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ABSTRACT

In this paper, we describe a new speaker change detection
algorithm designed for fast transcription and audio indexing of
spoken broadcast news. We have designed a two-stage
algorithm that begins with a gender-independent phone-class
recognition pass. We collapse the phoneme inventory to only 4
broad classes and include 4 different models for non-speech,
resulting in a small fast decoder that runs in less than 0.1 times
real-time. The second stage of the SCD algorithm hypothesizes
a speaker change boundary between every phone in the labeled
input.  The phone level time resolution in our approach permits
the algorithm to run quickly while maintaining the same
accuracy as a frame level approach. Applying the new
algorithms to a large sample of broadcast news programs
resulted in improvements in speaker change detection
accuracy, speech recognition accuracy, and speed.
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1 INTRODUCTION

In many applications of speech recognition and speaker
identification, it is very often the case that the speech is from
one or two speakers and the speech is given to the system in
discrete utterances. In a more complicated domain, such as
broadcast news transcription, the speech can come from an
unknown and widely varying number of speakers and there are
no breaks between utterances. In such a domain, Speaker
Change Detection (SCD) is needed.

SCD breaks up the continuous input into discrete utterances
that are easy to process in large vocabulary speech recognizers.
More importantly, it provides the recognizer with input that is
homogeneous in speaker so that speaker normalization
techniques can be used more effectively. SCD also forms the
basis for speaker clustering that is used for speaker adaptation.
In an audio indexing system, SCD provides a structural
summary of the speaker turns contained in a conversation.
Speaker changes are often cues for boundaries between
programs, topics, or scenes in a multi-media application.

Speaker change detection in continuous audio streams of
broadcast news is a difficult task due to the highly variable
noise and channel conditions and the fact that the true number
of speakers is unknown. Previous work in SCD in the context
of speech recognition includes [1] [2] [4] [5] [6]. Several
distance measures have been used to calculate the speaker
differences, such as, Generalized Likelihood Ratio (GLR) [2],
Kullback-Leibler distance (KL) [4], Bayesian Information
Criterion (BIC) [6].

We have designed a two-stage algorithm for SCD. It begins
with a gender-independent phone-class recognition pass to
detect and classify non-speech into silence, music, noise, or
other non-speech intervals. It also locates boundaries between
3 broad phoneme classes. The second stage of the SCD

algorithm hypothesizes a speaker change boundary between
every phone in the labeled input. Experiments with the new
algorithm have shown very promising results.

One of the problems in SCD area is the lack of a common
metric to evaluate different systems on the same problem.  So
we begin by defining the performance metric that we use to
measure SCD accuracy.  After that, we describe our new
algorithm in detail.  In Section 6, we present SCD results on
broadcast news test data and compare our results with other
work in the area.

2 EVALUATION METRICS

We treat SCD as a detection problem and evaluate SCD
algorithms in terms of the two types of errors that can occur.
One is False Acceptance (Type I) error, in which a putative
boundary is not a true boundary. The other is False Rejection
(Type II) error, in which a true boundary is not detected.
Typically, manually produced segmentations are used to define
ground truth.  One problem with this approach is that different
annotators are quite likely to pick different points. As a result,
inter-annotator variability is conflated with the error measure.
We propose a procedure that avoids this problem.

Typically, a speaker change occurs in one of two forms:

• There is a short period of silence or other non-speech
between two speakers. In broadcast news, there are quite a
few non-speech events other than silence, such as music,
laughter, breath, lip-smack, coughing, etc. All of them
may happen at the speaker boundaries. In this case, any
detected changes within this non-speech period should be
considered as correct. Only in the extreme situation where
the duration of the period is zero (no gap), does the
correct region degrade to a single point.

• The speech of the two speakers overlaps. In this case, the
overlapped region can be considered as the correct region
and any detection within this region is correct.

As we can see, correct changes can usually be represented as
regions rather than single points. Denoting all the reference

changes as ],[ ii ba  where Ni ,...,1= and N is the number

of true changes, the two types of errors can be defined as
follows:

False acceptance error occurs if the hypothesized change does

not fall into any of the intervals: ],[ αα +− ii ba .

False rejection error occurs if for some j, there is no detected

change within the interval: ],[ αα +− jj ba .

α  is a tolerance factor that can be set according to different
requirement. We select α  to be 100ms, which is about the
average length of one phoneme. This is a very conservative
tolerance.



To generate this ground truth reference we align the reference
transcription with the acoustic data with a constrained Viterbi
decoding. By doing this, non-speech regions will be labeled.
We then map each hand-labeled speaker boundary to the
enclosing non-speech regions. Where no non-speech regions
are found, the manual boundaries are retained.

3 PHONE-CLASS DECODE

Though most of the non-speech events are notoriously bad for
speech recognition accuracy, they possess valuable information
about speaker changes. As we have observed, more than 80%
of the true speaker changes happen at non-speech. Thus we
would be more confident if a change is hypothesized at non-
speech region. Detecting non-speech also permits us to exclude
non-speech frames when clustering or identifying speakers.
Only frames of data containing speech are useful in
determining speaker differences. Furthermore, if the SCD is to
be used as a front-end for speech recognition, it is important
that speaker boundaries are not hypothesized in the middle of
words.

Because of the variety of non-speech events, and the low SNR
of many of them, energy based methods are not effective for
detecting non-speech. Other more sophisticated methods have
been used to detect non-speech. We prefer to employ a
phoneme decode for this purpose. The BBN phoneme decoder
as described in [1], is part of the state-of-the-art BBN
BYBLOS Broadcast News Transcription System. The
approach described here will be designated as the baseline
SCD system for the remainder of this paper.

We create a gender-dependent and context-independent phone
HMM. 45 context-independent phone models are trained for
each gender. A silence model is trained with samples of
silence, music and noise. These 91 phone models are then used
to decode the speech. The output is a sequence of phones with
gender and silence labels. This approach works very well in
detecting silence and music. Also with gender changes labeled,
speaker changes between different genders are easily obtained.
However, there are some drawbacks. There are some cases in
which a sequences of gender errors are made on short segments
in particular. Background noise may also affect the gender
detection. This makes the output gender labels somewhat noisy
and some complicated heuristic rules are needed to smooth the
results before they can be useful. The 91-phone baseline
decoder is also quite slow.

Since the goal is to detect non-speech, there is no need to
explicitly distinguish between phones. From speech production
theory, phones can be roughly classified into 4 groups: vowels,
nasals, fricatives or sibilants, and obstruents. Within each
group, the phones have similar acoustic characteristics. Vowels
and Nasals are similar in that they both have pitch and high
energy. They both are quasi-periodic. We therefore put them
together and build 3 phone classes, as shown in Table 1.

Vowels and
Nasals

AX, IX, AH, EH, IH, OH, UH, EY,
IY, AY, OY, AW, OW, UW, AO, AA,
AE, EI, ER, AXR, M, N, NX, L, R, W,
Y

Fricatives V, F, HH, TH, DH, Z, ZH, S, SH

Obstruents B, D, G, P, T, K, DX, JH, CH

Table 1.  Phone classes used for SCD.

To classify the non-speech events, 4 new acoustic models are
created for music, laughter, breath, and lip-smack, respectively.

Together with silence, we have 8 phone classes. By doing this,
the number of active nodes during decode is largely reduced
and the speedup is significant.

We use a 5-state HMM to model each of the phone classes.
One codebook with 64 diagonal Gaussian Mixture Models
(GMM) is shared by the 5 states from the same phone class and
for each state a Gaussian mixture weight is trained. The
scheme is called Phonetically Tied Mixture (PTM) modeling
[1]. Twenty hours of speech from broadcast news training
corpus are used to train the 8 phone-class models.

Figure 1.  Distribution of automatically detected non-speech

Decoding with these phone-class models produces a sequence
of phone classes and non-speech labels with time. Figure 1
shows the distribution of non-speech detected on a 3-hour
broadcast news with both 8-phone and 91-phone models. Note
that the majority of the non-speech is silence. The 8-phone
model finds fewer medium length non-speech segments but
more short ones (less than 0.1 seconds). The long ones (longer
than 5 seconds) are mostly music or gaps between programs,
which both have detected successfully. The overall
distributions are quite similar between these two. The total
number of segments detected is also very close.

Note that we use a gender-independent approach in the phone-
class decode. We believe gender difference would be easily
detected with speaker change detection where not only the
gender features but also other speaker features are utilized to
detect the difference. Doing so we can also avoid using any
complicated heuristic rules that may not be robust.

4 SPEAKER CHANGE DETECTION

In the BBN Byblos baseline system where 91-phone decode is
used, speaker clustering is applied to separate speakers [1][3].
Speech is chopped on silence and gender changes to produce
uniform-length segments. Hierarchical clustering is
implemented to group segments into clusters for unsupervised
adaptation. Based on the metrics we proposed in section 2, the
speaker change errors are quite high (see section 5). This is
because the clustering approach does not attempt to find the
true changes of speakers.

In this section, we describe a speaker change detection
algorithm, which utilizes the label information from the
phone/non-speech sequence produced by the phone-class
decode.



• The distance measure criterion

Given two sets of data }...1,{ Nixi ==x and

}...1,{ Mjy j ==y where ix and jy  are the cepstral

vectors. We wish to test the hypothesis:

H0 :    x and y are produced by the same speaker

H1 :    x and y are produced by different speakers

Assuming that both x and y are from independent Gaussian
processes, the generalized likelihood ratio test [2] would be:
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It is usually the case that the more data we have for estimating

the Gaussians, the higher the λ  is [2]. To alleviate this bias, a
penalty factor is added such that the test we are using changes
to:
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θ  is determined empirically. This penalized likelihood ratio is
similar to BIC used by [6]. Experiments have shown that it is
more robust than the plain likelihood ratio.

• The critical region

For a standard hypothesis test, the critical region would be that:

                If  thλλ ≤′  ,   then H0 holds

                Otherwise ,     H1 holds

thλ is the threshold to be set based the distribution of H0 and

H1.

In our case, however, we have extra information to assist the
assessment. As we mentioned before, a true change is more
likely to happen at non-speech region. Also cutting on a non-
speech is less damaging than cutting in the middle of a word.
Based on this assumption, we actually uses a higher threshold
for changes that are not on non-speech. So the critical region
becomes:

Test at non-speech region:

                   <using the standard test>

         Test at speech region:

                  if  αλλ +≤′ th ,  then H0 holds

                  Otherwise,          H1 holds

In here, 0≥α .

• Phone-based speaker change detection

We implemented a sequential procedure, which increments one
phone at a time and hypothesizes speaker changes on each
phone boundary. The sequence can be described with the
flowchart in Fig 2.

In the implementation, the thresholds are set such that the total
errors (false acceptance and false rejection) are a minimum.
The procedure is nearly causal. It looks ahead only 2 seconds
in order to get enough data for the detection. The phone level
time resolution in our approach permits the algorithm to run
very quickly while maintaining the same accuracy as a frame
level approach.

5 EXPERIMENTS AND RESULTS

We implemented our algorithm on Hub4 1997 evaluation data,
which is provided by National Institute of Standards and
Technology (NIST). It contains about 3 hours of broadcast
news. NIST has also provided hand-generated segments based
on speakers and speaking conditions, including prepared
speech, spontaneous speech, telephone speech, speech with
music background and speech with background noise. There
are totally 620 speaker/condition-based segments. If only
counting the speaker changes, there are 482 true speaker turns.

To build the reference for evaluating SCD, forced alignment is
implemented on each speaker boundary to find possible non-
speech. In the case when there is a long music piece (> 2
seconds) between two speakers, we recognize it as a true
speaker change.

For comparison, we use the segmentation from BBN Hub4
1997 evaluation system as the baseline, which uses 91-phone
decode for silence detection and speaker clustering for speaker
separation.  The new SCD algorithm is evaluated with respect
to our SCD metric, effect of speech recognition word-error-rate
and runtime speed.

• SCD performance

Comparative results are shown in Table 2 for our new SCD
algorithm compared to the BBN baseline system and a

Figure 2.  Speaker Change Detection Flow-chart.



segmentation produced by CMU in the 1997 Hub4 evaluation
[4].

segments
detected

False
rejection

False
acceptance

speakers/
segment

BBN 515 49.2% 56.3% 1.250

CMU 769 42.8% 64.1% 1.239

HTK 749 N/A N/A 1.173

New SCD

(all data)
483 30.0% 25.0% 1.122

New SCD

(speech
only)

475 29.5% 20.0% 1.120

Table 2.  Comparative SCD performance.

They are also compared to HTK segmentation [5] by average
number of speakers per segment, the measure that is used by
HTK.  The problem with this measure is that it is partially
dependent on the number of segments hypothesized. IBM has
also reported their segmentation performance in [6]. However,
it does not use speaker changes as the reference and it is not
clear how the errors are defined. As a result, it is hard to
compare with.

The false rejection and false acceptance results shown in Table
2 assume a tolerance factor of 100ms. The new SCD algorithm
is obviously superior to our baseline system in detecting
speaker changes. We can also see that non-speech data hurts
the false acceptance performance. In the experiments, we
observed that when a long silence is present in the middle of a
speaker turn, it is likely to be detected as a change if the silence
is used to calculate the distance.

• Word-Error-Rate (WER)

Applying the new SCD in the BBN BYBLOS transcription
system, we see that WER is decreased by higher accuracy
SCD.

WER without adaptation

BBN baseline 22.7%

With  new SCD 21.4%

With true speaker turns 20.7%

Table 3.  Comparison of Speech Recognition Word Error Rate
(WER) as a function of SCD accuracy.

We also provide the WER result with true speaker turns. BBN
baseline system has a WER that is 2% absolute higher than that
using the true segments. After using speaker change detection,
the difference to truth is only 0.7%.

We attribute this improvement to the fact that SCD provides
more homogeneous segments in term of speaker. The cepstrum
normalization can be applied to better speaker turns and thus
can be more effective. Also precise cuts on speaker change
give correct sentence beginning, which may also help language
model alignment.

• Speed

Because of the introduction of phone-class, the phone decode
has been sped up from 10 times of real time to 0.07 times of
real time, which is shown in Table 4. The overall speed of the

new SCD algorithm has been sped up by a factor of  30
compared to the baseline.

Throughput on a Pentium II 450MHz
processor

(Real Time)

Phone decode SCD Total
throughput

BBN
baseline

10.00x 0.30x 10.30x

New SCD   0.07x 0.28x   0.35x

Table 4.  Improvement in speed with the new SCD algorithm.

6 CONCLUSION

In this paper, we present a new algorithm for speaker change
detection in continuous speech with multiple speakers and
varying environment, such as broadcast news. The results are
promising and the speed of the procedure is less than real-time.
A new evaluation metric for SCD is proposed such that
valuable research work from different research sites can be
comparable. We have also shown that speaker change detection
improves speech recognition accuracy by making speaker
normalization more effective.
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