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ABSTRACT

We have developed an algorithm that, starting with the observed properties of the X-ray

spectrum and fast variability of an X-ray binary, allows the production of synthetic data

reproducing observables such as power density spectra and time lags as well as their energy

dependence. This further allows us to reconstruct the variability of the parameters of the

energy spectrum and to reduce substantially the effects of Poisson noise, helping in studying

fast spectral variations. We have applied the algorithm to the Rossi X-ray Timing Explorer data

of the black hole binary Cygnus X-1, fitting the energy spectrum with a simplified power-law

model. We found that the distribution of the power-law spectral indices on time-scales as low

as 62 ms is limited between 1.6 and 1.8. The spectra index is positively correlated with the

flux even on such time-scales.

Key words: methods: data analysis – methods: statistical – X-rays: binaries – X-rays: indi-

vidual: Cygnus X-1.

1 IN T RO D U C T I O N

Black hole binaries (BHBs) exhibit considerable X-ray variabil-

ity on a wide range of time-scales. The study of X-ray fast time

variability has become an important astrophysical research tool that

helps us gain better insight into the physical process at work near the

black hole (see the recent review of van der Klis 2006). For instance,

the dynamic time-scale for the motion within a few Schwarzschild

radii of a 10-M⊙ black hole is of the order of milliseconds. Further

considering that most of the gravitational energy of accretion matter

is released in the inner area of a few Schwarzschild radii, the vari-

ability at short time-scales can be used to probe the accretion-flow

dynamics and geometries within the strong-field region.

Time variability can be studied in the time domain or in the

frequency domain. The latter is based on the Fourier transform

(FT) and is usually based upon two basic techniques: the power

density spectrum (PDS) and the time-lag spectrum. The square of FT

amplitudes as a function of Fourier frequency constitutes the PDS,

which provides the estimate of variance at different frequencies. The

time-lag spectrum is obtained from the phase lag, i.e. the phase angle

difference between the Fourier vectors at different energy channels.

In practice, the PDS and the lag spectra are usually averaged over

many segments of observations and frequencies in order to increase

the statistical significance. The FT is reversible; the time series

can be reconstructed from its FT by means of the inverse Fourier

⋆E-mail: wuyx@mails.thu.edu.cn (YXW); tomaso.belloni@brera.inaf.it

(TMB)

transform (IFT). In contrast, the PDS is not reversible, since the

phase information in the FT is lost. In principle, there is an infinite

variety of different signals that will yield the same PDS.

The fast variability observed from BHBs is of stochastic nature

and as such cannot be modelled directly. In other words, it is not

possible to reproduce the exact observed variations. The aim of

time-series analysis is to characterize the average properties that

give rise to the fluctuations, under the assumption that the process

is stationary. A successful model should reproduce the PDS and

the lag spectrum, as well as other statistical properties of the sig-

nal (see e.g. Uttley, McHardy & Vaughan 2005). A conventional

model describing the temporal fluctuation is the shot-noise model

(Terrell 1972; Negoro, Miyamoto & Kitamoto 1994). It has become

clear, however, that in this framework complex shot profiles or dis-

tributions of shot durations and amplitudes have to be assumed to

model the variability of BHBs (e.g. Miyamoto et al. 1988; Belloni

& Hasinger 1990; Lochner, Swank & Szymkowiak 1991). An al-

ternative way is to apply linear state space models which are based

on stochastic processes or on autoregressive processes to describe

the temporal variability (König & Timmer 1997; Pottschmidt et al.

1998). Uttley et al. (2005) use a non-linear model to explain the log-

normal flux distribution and rms–flux relation. All these models are

phenomenological; based on the PDS alone they try to reproduce

the observed properties through a mathematical model, which can

provide constraints on physical models. On the other hand, Arévalo

& Uttley (2006) attempted a more physically constrained generating

process to model all the spectral-timing properties simultaneously.

The usual course of action is to extract information in the fre-

quency domain, such as a PDS, from the time series. However, in
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2414 Y. X. Wu, T. M. Belloni and L. Stella

some cases we need to do the opposite, e.g. to reconstruct the time

series from the PDS. The simulation of random time series with

an arbitrary PDS has a long and established history (see e.g. Davis,

Hagan & Borgman 1981; Liu & Munson 1982) in the field of digital

signal processing. There are also papers on simulating time series

with specific marginal distribution, e.g. lognormal (Johnson 1994).

In astrophysical research, the reasons and benefits to perform such

a reconstruction are various. Sometimes it provides a more direct

tool to judge the models or simulation methods (for an example,

see Timmer & König 1995). Also it can be used to estimate the

error bars by the Monte Carlo simulation (e.g. Done et al. 1992).

Since the PDS does not contain phase information, so in order to

obtain the time series one must assign values to the phases as the

reconstruction based on the PDS alone is not unique. One easy way

to generate data that reproduce a given PDS is to choose the Fourier

amplitude according to the PDS and assign random phases between

[0, 2π] (Done et al. 1992). Based on the theory of linear stochastic

process and the fact that the PDS itself follows a χ 2 distribution,

Timmer & König (1995) proposed an algorithm practically identi-

cal to that of Davies & Harte (1987) in order to produce a variety

of possible non-deterministic linear time series from the PDS by

randomizing both the phases and amplitudes. Some authors use the

energy-resolved PDS instead of the total PDS given by the method

of Timmer & König (1995) and shift the phase to yield light curves

with a desired lag between energy bands (e.g. Zoghbi et al. 2010).

Recently, the non-linear behaviour of observed light curves was

studied by Uttley et al. (2005). They suggested that an additional

exponential transform needs to be applied to the time series created

with the method of Timmer & König (1995).

BHBs are known to exhibit X-ray spectral evolution on short

time-scales. This evolution is reflected in the presence of lags be-

tween the light curves at different energy ranges and asymmetries

of the cross-correlation function between them, as well as fast varia-

tions of the corresponding hardness ratio. However, the conventional

spectral models applied to these systems are designed to fit the en-

ergy spectrum averaged over, usually, several thousand seconds.

Because of limited statistics, it is not possible to follow the energy

spectrum over the short time-scales corresponding to the observed

fast variability.

In this work, we propose a new technique that simulates a time

series starting from the actual intensity measurements. Specifically,

we simulate the light curves in different energy bins reproducing all

the properties observed in the real data: the average energy spec-

trum, the PDS as a function of energy and the frequency-dependent

lag spectra between different energy bands. In the simulation, no

Poisson noise is introduced. With the simulated ‘clean’ light curves

in different energy bins, we can study the variations of the energy

spectrum on short time-scales. Our work is improved (or different)

in three aspects when compared with the papers mentioned above.

First, besides the PDS, we make use of other measurements, in-

cluding energy spectra and lag spectra as input to the simulation.

Secondly, we require that the simulated time series should reproduce

almost all the timing and spectral properties. Thirdly, we explore

the possible application of the method, including filtering Poisson

noise and data extrapolation. Our work, based on those by Timmer

& König (1995) and Uttley et al. (2005), can be seen as a contin-

uation of them. In contrast to Arévalo & Uttley (2006), our work

is model-independent and aims at developing an algorithm that re-

covers the time series preserving the information and filtering the

noise.

This paper is organized as follows. The initial works of data

analysis and parameter estimation are introduced in Section 2, in-

cluding the non-linearity study (Section 2.1), energy dependence

of PDS (Section 2.2), lag spectra (Section 2.3), coherence func-

tion (Section 2.4) and distribution of the phases (Section 2.5). The

important results are presented in Section 3. In Section 3.1, the

algorithm is defined step by step. The simulated light curve is com-

pared with the observed one in Section 3.2 and the issue of Poisson

noise subtraction is discussed in Section 3.3. As one important ap-

plication, the energy spectra on short time-scales (dynamic energy

spectra) are derived and the variation of the spectral shape is inves-

tigated in Section 3.4. Another possible application, the simulation

of data with better time and energy resolution than observations,

is discussed in Section 3.5. The issues associated with phase and

noise are discussed in Section 3.6. Conclusions are presented in

Section 4.

2 DATA A NA LY SI S A ND PARAMETER
ESTIMATION

The central idea of the algorithm is to synthesize light curves that

reproduce all observed properties in both the time and the frequency

domains. These are

(i) the average count rate in different energy bands, both inte-

grated (spectrum) and as a function of time (light curves);

(ii) the relation between rms variability and count rate in the light

curves at different energies (rms–flux relation);

(iii) the shape and normalization of the PDS as a function of

energy;

(iv) the phase/time-lag spectrum as a function of energy.

Once these properties are extracted from the data, a synthetic data

curve can be constructed to reproduce the same results.

A preliminary step is to obtain the above quantities with good ac-

curacy for a BHB. We used a single observation of Cygnus X-1

from the proportional counter array (PCA) on board the Rossi

X-ray Timing Explorer (RXTE; Obs ID 10238-01-05-000). Cyg X-1

is the first discovered BHB and has been studied for several

decades. Its brightness and persistence make it a perfect target for

X-ray timing research. The observation was carried out in 1996

March, when Cyg X-1 was in its hard spectral state, the most com-

mon for the source (e.g. Wilms et al. 2006). The data configuration

used here is the generic PCA binned mode B_16ms_64M_0_249,

which provides high resolution in both energy (64 channels over

the full 2–60 keV PCA band) and time (16 ms). This is the main

reason why we selected this particular observation, which also has

the advantage of being made with all five proportional counter units

of the PCA, increasing the source count rate. In order to obtain

sufficient statistics for the analysis, we rebinned the data into eight

energy bins between 0.14 and 25 keV. In this way in each energy

bin the mean count rate is above ∼1000 counts s−1. Note that the

contribution of background photons to each of these eight bins is

minor compared to the source counts.

For the analysis, we used custom-made software written in the

IDL environment. For each of the eight energy bins, we extracted a

Fourier spectrum from data stretches of a length of 128 s, up to a

Nyquist frequency of 32 Hz. These Fourier spectra were averaged

for constructing the PDS (normalized to the squared fractional rms;

see Belloni & Hasinger 1990) and the phase-lag spectra. The Pois-

son contribution was subtracted by using RXTE recipes (see Zhang

et al. 1995).
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Fast spectral variability from Cygnus X-1 2415

Figure 1. The rms–flux relations for eight energy bins. They are produced by binning the 1–32 Hz rms measured in 1-s segments into flux bins. The dashed

line is the best-fitting linear model for each plot.

Figure 2. The flux distribution expressed as a probability density, i.e. the data points per flux bin normalized by the flux bin width and by the total number of

data points. The flux is calculated over 0.25-s time bins. The dashed line is the best-fitting lognormal model for each plot.

2.1 Rms–flux relation

Uttley et al. (2005) showed that the rms–flux relation, the non-linear

behaviour and the lognormal flux distribution observed in the hard

state of BHB represent three different aspects of the same underlying

process. This non-linearity can be reproduced as an exponential of

a linear light curve. As the plan is to simulate the source light curve

in different energy bands, we must first check that this non-linearity

also holds for a separate energy band. We then produced the rms–

flux relation and the flux (count rate) distribution for each of our

eight energy bins (see Figs 1 and 2).

The rms in Fig. 1 was measured by integrating the PDS of the

eight bins over the 1–32 Hz frequency interval for 1-s segments. Its

relation to the count rate, also in 1-s bins, is consistent with linearity

for all bins. This linear relation also holds when the length of the

light-curve segments and the frequency range for the integration

are changed. At the same time, the flux distribution (with a time

bin of 0.25 s in Fig. 2) fits a lognormal model. Further subdividing

the energy range into narrower bins, we did not find significant

deviations.

As shown by Uttley et al. (2005), for typical observed light curves

with the PDS dominated by broad components and a fractional rms

of 20–40 per cent, the distorting effect of the exponential transfor-

mation on the shape of the PDS is relatively small. A quantitative

analysis (not presented here) suggests that for Lorentzian-shaped

PDS components with fractional rms smaller than 50 per cent, the

distortion is not serious if the quality factor1 Q � 2. We tested the

distortion on the PDS caused by the exponential transformation of

data in the time domain: we calculated the PDS from the logarithm

of the real data and compared it with the original one (Fig. 3).

The PDS shapes are almost unchanged between the raw data and

the logarithmically transformed data. Therefore in our simulation

below, it is justified to use the observed PDS as the PDS of the

input linear light curve without the need to correct the distortion

effect of the exponential transformation. However, it is still im-

portant to apply the appropriate correction to the normalization of

the input PDS in order to reach the desired variance in the output

light curve, because the exponential transformation will cause an

increase in the light-curve variance. Also the mean count rate of the

light curve would change after the exponential transformation, and

a correction factor needs to be multiplied by the non-linear light

curve.

1The quality factor is the ratio of the Lorentzian centroid frequency to the

FWHM.
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2416 Y. X. Wu, T. M. Belloni and L. Stella

Figure 3. The PDS of the raw data (solid line) and the logarithmically

transformed data (dot). The latter is renormalized to be directly compared

with the former. The Poisson noise is not subtracted from the PDS.

Figure 4. The PDS in eight energy bins, with the Poisson noise subtracted.

2.2 Energy dependence of the PDS

We extracted an average PDS from each of the eight energy bins,

covering the frequency range of 0.008–32 Hz (Fig. 4). No narrow

quasi-periodic oscillations are seen. A simple model consisting of

two broad Lorentzians was used for the fit. The goodness of the fit

is reasonably good, with all reduced χ 2 smaller than 2.2 (obtaining

a formal reduced χ 2 of the order of unity is difficult for these high-

signal PDS). Adopting a more complex model (e.g. Belloni et al.

1997), the goodness of fit would be improved but the fit parameters

would be poorly constrained. There are three free parameters for

each Lorentzian: the normalization (the square of the integrated

fractional rms), the centroid frequency and the full width at half-

maximum (FWHM). The evolution of the PDS shape with energy

can be well described by the energy dependence of the best-fitting

parameters, which is shown in Fig. 5. In the case of the second

Lorentzian, for the last three energy bins the best-fitting centroid

Figure 5. The best-fitting parameters of the two-Lorentzian model for the

PDS at different energies. The left-hand and right-hand columns correspond

to the two Lorentzian components. The parameters are (from top to bot-

tom) normalization, centroid frequency and FWHM. The circles are the

interpolation values between energy bins (see Section 3.5).

frequency decreases to zero, the lower bound of this free parameter.

For these three bins, uncertainties were not plotted.

2.3 Energy dependence of the time-lag spectrum

The time lag of the light curve in each energy bin relative to that of

the lowest energy bin (0.14–3.4 keV) was calculated from the cross-

spectra between 0.06 and 30 Hz. Positive lags here correspond to

the hard time series lagging the soft. The lags were logarithmi-

cally rebinned in frequency in order to reduce noise. Since their

calculations involve the splitting of the data into two energy bands,

compared with the PDS the measurement of time lags is more sen-

sitive to counting noise. Nowak et al. (1999) estimated the expected

noise level for the time-lag measurements and concluded that for

frequencies below ∼0.1 and above ∼30 Hz, lags cannot be mea-

sured because of noise limitations. As the frequency approaches

∼0.1 or ∼30 Hz, the lags tend to zero due to the effect of noise.

When sampling fluctuations become comparable to the intrinsic

lags, they scatter around zero and exhibit negative values.

We adopted the same strategy as for the PDS to quantitatively

describe the energy dependence of the lag spectrum in a uniform

way. Nowak et al. (1999) showed that the time lags approximately

show a power-law dependence upon frequency (∝f −0.7). We found

significant deviations from a simple power-law model. The time-

lag spectra show a two-humped shape similar to that published in

previous studies (e.g. Miyamoto et al. 1992; Cui et al. 1997; Nowak

et al. 1999). We used a two-Lorentzian model to fit the time-lag

spectra. The time-lag spectra with the best-fitting two-Lorentzian

models are shown in Fig. 6. Because the negative lags have small

values and appear in the frequency range where the noise level

dominates, they are not expected to be intrinsic. The negative lags

were therefore excluded from the fit. The evolutions of the best-

fitting parameters with energy are shown in Fig. 7.

2.4 Coherence function

The coherence function is a Fourier-frequency-dependent mea-

sure of the linear correlation between time series measured

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 408, 2413–2425
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Fast spectral variability from Cygnus X-1 2417

Figure 6. Time-lag spectra for various energy bins versus the lowest energy bin (0.14–3.4 keV). Dots represent the positive lags (hard lagging the soft) and

asterisks represent negative lags (soft lagging the hard). The dashed lines are the best-fitting two-Lorentzian models for the positive lags.

Figure 7. The best-fitting parameters of the two-Lorentzian model for time-

lag spectra at different energies. The left-hand and right-hand columns cor-

respond to the two Lorentzian components. The parameters are (from top to

bottom) normalization, centroid frequency and FWHM. The circles are the

interpolation values between energy bins (see Section 3.5).

simultaneously in two energy bands (Vaughan & Nowak 1997).

Our simulation does not include any incoherent variability,

i.e. variations in one energy band that are not correlated with

variations in other bands. In other words, the algorithm contains an

underlying assumption of a single emission component in different

energy bands with a single delay at a given frequency and unity

coherence. We calculated the coherence function of Cyg X-1 data

with correction for counting noise, following the recipe presented in

Figure 8. The coherence function for various energy bins versus the lowest

energy bin (0.14–3.4 keV).

Vaughan & Nowak (1997). The results are shown in Fig. 8, which

demonstrate a remarkably high coherence (close to unity) over a

wide frequency range and consistent with the previous coherence

study of Cyg X-1 (e.g. Cui et al. 1997; Vaughan & Nowak 1997;

Nowak et al. 1999). Therefore, we can say that below ∼10 Hz, the

flux in each energy band can be regarded as originating from one

single coherent component, whose intrinsic phase delay is indicated

by the lag spectrum. The coherence becomes slightly lower at higher

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 408, 2413–2425
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2418 Y. X. Wu, T. M. Belloni and L. Stella

Figure 9. (a) The phase at different frequencies for the first segment, (b) the phase at 0.0625 Hz for 694 segments, (c) the autocorrelation function of phase at

different frequencies for the first segment and (d) the histogram of phase at 0.0625 Hz.

frequencies, which may indicate the presence of incoherent compo-

nents. We do not attempt to add them to the simulation because it

is a laborious and model-dependent process and beyond the scope

of this work.

2.5 Phase

In order to reconstruct the time series from the PDS and time-lag

spectra, a prior phase distribution has to be assumed, since the

PDS does not contain phase information. We first analysed the real

data in order to derive a reasonable phase distribution. We split the

0.015 625-s binned light curve into 694 segments, each with a length

of 1024 points (16 s). For each segment, we produced an FT, leading

to 694 values of the phase angle for each frequency between 0.0625

and 32 Hz. Obviously, the phases between separate segments are

comparable only after considering the additional phase shift caused

by the time delay between their start time. If ϕj,i is the phase angle

at frequency fj of the ith segment, t0,i and t0,1 are the start times of

the ith segment and the first segment, respectively; the ‘absolute’

phase at this frequency for the ith segment can be calculated as

ϕ′
j,i = ϕj,i + 2πfj (t0,i − t0,1).

In Fig. 9, we plot the phase at different frequencies for the first

segment (panel a), the phase at a certain frequency for different seg-

ments (panel b) and its histogram of occurrence (panel d). Moreover,

we studied the autocorrelation function of the phase at different fre-

quencies (shown in panel c). All these results clearly show that the

phase follows a uniform distribution between −π and π and the

phases at different frequencies are random and independent. There-

fore, in our synthesis algorithm we generate uniformly distributed

random numbers in the interval (−π, π] as phase angles for the FT.

3 R ESULTS

3.1 The algorithm

Having obtained the energy-resolved PDS (with Poisson noise sub-

tracted) and the time-lag spectra for our eight energy bins, and the

average energy spectrum, we followed the procedure given below

to generate a synthetic light curve.

(i) Step 1. For the lowest energy bin (bin 1), we generated uni-

formly distributed random numbers between (−π, π] to be used

as phase angle ϕ(fi) at Fourier frequency fi (fi ≥ 0). In order to

obtain real values for the time series, we chose the phase for the neg-

ative frequencies as ϕ(−fi) = −ϕ(fi). For energy bins 2 through 8,

the phases were reconstructed from the bin 1 values according to the

measured phase-lag spectra which provide the phase shift relative

to the lowest energy bin at each frequency.

(ii) Step 2. The amplitude of the FT at each frequency was ob-

tained from the PDS. In order to account for the effects of the ex-

ponential transformation to the variance of the light curve, the PDS

should first be renormalized in order to obtain the desired variance.

For a PDS P(f ) in units of (rms/mean)2 Hz−1 and with frequency

bin size �f , the desired fractional rms is R2 = �P (f )�f . The

PDS must be multiplied by a factor of log(R2 + 1)/R2 (for details,

see Uttley et al. 2005). The square root of the renormalized PDS is

the amplitude of the FT A(fi). The series also need to be expanded

to negative frequencies with A(−fi) = A(fi).

(iii) Step 3. For each energy band, we calculated the IFT of

A(fi) exp[jϕ(fi)] (where j is the imaginary unit) to obtain the linear

time series l(t) and then calculated its exponential. In order to ensure

that the simulated light curve has the desired mean count rate C(E)

measured in the average energy spectra, a factor of C(E) log(R2 +
1)/R2 needs to be multiplied by exp[l(t)].

(iv) Step 4. The time series obtained with the previous steps was

stored as one light-curve segment. Steps 1–3 were then repeated to

produce multiple segments.

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 408, 2413–2425
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Fast spectral variability from Cygnus X-1 2419

Figure 10. Comparison of the simulation with the algorithm described in Section 3.1 (with additional Poisson noise) and the real data (Obs ID 10238-01-05-

000) for the energy bin of 5.5–6.8 keV. Top: one segment (1024 points) of light curve of the real data (left) and the simulation (right). Middle: the PDS (left)

and the time-lag spectra (right) of the simulation (dot for positive values and asterisk for negative values) and the real data (solid line). Bottom: the rms–flux

relation (left) and flux distribution (right) of the simulation (dot) and the real data (solid line). The error bars of the simulation data are plotted.

3.2 Test of the simulation

To check whether the simulated light curve replicates all the ob-

served properties of original real data, we compared their PDS,

time-lag spectra, rms–flux relation and lognormal flux distribution.

The comparison relative to the energy bin of 5.5–6.8 keV is shown

in Fig. 10 as an example. The simulated light curve of course cannot

have exactly the same evolution as the real one, as a random-number

input is involved, but it appears to be similar in the amplitude and

time-scale of variance. The PDS, the time-lag spectrum, the rms–

flux relation and the flux distribution are consistent with those from

the real data, showing that our simulation reproduces accurately the

intrinsic properties of the real data. In other words, our algorithm

can synthesize data whose statistical properties are indistinguish-

able from those observed from Cyg X-1.

3.3 Poisson noise subtraction

The expected influence of Poisson fluctuations in the time series

is represented as a white noise component in the PDS. Since it is

independent of the source signal (apart from dead-time effects), the

Poisson noise can be considered as a ‘background’ component in

the PDS, against which we try to observe other features caused by

the intrinsic variability of the X-ray source. If the light curve is a

series of contiguous time bins, the expected Poisson noise level is

simply 2 for the Leahy normalization (Leahy et al. 1983). In this

work, the PDS is normalized in units of (rms/mean)2 Hz−1 (Belloni

& Hasinger 1990), and the expected Poisson noise level in the PDS

is given by

Pnoise =
2(C + B)

C2
,

where C and B are the mean source count rate and background

count rate, respectively. See Vaughan et al. (2003) for more details

about the different normalizations of PDS and the corresponding

Poisson noise levels. Note that the shape and level of the Poisson

noise contribution to the PDS are modified by dead-time effects (for

the RXTE/PCA, see Zhang et al. 1995).

Therefore, we can easily subtract the Poisson noise level from the

PDS and obtain the ‘clean’ light curve without Poisson noise with

our algorithm. In other words, our synthetic algorithm can be used

as a filter of Poisson noise. We can check this by adding Poisson

fluctuations to an initial simulated ‘clean’ light curve and then filter

the ‘dirty’ light curve with our algorithm to see whether the filtered

light curve resembles the initial one or not. Because the algorithm

cannot repeat the exact shape of the light curve due to the phase

randomization, in order to make a direct comparison between the

clean light curve and filtered light curve, we have to record the

phase information of the initial data as the input of the algorithm

instead of using random phases. We do this here because our aim is

simply to check the effect of Poisson noise filtering for the synthetic

algorithm.

The results are shown in Fig. 11. We can see how the Poisson noise

is removed in the filtered light curve. A quantitative measurement

is the standard deviation, which is 320, 420 and 340 for the clean,

dirty and filtered light curves, respectively. The excess variation

of the filtered light curve at high frequencies is probably caused

by the distortion introduced by the exponential transform, which

tends to exaggerate the positive variation, e.g. the amplitudes of the

flares. The conclusion is that the synthetic light curve created by

our algorithm can be considered essentially free of Poisson noise.

It is worth to point out that if the phases were known, we

could reconstruct the time series strictly by IFT, because this time-

to-frequency transition is completely reversible. The exponential

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 408, 2413–2425
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2420 Y. X. Wu, T. M. Belloni and L. Stella

Figure 11. Top: the initial clean light curve and its PDS. Middle: the light curve with additional Poisson noise and its PDS. Bottom: the light curve filtered by

our algorithm and its PDS. The dashed line in the right-hand panels is the PDS of the initial clean light curve. The PDS are calculated from 50 segments, each

with a length of 1024 points. Each of the left-hand panels shows only one segment of the corresponding light curve.

transform will not be necessary. We therefore face an interesting

problem: if the phase is known, the exponential is redundant for re-

constructing the initial time series, which is completely defined by

the Fourier spectrum; however if we know nothing about the phases

and assume them to be random, in order to reproduce a time series

satisfactorily we have to apply the exponential transformation. We

will discuss this problem in Section 3.6.

The above process of subtracting the Poisson noise is similar to

the Wiener filtering. The Wiener filter is the optimal filter in the

least-squares sense for the removal of noise from a time domain

signal. The Wiener filter is designed in the Fourier domain and can

be expressed as (Press et al. 1992)

�(f ) =
|S(f )|2

|S(f )|2 + |N (f )|2
in which S and N are the FTs of the intrinsic signal and the noise,

respectively. The denominator |S(f )|2 + |N (f )|2 is proportional to

the PDS of the measured light curve (under the assumption that

signal and noise are statistically independent). The filter can be

constructed if the true form of the intrinsic power |S(f )|2 is known

or can be estimated well. Our algorithm and the Wiener filter share

some common ideas – to separate noise and signal in the frequency

domain, which cannot be done in the time domain. We fixed the

noise power to 2 and applied a Wiener filter to the same data in

Fig. 11. The difference between the Wiener filtering solution and

ours is shown in Fig. 12. The filtering effect is generally similar

for the two methods. If the PDS used in the Wiener filtering and

our algorithm are those averaged over many segments (panels b

and d in Fig. 12), our algorithm appears to preserve more short

time-scale fluctuations, which makes it more similar to the original

one. If the PDS of the single segment shown in the figure is used

in designing the Wiener filter (panel c in Fig. 12), its solution

would be much more noisy than the original light curve. From this

Figure 12. (a) The initial clean light curve (one segment, the same as in

the top-left panel of Fig. 11). This is used as the input for both Wiener

filtering and our algorithm, after adding Poissonian noise (see the text). (b)

The Wiener filtering solution with the averaged PDS over many segments.

(c) The Wiener filtering solution with the PDS of the single segment. (d) The

solution of our algorithm (the same as in the bottom-left panel of Fig. 11).

perspective, our algorithm seems to provide a more stable filter as it

is able to subtract the noise and at the same time avoid destructing

too much rapid variability. This is probably due to the exponential

transformation that can restore the fluctuation amplitude to a certain

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 408, 2413–2425
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Fast spectral variability from Cygnus X-1 2421

extent. The price of the exponential transformation is that the exact

shape of the light curve is slightly distorted.

3.4 Dynamic energy spectra

If the photon count in one bin of the energy spectrum is N, the

relative standard deviation expected from the Poisson distribution

is 1/
√

N . When we want to obtain the average energy spectra with

high statistical significance, we need a sufficiently long exposure

(hundreds to thousands of seconds) to accumulate enough pho-

tons. It is important to see how the energy spectra evolve on short

time-scales which, however, in this way is not possible. The en-

ergy spectra on short time-scales, which we name dynamic energy

spectra, can be obtained by aligning the light curves of different

energy bins in time and obtaining the counts in every time bin as a

function of energy. The problem of this analysis from the real data

is that the Poisson fluctuation is severe in this case due to the small

number of counts. The simulated light curve obtained with our syn-

thetic algorithm, as presented in Section 4, does not include Poisson

noise. The dynamic energy spectrum produced from the simulated

light curves is therefore ‘cleaner’ and can reveal the underlying

properties otherwise hidden by noise.

The dynamic energy spectra with eight energy bins were calcu-

lated for both real data and simulation at three time-scales (or time

bin sizes), 0.0625, 0.25 and 1 s, and then fitted with XSPEC using the

PCA detector response matrix. Note that the synthetic data, having

reproduced the background-subtracted energy spectrum, are also

background free. The lowest energy bin (0.14–3.4 keV) is excluded

due to the uncertainty in the PCA calibration below 3 keV and a

simple power law is fitted to each of the dynamic energy spectra.

There are in total 25 600, 6400 and 1600 dynamic energy spectra

that were fitted for the three time-scales, respectively. The power-

law photon index Ŵ is the parameter that we studied to reflect the

basic shape of dynamic energy spectra. For a comparison of real

data and simulation, we plot the time evolution of Ŵ as well as

the flux covering the whole energy band (0.14–25 keV; Fig. 13),

the correlation between Ŵ and flux (Fig. 14) and the histogram of

Ŵ (Fig. 15). The noise-free reconstructed data provide a ‘cleaner’

view of the Ŵ distribution and the Ŵ–flux correlation. One possible

reason for the improved correlation is that the simulation does not

include any incoherent variations that may weaken the correlation

for the real data. However, we have shown that the coherence in the

real data is very close to unity for most of the frequencies considered

here and therefore this possibility can be excluded.

Combining the above results, we can conclude as follows.

(i) The correlation between Ŵ and flux is somewhat higher for

the simulation than for the real data.

(ii) The distribution of Ŵ is narrower for the simulation than for

the real data.

(iii) The above differences between simulation and real data tend

to increase at shorter time-scales, i.e. for lower photon count num-

bers.

The correlation between Ŵ and flux is consistent with the previ-

ous results that the hardness ratio anticorrelates with the X-ray flux

(e.g. Cui, Feng & Ertmer 2002; Liu & Li 2004; Wilms et al. 2006) or

that the photon index correlates with the flux on a time-scale of days

(e.g. Zdziarski et al. 2002; Gierliński & Zdziarski 2003; Pottschmidt

et al. 2003). The significantly better correlation for simulated data

(Fig. 14) shows that our algorithm enables us to reduce the effects of

Figure 13. The 0.14–25 keV light curve (dashed line) and the corresponding power-law photon index Ŵ evolution (solid line) for (a) real data and (b) simulation

(without Poisson noise), with time bin sizes of 0.0625, 0.25 and 1 s from top to bottom.

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 408, 2413–2425
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2422 Y. X. Wu, T. M. Belloni and L. Stella

Figure 14. The correlation between the power-law photon index Ŵ and flux

at three time-scales (or time bin sizes) of 0.0625, 0.25 and 1 s for real data

(left-hand column) and simulation (right-hand column).

Figure 15. The histogram of the power-law photon index Ŵ at three time-

scales (or time bin sizes) of 0.0625, 0.25 and 1 s for real data (left-hand

column) and simulation (right-hand column).

Poisson noise and study the intrinsic spectral evolution at short time-

scales. The Poisson noise also broadens significantly the distribution

of Ŵ (Fig. 15). However, we need to be cautious to claim that the

broadening of the Ŵ distribution from the simulation (as shown

in the right-hand column in the Fig. 15) is completely caused by

the intrinsic short-time-scale spectral fluctuation. It might also be

introduced by our algorithm, which we investigate next.

In order to test the effects of the algorithm on the recovery of Ŵ

values, we produced a new synthetic data set by using all informa-

tion described above with the exception of the Ŵ values, which were

fixed at the single value of 1.69. In other words, we produced a set

of light curves with null time/phase lags, which were therefore iden-

tical except for their normalizations. We added Poisson noise and

studied the output Ŵ distribution after applying our algorithm. The

histograms of Ŵ for the zero-lag synthetic data, the values obtained

through direct spectral fitting and those from our reconstruction are

plotted in Fig. 16. From our test, we can derive that the systematic

broadening of the Ŵ distribution introduced by our procedure is very

limited (less than 0.004 or 0.24 per cent) (note the horizon scale of

the right-hand panel in Fig. 16).

The observed Ŵ distribution shown in the left-hand column of

Fig. 15 is the result of both the intrinsic distribution in Ŵ and the

broadening due to noise. Thus, the standard deviation σŴ of the

intrinsic spread in Ŵ can be quantitatively estimated as

σŴ =
√

σ 2
data − 〈e2〉,

where σ 2
data is the variance of the Ŵ distribution observed from real

data (left-hand column of Fig. 15) and 〈e2〉 is the mean square error

on Ŵ obtained from the spectral fitting analysis. For the shortest

time-scale of 0.0625 s, we have obtained 25 600 values of Ŵ by

fitting the dynamic energy spectra, obtaining σ 2
data = 0.0141, 〈e2〉 =

0.0113. σ 2
data is approximately equal to 〈e2〉, which proves that the

spread in Ŵ at a short time-scale from the real data is mostly due

to the Poisson noise. With the above equation we obtain σŴ =
0.0529, close to the standard deviation of 0.0517 calculated from the

simulation data (the top-right panel in Fig. 15). For the longer time-

scales, the two values are also found to be comparable. Again, this

fact supports that our algorithm is capable of filtering the Poisson

noise and reveal the intrinsic distribution of Ŵ. It is interesting to

note that Kotov, Churazov & Gilfanov (2001) assumed the small

variations of the power-law index in their time-lag model. Our study

on the intrinsic Ŵ distribution thereby gives an evidence for their

assumption.

We can therefore draw three conclusions as follows.

(i) The broadening of Ŵ distribution introduced by our algorithm

can be neglected and the histograms in the right-hand column of

Figure 16. The histograms of the power-law photon index Ŵ at 0.0625 s for data with Ŵ distributed as a δ function at 1.69 (left), the same data with added

Poisson noise (middle) and the reconstructed data with our synthetic algorithm (right).
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Fast spectral variability from Cygnus X-1 2423

Fig. 15 reflect the intrinsic spectral variation of the source on these

time-scales.

(ii) Our synthetic method is indeed powerful in filtering Poisson

noise and recovering underlying statistical properties of the source

data which are masked by Poisson noise.

(iii) The Ŵ distribution obtained through short-time spectral fit-

ting of the data is completely dominated by the effects of Poisson

noise and cannot be used to ascertain the real distribution.

A different approach studied by Revnivtsev, Gilfanov &

Churazov (1999) was followed through Fourier-resolved spectra,

which give the energy-dependent variability amplitude in a cer-

tain frequency range. The frequency-dependent spectral variability

revealed by the Fourier-resolved spectra, however, cannot be im-

mediately linked with the variation of spectral indices studied here.

First, the time-scale in our work refers to the time bin size other than

the reciprocal of frequency. The variations sampled on short time

bins come from both low-frequency and high-frequency variabil-

ities presented in PDS. However, the power density or variability

calculated by binning the time series is comparable to that on the cor-

responding frequency (see Wu et al. 2009, and references therein),

and the time-scale can be taken in practice as the time bin size. What

is more important is that although Fourier-resolved spectra have a

form similar to energy spectra, they have a totally different physical

interpretation. Therefore, the comparison of their spectral indices is

not useful. For example, the Fourier-resolved spectrum was found

to be harder at higher frequencies, which only suggests that the

hard X-ray radiation component exhibits larger variation amplitude

compared with the soft radiation as the frequency increases. The

only possible connection we can seek between this phenomenon

and our study on the energy spectral indices is that the variations of

Ŵ on a short time-scale are probably mainly due to the hard spectral

component.

3.5 Extrapolation and interpolation

The synthetic algorithm can be used to produce the data with better

time and energy resolution than the real data, after some additional

hypotheses are made. A two-Lorentzian model has been used to

describe the PDS and lag spectra (see Sections 2.2 and 2.3). If we

extrapolate the model frequency beyond the Nyquist frequency of

the original data, we are able to derive a synthetic light curve with

higher time resolution. Moreover, we have derived the energy de-

pendence of the best-fitting parameters for the PDS and lag spectra.

By interpolating these functions, we can obtain the PDS and lag

spectra (and therefore produce synthetic data) on an energy grid

Figure 18. The real and simulated light curves in two narrow energy bins of

4.34–4.64 keV (top panel) and 11–11.6 keV (bottom panel). The simulation

is based on the interpolation of the best-fitting parameters for PDS and

time-lag spectra between energy bins.

finer than the initial energy resolution. The hypothesis on which

the extrapolation and interpolation are based is that PDS and time

lag evolve smoothly in frequency and energy and that they can be

extrapolated from the observed values.

The results of the extrapolation to higher frequency and of the

interpolation between energies are shown in Figs 17 and 18, re-

spectively. The time resolutions in the two panels of Fig. 17 are

0.004 and 0.001 s, respectively, smaller than the time resolution of

0.015 625 s for the real data. The dynamic energy spectra were also

studied on these time-scales and the resulting power-law photon

indices are plotted in the figure. Poisson noise is not added to the

light curve, and an explicit positive correlation between the photon

index and flux can be observed. The best-fitting parameters of PDS

and lag spectra were interpolated to two additional narrow energy

bins, 4.34–4.64 and 11–11.6 keV, respectively (see open circles in

Figs 5 and 7). As mentioned, the original data have 64 energy bins,

which we rebinned into eight coarse energy bins as the input of our

algorithm. This allowed us to compare the simulation and the real

data in these two narrow energy bins, as shown in Fig. 18.

Figure 17. The time evolution of the power-law photon index Ŵ (solid line) and 0.14–25 keV net flux (dashed line) derived from the simulation based on the

extrapolation of PDS and time-lag spectra to higher frequency. The time-scales of 0.004 s (top) and 0.001 s (bottom) are shorter than the time resolution of the

original data.
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2424 Y. X. Wu, T. M. Belloni and L. Stella

Figure 19. Top: the phases of the initial light curve with (left) and without (right) additional Poisson noise. Middle: the phases at different frequencies for a

single segment after arbitrarily choosing the starting point and segment (left) and the case with additional Poisson noise (right). Bottom: the phase for different

segments for a fixed frequency after arbitrarily choosing the starting point and segment (left) and the case with additional Poisson noise (right).

3.6 Phase and noise

In Section 3.3, we wondered whether an exponentiation is necessary

after the IFT to produce a light curve similar to the real one when

random phases are assumed. This is peculiar since we can strictly

recover the time series with the IFT alone, if we know the phases. It

is therefore logical to deduce that the phases of the real data cannot

be random. The exponential transformation is simply a compensa-

tion for the incorrect assumption of random phases. The effect of

the exponential transformation in the time domain should be repre-

sented in the Fourier domain as a modification of phase, since there

is practically no effect on the PDS shape. The fact that the phase

cannot be totally random and independent can also be revealed by

higher order variability properties, e.g. the bicoherence, a higher or-

der statistics measuring the degree of coupling between variations

on different time-scales. A non-zero bicoherence indicates that there

exist correlations between the phases at different frequencies within

a single energy band (Maccarone & Coppi 2002; Uttley et al. 2005).

Hence, the phases cannot be independent nor can they be strictly

uncorrelated. From Fig. 9, the phases appear to be uniformly dis-

tributed over the range (−π, π] and a correlation between them

is not apparent. A higher order statistical test such as bicoherence

would probably show these effects. The assumption about the phase

distribution presented in Section 3.3 can be considered as a lower

order approximation and is appropriate for the practical purpose of

simulating the linear time series which will later be exponentially

transformed.

Moreover, it is possible that the procedure of segmenting the

data conceals the underlying phase. In order to investigate this

possibility, we performed this experiment (see Fig. 19). With an

arbitrary PDS and zero lag between energies, we synthesized an

initial light curve. Its time lag is of course zero at all frequencies. If

we add Poisson noise to the light curve, the phases [calculated from

the fast Fourier transform (FFT)] would be scattered around zero.

In practice, the start time of the observation is arbitrary and the long

light curve is split into short segments to calculate the phase. We

chose an arbitrary starting point and calculated the FFT in 1024-

s long segments. The phases at different frequencies for a single

segment and the phases at different segments for a single frequency

apparently deviate from zero. If we again add Poisson noise, the

phase becomes totally random. Therefore, even if the intrinsic phase

is not random or uncorrelated, the arbitrary selection of a starting

point and the presence of additional Poisson noise would make

the detected phase appear random. The underlying phase is likely

not random, although this cannot be inferred directly by the data.

Up to now, we still know little about the intrinsic distribution of

the phases and cannot propose a hypothesis more reasonable than

the random distribution. Therefore, we stick to the assumption of

random phases uniformly distributed between (−π, π] throughout

this work.

4 C O N C L U S I O N S

We have developed an algorithm to produce synthetic light curves

from the observed properties of Cyg X-1. The algorithm is based

on the previously established time series simulation method (e.g.

Timmer & König 1995; Uttley et al. 2005) and improved in three

aspects as follows: (i) besides the PDS, information from additional

measurements such as energy spectra and lag spectra is used as

input; (ii) the synthetic time series is required to reproduce almost all

the timing and spectral properties; and (iii) the possible applications

of the method are explored, including filtering Poisson noise and

data extrapolation. It is model independent, unlike the attempts

to restore the timing and spectral properties through a physically

interesting model and parameters (e.g. Arévalo & Uttley 2006). The

simulation does not provide more information than in the original

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 408, 2413–2425
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Fast spectral variability from Cygnus X-1 2425

PDS, lag spectra, etc. What we do is to allow a different view of the

same data.

By combining all known information about the observed variabil-

ity, a reasonable assumption on the distribution of phases and prior

knowledge about the Poisson noise power, we can obtain synthetic

data which are not affected by Poisson noise. From these synthetic

data, we can explore the spectral variability of the source on short

time-scales, where the real data are noise-dominated. We showed

that the observed distribution of spectral indices of Cyg X-1 on

short time-scales is completely dominated by Poisson effects, since

even simulated data with a δ distribution in spectral indices yields

the same output distribution. From the output of our algorithm, we

have recovered the real underlying distribution, under a relatively

small number of assumptions. Our method shows that our current

data are sufficient to reproduce the observed properties with good

accuracy. Future missions will yield much higher statistics and will

allow the exploration of spectral variability at higher frequencies

and with better spectral resolution.
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