be found in [2].

3.2. Solving Equivalent ℓ1-norm Minimization
Problems with Prototype Constraints

Assume that we have learned the dictionary D from a

set of samples, we can then approximate the matrix F of

(9) with D and its sparse representation W from (11). For

a new observation ỹ, we can find its atom decomposition

(i.e., the sparsest representation) over the learned dictionary

D. Then, the system of linear equations in the feature space

(9) can be rewritten as

ỹ ≈ Dwỹ ≈ DWx. (12)

If the learned dictionary D is capable of approximating the

signals ỹ well, i.e., ‖ỹ − Dwỹ‖2 ≤ ǫ for a small constant ǫ,



we can represent the signal ỹ as ỹ = Dwỹ + eỹ, where eỹ

is the residual with ‖eỹ‖2 ≤ ǫ. Similarly, the matrix F can

be expressed as F = DW + eF, where eF ∈ IRd×N is the

residual and ‖eF‖F ≤
√
Nǫ. By introducing the residual

signals, we can rewrite (12) as

Dwỹ+eỹ = DWx+eFx =⇒ D(wỹ−Wx) = eFx−eỹ. (13)

Recall that the solution x is assumed to be sparse, say s-

sparse (i.e., only s entries are non-zeros), we have

‖D(wỹ − Wx)‖2 ≤ (s+ 1)ǫ. (14)

Let z = wỹ − Wx, which is also a sparse vector1, we have

‖Dz‖2 ≤ (s + 1)ǫ. Using the restricted isometry property

(RIP) [9], we can determine whether the sparse coding with

a dictionary can be stably obtained. Recall a matrix D sat-

isfies the RIP of order sz with constant ρ = ρsz
< 1 if

‖z‖0 ≤ sz =⇒ (1−ρ)‖z‖22 ≤ ‖Dz‖22 ≤ (1+ρ)‖z‖22. (15)

Suppose that z is sz-sparse and the dictionary satisfies the

RIP of order sz, we can derive an upper-bound for z using

(14) and (15):

(1− ρ)‖z‖22 ≤ ‖Dz‖22 ≤ (s+ 1)2ǫ2, (16)

and thus

‖z‖2 = ‖wỹ − Wx‖2 ≤ (s+ 1)ǫ√
(1− ρ)

= ǫ̃. (17)

The exact value of RIP constant is unknown (as comput-

ing the value is an NP-hard problem). However, suppose

that the RIP holds, D approximately preserves the Euclidean

length of sz-sparse signal. Thus we know that ‖z‖2 is upper-

bounded by a certain constant value, thereby ensuring that

the sparse solution x can be approximately recovered by

solving a much smaller problem. That is, the solution x

can now be obtained by solving the following equivalent

ℓ1-minimization problem:

min
x

‖x‖1 subject to ‖wỹ − Wx‖2 ≤ ǫ̃. (18)

If the dictionary D is assumed to provide exact reconstruc-

tion for signals (i.e., allowing enough non-zero entries in

the coefficient vectors), then ǫ̃ = 0 and the problem in (18)

is reduced to

min
x

‖x‖1 subject to wỹ = Wx, (19)

as illustrated in Figure 1(b).

1 The vector z is based on two closely related sparse coefficients. In the

case of relaxed constraint, generally the vector z would be sparse as long

as the solution x is sufficiently sparse, say with s non-zero entries. Denote

the sparsity of the coefficient vector wỹ and the columns of matrix W as

sw. Then, we can derive an upper-bound for the sparsity of the vector z:

sz <= sw + s(sw − 1), which is the case that for each column in W

chosen, there is only one support match to wỹ (worst case).

We now present how the reduced ℓ1-minimization prob-

lem can recover the same sparse solution with significant

gain in speed than existing algorithms. First consider the

exact reconstruction case in (19), where W is now of dimen-

sion L×N instead of d×N . At first glance, we have a larger

linear programming problem to solve. However, since W

contains only sparse column vectors, the equation in (19)

can be significantly reduced by identifying only the relevant

columns that have the same supports as wỹ, i.e., the sparse

representation of observed sample ỹ. The identification of

such columns (i.e., prototypes of each sample class) and

matrix reduction process are as follows. Given wỹ, we first

locate nonzero entries in wỹ, denoted as α = {i|wỹ(i) 6= 0}
and |α| = NR (as shown in Figure 1(b)). We then sweep

all the columns in W to check whether the nonzero entries

in each column vector matches the support of wỹ. For those

columns with non-identical supports, there is by no chance

that these columns will be used in representing the wỹ (a

straightforward result of the column space from linear al-

gebra). We can simply discard these columns and set the

corresponding coefficient values in x to zero, and have a re-

duced matrix WR which is usually much smaller than W.

For example, suppose wỹ has only three nonzero entries at

its 1st, 4th, and 9th elements. We will sweep over all the

columns of W and retain only those vectors with same sup-

ports (i.e., whose 1st, 4th, and 9th elements are nonzero) as

shown in Figure 1(b). After identifying columns that may

be used for representing wỹ, we can have the same exact

solution by solving the reduced ℓ1-norm minimization:

min
xR

‖xR‖1 subject to wỹ = WRxR, (20)

where WR ∈ IRL×NR contains only relevant columns (with

the same support of wỹ) and xR ∈ IRNR , as shown in Figure

1(c). As NR is usually much smaller than N , the resulting

matrix WR is a skinny matrix.

3.3. Relaxed Prototype Constraints

As for the second case in (18), we use the same identi-

fication and reduction process to discard irrelevant column

vectors. However, since we allow small error ǫ̃ in recon-

structing wỹ, columns with partial overlapping supports as

wỹ can also be used in representing wỹ. In other words,

we relax the prototype constraints without using exactly the

same supports. Our motivation is that if the number of over-

lapped entries of a certain column vector with wỹ is small,

the likelihood of this column vector being used for repre-

senting wỹ is low as the reconstruction cost when selecting

this column is higher. Therefore, we propose a set of ap-

proximation criteria for reducing the problem in (18). We

denote these approximation criteria as {Rj}Jj=1, where j in-

dicates the number of minimal allowed overlapped entries

with the supports of wỹ and columns in W. For example, if

j = 2, then WRj
contains columns with supports that have



at least 2 overlapped entries with wỹ. , as illustrated in Fig-

ure 1(d). As j increases, the number of columns in WRj

decreases, resulting in a faster minimization process. How-

ever, it may introduce errors when j is large. It is actually

a trade-off between speed performance and accuracy. Nev-

ertheless, one can still have the solution as (19) by simply

discarding those columns with no overlapped entries with

wỹ.

3.4. Time and Space Complexity

There are three main steps in solving the reduced prob-

lem in (20). First, the matrix wỹ can be computed efficiently

using OMP with O(dLNR) flops [5, 31]. Second, W can

be computed from (11) using the K-SVD algorithm which

takes O(LN2
R + dL) flops [5, 31]. It then takes one sweep

over the columns of wỹ in order to obtain WR, and the time

complexity is O(LN). The state-of-the-art algorithm for

ℓ1-norm minimization, Ax = b, recasts the original prob-

lem as a SOCP which is then solved by the log-barrier algo-

rithm [7, 12, 32]. At the core of the log-barrier algorithm,

it solves a linear system with quadratic constraints formed

by A⊤A using the conjugate gradient method [7, 12, 32].

That is, the computational costs for solving (4) and (20)

hinge on Φ
⊤
Φ and WR

⊤WR [4]. Thus, the time complex-

ity of the matrix multiplication for a dense matrix Φ and

WR is O(m2N2) flops and O(L2N2
R) flops, respectively.

The time complexity ratio between the original and pro-

posed method is mainly determined by the quadratic terms,

i.e., O( m2N2

L2N2

R
+dLNR+LN2

R
+dL+LN

) ≈ O(N
2

N2

R

), as NR is

much smaller than N , and L and m are usually of the same

scale. As a result, the proposed algorithm achieves signifi-

cant quadratic speed-up.

In the intermediate step, the space complexity of the pro-

posed algorithm for storing the learned dictionary and basis

matrix W of (12) is O(LK + KN). However, the space

complexity for the reduced matrix wỹ is O(NR). As the

quadratic constraints of Φ⊤
Φ and WR

⊤WR are computed

in solving ℓ1-minimization, the original formulation again

has much higher space complexity than the proposed one,

with the ratio of O( N2

LK+KN+N2

R

) ≈ O(N
2

N2

R

).

4. Experimental Results

In this section, we present experimental results on both

synthetic and real data sets to demonstrate the efficiency

and effectiveness of the proposed algorithm. All the ex-

periments were carried out using MATLAB implementa-

tions to solve the original and proposed relaxed ℓ1-norm

minimization problems described in Section 2.2 as well

as Section 3.3 on a 1.8 GHz machine with 2 GB RAM.

The MATLAB code and processed data is available at

faculty.ucmerced.edu/mhyang/fsr.html.

4.1. Synthetic Data

We validate the effectiveness of sparse representations

and the efficiency of the proposed approximation for signal

classification in the presence of Gaussian white noise. We

first build a dictionary with all elements drawn from a Gaus-

sian random variable with zero mean and unit variance. The

columns of the dictionary are then normalized to unit norm.

Since samples from one specific class are assumed to lie

in certain subspace that can be modeled by prototypes, we

generate samples by first selecting five columns in the dic-

tionary and then obtain each sample by a linear combination

of the selected columns. In the first experiment, we generate

50 samples for each of the 10 classes, where the dimension

of each sample is 25. The test samples, assumed to lie in

one unknown subspace, are generated by randomly select-

ing one signal class and combining three training samples

from the selected class with random coefficients. Gaussian

noise of different levels are added to the test samples for

experiments. We generate 100 test samples to evaluate the

recognition capability of the classification based on sparse

representation. That is, for each test sample, we need to

solve (10) with matrix F ∈ IR25×500 for recognition (using

their sparse coefficients to find the class with minimum re-

construction error). In this experiment, we use the K-SVD

algorithm to learn the underlying dictionary D ∈ IR25×100

from F although other algorithms such as MOD can be sub-

stituted. In the sparse coding stage, OMP with sparsity fac-

tor 5 (i.e., the maximum allowed nonzero coefficients) is

used. After 10 iterations of the dictionary learning process,

we compute the sparse representations of samples in F and

ỹ. With these sparse representations, we can obtain the ap-

proximated solution of x by solving (18).

In Figure 2, we report the recognition rates of methods

with sparse representation from solving (10) and (18) where

the label is determined based on minimum reconstruction

error. It shows that these methods are able to recognize

correct classes even under substantial noise corruption (up

to 20%). Furthermore, the classifier with the proposed al-

gorithm (using (18)) achieves higher recognition rate than

the one with original one (using (10)). This is because that

when samples in F are coded with sparse representation us-

ing dictionary D, noise in the signals are also removed as a

by-product of ℓ1-norm minimization.

In the second synthetic experiment, we present the run-

time performance of the proposed method and the state-of-

art ℓ1-norm optimization solver with SOCP techniques [7].

We increase both the number of signal class and the feature

dimension of samples to 50. Following similar procedure

as described in the first experiment, we generate three sets

of training samples (500, 1000, 1500). Like the previous

experiment, 100 test samples are obtained in the same way

as previous setting with noise of zero mean and σ2 is set to

0.1. Table 1 shows the mean value of the recognition rates



Table 1. Comparison on recognition speed and accuracy using synthetic data sets.

Sample size 500 1000 1500

Method Acc (%) Time (s) Acc (%) Time (s) Acc (%) Time (s)

Original 96.0 0.7575 96.6 4.4548 97.0 12.3191

Proposed 93.0 0.0061 94.6 0.0114 96.0 0.0217

Speed-up 124.2 390.8 567.7

Figure 2. Recognition rates of the original and the proposed algo-

rithm in signal classification task with the presence of noise.

and the average computation time per test sample needed

in solving these two equations. Although the classifier with

sparse representation obtained by the original l1-norm min-

imization has slightly higher recognition rate in this setting,

however, the execution time increases rapidly as the number

of the samples increases. On the other hand, the classifier

with the proposed algorithm achieves comparable results in

accuracy but with significant speed-up. For the set of 1500

samples, our method solves the l1-norm minimization prob-

lem 567.7 times faster than the l1-magic solver (using log

barrier algorithm for SOCP) [7]. The reason that the pro-

posed method achieves slightly worse results in accuracy

may result from the imperfect approximation of the sparse

approximation using the K-SVD algorithm. We note that

this is a trade-off between accuracy and speed that can be

adjusted with parameters in the K-SVD algorithm (e.g., the

number of coefficients in OMP). It is also worth noticing

that l1-magic solver can handle up to 4500 data points (of 50

dimensions) whereas our algorithm is able to handle more

than 10000 data points.

4.2. Face Recognition

We use the extended Yale database B which consists of

2414 frontal face images of 38 subjects for experiments

[20]. These images were acquired under various lighting

conditions and normalized to canonical scale (as shown in

Figure 3). For each subject, we randomly select half of the

images as training samples and use the rest for tests.

Figure 3. Sample images from the extended Yale database B.

Since the original data dimension is very high (192 ×
168 = 32256), we use two feature extraction methods

(downsampling and PCA) to reduce their dimensionality

(i.e. difference choice of T in (9)). In the appearance-

based face recognition setup each image is downsampled to

12 × 11 pixels (i.e., d = 132). For PCA, we compute the

eigenfaces using the training images and retain the coeffi-

cients of the largest 132 eigenvectors. A dictionary of size

132× 264 (i.e., redundancy factor of 2) is trained using the

K-SVD algorithm with 10 iterations. For each sample, at

most 10 coefficients are used for sparse coding with OMP.

As shown in Table 2, the proposed algorithm achieves

comparable recognition rates but with significant speed-

up. Note that the required time to classify one image us-

ing the original l1-norm minimization is more than 20 sec-

onds, which makes it infeasible for real-world applications.

By increasing the redundancy of the dictionary or reducing

the maximum allowed number of coefficients for in repre-

senting an image (i.e., making the representation even more

sparser), we can achieve more speed-ups at the expense of

slight performance degradation.

Table 2. Recognition accuracy and speed using the Extended Yale

database B.
Feature Downsampled image PCA

Method Acc (%) Time (s) Acc (%) Time (s)

Original 93.78 20.08 95.01 13.17

Proposed 91.62 0.51 92.28 0.32

Speed-up 39.4 41.2

4.3. Single Image Super-Resolution

We apply the proposed algorithm to image super resolu-

tion using sparse representation [34], which assumes spar-

sity prior for patches from a high-resolution image. Two

dictionaries, one for the low-resolution image and the other

for the high-resolution one, are trained using patches ran-

domly selected from an image collection. The reconstructed

high resolution image can then be obtained by solving ℓ1-

norm penalized sparse coding. Here the original ℓ1-norm

penalized sparse coding adopted is based on the efficient

sparse coding algorithm in [19]. The dictionary size is set

6 times the feature dimensions in the low-resolution dic-

tionary. For each sample, 3 coefficients are used for spare

approximation by OMP.

In Table 3, we report the root-mean-square error (RMSE)

values in pixel intensity and the execution time of sparse



coding for all patches on four test images used in [34]:

Girl, Flower, Panthenon, and Racoon. The proposed al-

gorithm achieves double-digit speedups with slight per-

formance degradation (in terms of RMSE). However, the

RMSE measure is not the best metric for super resolution

as it does not directly reflect the visual quality and often-

times we do not have ground truth high-resolution images.

Figure 4 shows visual quality of the proposed algorithm is

much better than the results using bicubic interpolation, and

very similar to the results of [34].

Table 3. Execution time and RMSE for sparse coding on four test

images (scale factor = 3)
Image Original [19] Proposed

Method RMSE Time (s) RMSE Time (s) Speedup

Girl 5.6684 17.2333 6.2837 1.5564 11.07

Flower 3.3649 14.9173 3.8710 1.3230 11.27

Panthenon 12.247 35.1163 13.469 3.1485 11.15

Racoon 9.3584 27.9819 10.148 2.3284 12.02

(a) (b) (c) (d)
Figure 4. Image super-resolution visual results. (a) Ground-truth

high resolution image. (b) Bicubic interpolation. (c) Super-

resolution via sparse representation [34]. (d) Proposed method.

4.4. Human Pose Estimation

We apply the sparse representation to the problem of es-

timating human pose from single images. Here we pose this

problem as a regression that maps image observations to

three-dimensional joint angles. In training set, we are given

a number of silhouette images and their corresponding pose

parameters. The task is to infer the three-dimensional hu-

man pose of an unseen test image.

We validate the applicability of the sparse representation

to this regression problem and demonstrate the improve-

ment in speed with the proposed algorithm. We use the

INRIA data set [1] in which 1927 silhouette images are

used for training and 418 images for tests (some samples are

shown in Figure 5). The image descriptors we use are the

100-dimensional feature vectors (i.e., histogram of shape

context descriptors) as computed in [1].

Figure 5. Sample images from the INRIA data set [1].

For each test image, we find the sparse representation

by solving the l1-norm minimization problem. That is, the

resulting linear combination of training images best repre-

sent the test image with minimum reconstruction error (in

ℓ2-norm). The estimated pose of the test image is then com-

puted by the same linear combination of the associated pose

parameters in the training set.

We report in Table 4 the execution time of solving the l1-

norm minimization problem with different numbers of pro-

totypes. We note that the mean estimation error of 3D joint

angles decreases as the number of prototypes is increased.

Overall, the speed can be improved significantly with only

slight performance degradation.

4.5. Multi-View Object Recognition

We compare the proposed method against the original al-

gorithm using the Columbia Object Image Library (COIL-

100) data set [26]. The COIL-100 data set has been widely

used in object recognition literature, and it consists of color

images of 100 distinct objects; 72 images of each object

placed on a turntable were captured at pose interval of 5

degrees. Typically, a few number of images from different

views with constant interval are selected as training samples

and the others are used for tests. For example, if 18 views

are selected from each object class for experiments, there

will be 1800 training and 5400 test images.

The 128 × 128 images are first converted to gray im-

ages and then downsampled to 32 × 32 pixels. Two kinds

of simple features (downsampled image and PCA) are used

for evaluations. Meanwhile, two different feature dimen-

sions are used for experiments. The dictionary size is set 4

times the feature dimensions (i.e., 4d). For each sample, 3

coefficients are used for spare representation by OMP. The

recognition rate and the average execution time for process-

ing one sample are summarized in Table 5. Overall, the

proposed algorithm achieves about 10000 times faster than

the original method with comparable accuracy (note the ex-

ecution time are recorded in different scales).

5. Conclusion

In this paper, we have presented a fast sparse representa-

tion algorithm that exploits the prototype constraints inhere

in signals. We show that sparse representation with ℓ1-norm

minimization can be reduced to a smaller linear system and

thus significant gains in speed can be obtained. In addition,

the proposed algorithm requires much less memory than

the state-of-the-art ℓ1-minimization solver. Experimental



Table 4. Comparison on pose estimation accuracy and speed under different number of prototypes using the INRIA data set.

Number of coefficients 3 6 9 12 15 Original l1-norm minimization

Mean error (in degrees) 9.1348 7.9970 7.4406 7.2965 7.1872 6.6513

Execution time (in seconds) 0.0082 0.0734 0.3663 1.1020 2.3336 24.69

Speed-up 3011.0 336.4 67.4 22.4 10.6

Table 5. Comparison on recognition speed and accuracy on the COIL-100 (note some values are listed in different scales).
Number of view 8 16 8 16

Recognition accuracy Execution time

Feature used Orig. (%) Ours (%) Orig. (%) Ours (%) Orig. (s) Ours (ms) Speed-up Orig. (s) Ours (ms) Speed-up

Downsampling(16 × 16) 82.43 80.93 90.01 87.43 6.85 3.2 2140.6 52.73 3.9 13520.5

Downsampling(10 × 10) 75.08 74.28 84.75 84.00 4.13 3.9 1059.0 48.02 5.2 9234.6

PCA: 256 84.56 82.08 91.03 89.22 3.71 3.3 1124.2 29.58 3.8 7784.2

PCA: 100 81.23 79.23 90.58 87.72 2.54 3.6 705.6 21.00 5.6 3750.0

results on several image and vision problems demonstrate

that our algorithm is able to achieve double-digit gain in

speed with much less memory requirement and comparable

accuracy.

Our future work will focus on extending the proposed

fast algorithm for learning discriminative sparse representa-

tions for classification problems. We are also interested in

analyzing the interplay between RIP assumption and the ef-

fectiveness of the proposed method. As the proposed algo-

rithm is able to handle large-scale data collections, we will

explore other real-world applications such as image search

and visual tracking.
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