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Abstracf - Two spectral tests for detecting nonrandomness were proposed in 1977. One 
test, developed by J. Gait [l], considered properties of power spectra obtained from 
the discrete Fourier transform of finite binary strings. Gait tested the DES [lO,ll] in 
output-feedback mode, as a pseudorandom generator. Unfortunately, Gait’s test was not 
properly developed [3,4], nor was his design for testing the DES adequate. 

Another test, developed by C. Yuen [Z], considered analogous properties for the 
Walsh transform. In  estimating the variance of spectral bands, Yuen assumed the spectral 
components to be independent. Except for the special case of Gaussian random numbers, 
this assumption introduces a significant error into his estimate. 

We recently [3,4] constructed a new test for detecting nonrandomness in finite binary 
strings, which extends and quantifies Gait’s test. Our test is based on an evaluation of a 
statistic, which is a function of Fourier periodograms [5]. Binary strings produced using 
short-round versions of the DES in output-feedback mode were tested. By varying the 
number of DES rounds from 1 to 16, it was thought possible to gradually vary the degree 
of randomness of the resulting strings. However, we found that each of the short-round 
versions, consisting of 1, 2, 3, 5 and 7 rounds, generated ensembles for which at least 10% 
of the test strings were rejected as random, at a confidence level approaching certainty. 

A new test, based on an evaluation of the Walsh spectrum, is presented here. This 
test extends the earlier test of C. Yuen. Testing of the DES, including short-round 
versions, has produced results consistent with those previously obtained in [3]. 

We prove that  our measure of the Walsh spectrum is equivalent to a measure of the 
skirts of the logical autocorrelation function. It is clear that an analogous relationship 
exists between Fourier periodograms and the circular autocorrelation function. 

1. Introduction 

Kolmogorov [7] and Chaitan [S] have established a theory of the information content of 
strings, which has been used to define random strings. Particular tests to detect certain 
irregularities of pseudorandom strings are presented in Knuth [9]. Fast spectral tests, 
in this spirit, have since been proposed. These tests evaluate either the fast Fourier 
transform (FFT) [6 ] ,  or the fast Walsh transform (FWT) [12], of a finite test string. 
Both of these kinds of spectral tests were first proposed in 1977. One, presented by 
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J.  Gait [l], examined,the Fourier power spectra. The other, presented by C. Yuen [2], 
examined analogous properties for the Walsh transform. In the form presented, neither 
of these early teats can be compared directly with the output of the tests described by 
Knuth. 

The purpose of Gait’s paper was to test the DES, in output-feedback mode, as a 
pseudorandom generator. A significant part of his paper was devoted to the develop 
ment of a power spectrum test; this test was applied to binary strings of length 215 bits 
generated by the DES. Each test string can be specified by approximately 214 spectral 
components. Nevertheless, on the basis of twenty-seven sample points taken from the 
power spectrum of one such sequence, the DES output was judged to be random. Ac- 
tually, one can show that the graphic display presented by Gait is too flat, and thereby 
offers strong evidence for rejecting this test string as random [3,4]. 

The test proposed by C. Yuen considered analogous properties for the discrete Walsh 
transform. Yuen tested output from two kinds of pseudorandom generators: a Gaussian 
generator, and a generator of uniformly distributed “reals” ranging from 0 to 1. Yuen 
recognized - as Gait did not - that “. . . a spectrum estimate that looks too flat is as 
suspect as one not flat enough.” Yuen also recognized that estimates for individual con- 
tributions to the Walsh power spectrum are not consistent. To circumvent this difficulty 
he chose to consider bands of spectral contributions. In his estimate of the variance for a 
band, Yuen assumed the spectral contributions to be statistically independent. This as- 
sumption is valid for the case of random numbers with a Gaussian distribution. However, 
in the general case, this assumption violates the Parseval constraint [5] on the spectrum 
and introduces a significant error into ones estimate of the variance. 

We recently [3,4] proposed a new test for detecting nonrandomness in finite binary 
strings. Our test extends and quantifies Gait’s test. We tested binary strings of length 
215 bits which were produced using short-round versions of the DES, in output-feedback 
mode. By varying the number of DES rounds from 1 to 16, it was thought possible 
to gradually vary the degree of randomness of the resulting strings. We found that for 
ensembles of test strings generated by short-round versions, consisting of 1, 2, 3, 5 and 
7 rounds, each ensemble yielded test strings for which at least 10% were rejected as 
nonrandom at a confidence level approaching certainty. 

We now propose a similar test based on an evaluation of the Walsh spectrum. This 
test is an extension of Yuen’s test. We note that the fast Walsh transform (FWT) can be 
obtained from the fast Fourier transform (FFT) by setting all sines to 0 and all cosines 
to 1. It is usual to find a program block in the FFT which reorders the indices - by 
combining first a bit reversal, followed by Gray coding of the indices [12]. If one deletes 
this block, one obtains a particular representation of the Walsh transform which has 
the various designations: natural ordered Walsh transform, Walsh-Hadamard transform, 
and Hadamard transform. The FWT is at least four times faster than the FFT, and 
demands half the memory. We use the symmetry properties of the Hadamard transform 
to derive recursion relations which facilitate the computation of certain expectations: the 
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expectations for estimating. powers and products of Walsh periodograms. Thereby, the 
estimates of the mean and the variance called for in our test can be computed both easily 
and with precision. 

2. Test for Nonrandomness 

Our test computes a statistic, which is dependent on a finite length binary string. This 
statistic is compared with the value expected for a random string. The input string is 
interpreted as nonrandom if the computed value of the statistic differs too much from 
the expected value. 

TEST (For the rth moment; where r = 4, or r = 6) 
INPUT: A string x = ZO, . . . , xn-l of Iength n = 2‘. 
PARAMETERS: 

INTEGERS: r = 4, or r = 6. And n = 2’, where n is sufficiently large [3,4]. 
REAL: t ,  the desired significance level, with 0 < t < 1. 

STEP 1: 
OUTPUT: “May be Random” or “Not Random.” 

Representing the bits of 2, with the values 1 and -1, the fast Walsh transform (FWT), 
2,  of 3: is computed. The algorithmic running time of the FWT is O(nlogn). The space 
requirement is O(n).  

STEP 2: 
The computation of the rzh power for each of the n SValsh transform components 

5‘ = (Z),, 

where the input parameter T specifies that the r th  moment is being tested, and r is an 
even integer greater than 2. 

STEP 3: 
The computation of the statistic D,, where 

n-1 

D, = c (Xi - m,) / v , .  (2.1) 
k=O 

The values assigned to m, and v,. are defined in Section 4, by eq. (4.2) and (4.3). 
STEP 4. 

The decision is made “Not Random” or “May be Random.” 
The null hypothesis Ho - that the input xo . . . xn-l is random - is rejected at a 

level of significance, determined by the input t ,  if the integral 
Dr 

-L!- 1 exp (-f) dy 
- D, 
6 



246 

is less than 1 - t. 

3. Properties of the Walsh Transform 

The Walsh transform is an orthogonal transformation of n = 2k variables. In natural 
order this transformation is effected through the use of a Eadamard matrix. For order 
2, the symmetric Hadamard matrix is defined as 

Higher order Hadamard matrices can be defined recursively as the direct product of lower 
order Hadamard matrices. Thus, for example 

We prefer to define the Hadamard matrix, for order n = 2 k ,  in terms of its matrix ele- 
ments. First, let the matrix indices s and t be represented in binary form as ( S k - 1  . . . s0)2 

and (tk-1 . . . t o ) z .  Then 
k-1 

p=o 

The Walsh transform of XO, . . . , z,-1 is represented as 

n- 1 

We show below that the inverse transformation is 

1 n-l 
I, = - C Hs,t5t.  n 

t = O  

Five basic properties which follow from the above definitions are: 

PROPERTY 1 (symmetry) 
H,,t = f i t , *  

PROPERTY 2 (summation) 
n-1 

s=o 

where 6(s) is the unit impulse [5] function. 
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PROPERTY 3 (product) 
Hs,tH*,p = H*,t@p,  

def 
where t @ p  = ( t b - 1  @ p t -1  . . . t o  E ~ p o ) ~ ,  and @ is the “xor” operation (addition modulo 2). 
For example t @ t = 0. 

Proof: 
k-1 

H , , t H S n p  = n(-l)bq(tq@pq) 

q=o 

= H a , t @ p -  

PROPERTY 4 (orthogonality) 

= S(s - p ) .  

PROPERTY 5 (logical shift) 

n-1 

Proof: H,J& = E;gi Hs, tHt ,pzp  = E;it H t , d @ p z p ,  where PROPERTY 3 has been 
used. And then, since s @ p  is simply a permutation of the integers (0,. ~ . , n - 1) over the 
range of the “dummy index” p ,  a relabelling of this index yields the sum x;z: H t , p x p e s .  

We define Walsh periodograms as 

I ,  = (l/n)?:. 

A sequence known as the logical autocorrelation function is defined as 

n-1 
1 

iia = - c X t X t @ , .  

t = O  

Theorem 1. 
60,. . . , iin-1 and lo, . . . , In-l  are Walsh transform pairs [12]. That is 

n- 1 

t = O  

and 
n-I 
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Corollary (Parseval’s theorem for the Walsh transform) 

n-1 n-1 n-1 

A degenerate case of Parseval’s theorem occurs with the restriction x8 E [-1, I], in 
that it yields a determinrstic value for the sum of the squared Walsh coefficients. And 
for this case 

n-1 

d = O  

Consider the following important example. When testing n random bits, it is usual to 
map bit values from [0,1] onto the values [-1,1]. And for this case, Parseval’s theorem 
tells us that the summed value for the “power spectrum” is identical for all test strings. 
This result is referred to as detenninzsiic for the following reasons: First, the summed 
value is n2 for any test sequence, independent of its distribution. Second, assume the set 
ZO,. . . , xn-1 to be a set of random variables, whose values are either 1 or -1. Let this 
set be assigned an arbitrary joint probability distribution. Yet, not only is the ensemble 
average for the summed “power spectrum” equal to n2, but in addition the variance 
of this sum is zero. Thus, the induced probability distribution for the summed “power 
spectrum” degenerates into a singular distribution known as a Dirac delta function. 

Such is also the case for the FFT. One can choose the option of testing spectral bands, 
as in [2]. However, to be in the asymptotic region for which the central limit theorem holds 
[3], one may have to increase the length n of the test strings. An alternative approach 
will be developed in the next section. However, the groundwork will be developed below. 

Our main contribution, in this section, is presented in the form of two theorems. 
These two theorems will be stated below in the context of the FWT and the logical 
autocorrelation function G. However, both of these theorems are also valid in the context 
of the FFT, with the replacement of the FWT by the FFT, the Walsh periodogram by 
the Fourier periodogram [5 ] ,  and the logical autocorrelation function by the circular [5] 
(positively wrapped [S]) autocorrelation function. This last replacement is effected by 
changing s @ t to (s + t )  mod n. Both of these theorems can be proved by means of 
a straightforward application of the five basic transform PROPERTIES listed earlier in 
this section. 

Theorem 2. 
n-1 n- 1 

t = O  

Corollary 
n- 1 n-1 
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Theorem 3. 

Corollary 
n-1 n-1 n-1 

a=O r=O t=O 

Discussion of these two theorem is postponed to the next section. 

4. Ensemble Averages 

In testing for randomness an a peon’ requirement is that the type of randomness be de- 
fmed. This requirement is met by considering the string variables to be random variables 
and then assigning a joint probability distribution for these variables. The theorems 
presented in the previous section can be applied to these random variables. It is possible 
to interpret these theorems in terms of ensemble averages. Consider, for example, the 
corollary of theorem 2. We shall restrict our attention to binary test strings of length 
Zk - where for convenience, bits will be represented as -1 and 1. Taking expectations, 
yields the relation 

where use has been made of the relation Go = 1. Thus, the expected sum of the fourth 
power of the spectral components is related to the expected sum of the square of the 
terms making up the skirts of the logical autocorrelation function. It is clear that, for 
the FFT, a similar relation exists between the squared periodograms and the circular 
autocorrelation function. 

We now restrict our attention to symmetric Bernoulli sequences. That is, sequences 
t o , .  . . , Zn-1 which are independent and identically distributed with Pr(zk = 
Pr(tk = -1) = 1/2, for k = 0,. . . , n - 1. Our goal is to numerically evaluate 
of the form 

n-1 

and 
n- 1 

1) = 
terms 

( 4 4  

(4-3) 
b=O 

for T = 4 and r = 6. These two expectations ate called for as parameters in STEP 3 of 
our test for nonrandomness. 
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Combining ,the symmetry of the distribution with the structure of the Walsh trans- 
form yields the equivalences 

rn, = nE[ i!:], (4-4) 

(4.5) 

and 
u, = n ~ [ i ; ' ]  + n(n - 1 ) ~ [ 2 ' , i { ]  - n ' ( ~ [ 2 ~ ] ) ~ .  

Thus to complete the numerical evaluation of n, and ur it is necessary to compute 
expectations of the form E[ ios] and E[  i!b5f], where s is an even integer. This can be 
accomplished by means of the two recursion relations which are presented below. 

First note that E[i!i.f] = E [ 2 6 ]  for k = 1. ..n - 1 and E [ i i 8 + l ]  = 0. We now use 
the notation i !k (71)  to indicate the kth transform of a sequence of n bits and note that 
for the trivial case of n = 1 

E[i i ( l ) ]  = 1. (4-6) 

One can then show that 

Recursion Relation 1. 

Recursion Relation 2. 

2r 

E [ ( i0(2n)C,(zn))~ ']  = r T ) ( - 1 ) ' E  s [ ( i ! ~ ( n ) ) ~ - " ]  E [ (io(n))"] (4.8) 
s=O 

These two relations can be proved by representing 20(2n) = go(n) + &(n) where 
Oo(n) = 2, and io(n) = x:gil z I ,  and then using the binomial expansion prior 
to taking their expections. To derive recursion relation 2, a similar device is used to 
re-express i l (2n)  as the sum of two statistically independent terms. 

We list the explicit solution to the first recursion relation for two terms: 

E[i.o(n)'] = n, and E [ f ~ ( n ) ~ ]  = n + 3n(n - 1). 

5 .  Statistical Resul ts  

In this section we report the results obtained from a series of statistical tests which 
we performed on binary test strings of length 213 bits. Both the DES, and short-round 
versions of the DES, run in output-feedback mode, were used to generate our test strings. 
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By thus varying the number of rounds from 1 to 16, it was thought possible to gradually 
vary the degree of randomness of the resulting strings. For each of these 16 gradations 
we generated an ensemble of 10 test strings. 

Plaintext consisting of all zeroes was used to initiate generation of all the test 
strings. The same 10 keys were used for each ensemble. These keys were generated 
by using the DES, in output-feedbak mode, with a seed of all zeroes, and the key 
FFFFFF00FF0000001s. The kth  output block of ciphertext was subsequently used 
as the key for generating the kth  test string of each ensemble. 

Three tests measuring nonrandomness were performed on the test strings. If any of 
these tests indicated the nonrandomness of a test string at the 5% level, then the test 
string was flagged and the characterizing parameters for all three tests were printed. 

The first test measured uniformity of distribution with respect to bit values. Each 
test string was partitioned into 211 ordered sets - each set consisting of four bits. To 
measure uniformity of distribution, the chi-square statistic was computed with respect 
to the 16 possible realizations of four bits. When the chi-square value is greater than 
24.996 (for 15 degrees of freedom) the string distribution is significantly nonrandom at 
the 5% level. 

The second, and third tests were our tests for evaluating the second, and third 
moments ( T  = 4 and P = 6). If the characterizing parameter, for either of these tests, is 
greater than 1.960, then the input string is significantly nonrandom with respect to that 
test, a t  the 5% level. 

Our results are presented in Table 1 below. 
For the one round truncation of the DES, a seed of all zeroes was used to  generate 

the strings. As a consequence, its output is limited to a repetition of two 64 bit blocks. 
The first block necessarily contains zeroes in its 32 odd positions, and a mixture of zeroes 
and ones in its even positions. The second block, also by necessity, contains 64 zeroes. 
All the pairs of blocks which follow, are a repetition of the first two blocks. Thus, one 
expects the characterizing parameters for each nonrandom test to reach near maximum 
values. Table 1 satisfies this expectation for all of the test strings in this ensemble. 

Every output block generated by the two-round version of the DES is uniquely 
encrypted. Yet, all but three of the ten test strings generated, were flagged at the 5% 
level of significance, with one string rejected as random by both of the spectral tests, 
but not by the chi-square test. However, the majority of test strings was found to be 
nonrandom at a level approaching certainty. 

For the threeround version of the DES, all ten strings were flagged at the 5% level 
of significance by both of the spectral tests. For nine of the test strings, the random 
hypothesis was rejected at  a level approaching certainty. Six of the strings were rejected 
at  the 5% level by the chi-square (two of these were at a level approaching certainty). 

Using four or more rounds, the number of strings flagged as nonrandom, a t  the 5% 
level, were within a range acceptable for random strings. However, the five round version 
generated a single test string which was found to be nonrandom by all three tests, a t  a 
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10 

Table 1 

6976.000 0.1993+05 0.2493+07 

2 
4 
6 
7 
8 
9 
10 

7872.000 
6720.000 
6720.000 
6720.000 
7744.000 
6784.000 
6336.000 
8256.000 
6720.000 

143.906 144. 640. 
688.000 1080. 7150. 
116.984 139. 553. 
45.078 67.3 243. 

185.406 202. 894. 
99.453 55.2 151. 
12.891 12.7 21.7 

0.2893+05 
0.19 6E+05 
0.2373+05 
0.199E+05 

0.2023+05 
0.2083+05 
0.2513+05 

0.2033+05 

0.2063+05 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0.5603+07 
0.2453+07 
0.3803+07 
0.2463+07 
0.2613+07 

0.2783+07 
0.4303+07 
0.2783+07 

0.2603+07 

30.406 18.3 33.9 
28.047 23.7 66.3 
19.609 12.8 24.8 
25.047 32.7 77.7 
25.187 46.3 116. 
21.297 14.1 23.7 
21.281 13.1 23.7 
15.672 3.49 2.94 

49.687 22.6 44.1 
100.172 125. 527. 

1 
3 
9 

12.687 3.31 2.56 
34.094 0.426 0.586 
44.109 9.21 17.6 

1 

7 I 9.812 I 2.33 I 1.56 

10.594 I 2.43 1.72 

5 33.656 I 12.2 23.6 

4 
7 

25.812 1.16 1.22 
13.437 1.45 2.02 
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10 I 26.875 I 0.999 

Table 1 (cont.) 

0.823 

level approaching certainty. One test string generated by the seven-round version was 
found to be nonrandom by both the spectral tests at a Ievel approaching certainty, while 
the chi-square test accepted this string as random at less than the 0.5% level. Thus, 
probabilistic considerations force one to conclude that the ensembles generated by the 
five and the seven round versions of the DES are not random. Ensembles generated by 
eight or more rounds, were found to have good statistical properties. 

Our spectral test for r = 4 appears to be a good complement to the chi-square test. 
Looking at test strings generated by four or more rounds of the DES, one observes little 
overlap between the chi-square test and the spectral tests. Of the fifteen strings flagged 
at the 5% level, five were flagged by the chi-square test alone; and six which were not 
flagged by this test, were flagged by the P = 4, spectral test. The overlap between the 
two spectral tests - though not total - was high. 

We note that when we previously used our spectral test based on the FFT [3] to test 
the DES round by round we used the same set of keys to generate our test ensembles. 
Our test strings, however, were of length 215 bits. (This is the length originally chosen 
by Gait in his test [l].) When we compare the output of these tests with our new results, 
they are essentially the same string for string except that for the longer test strings, the 
significance level of the rejected strings is generally much higher. This indicates that tests 
based on the FWT, and the FFT, give similar results; and also that the “bad” strings 
are key dependent, since they remain nonrandom when the length of the test string is 
increased by a factor of four. 
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