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Cryo-electron microscopy nowadays often requires the analysis of hundreds of thousands of 2D images as large as a few hundred
pixels in each direction. Here we introduce an algorithm that efficiently and accurately performs principal component analysis (PCA)
for a large set of two-dimensional images, and, for each image, the set of its uniform rotations in the plane and their reflections. For
a dataset consisting ofn images of sizeL×L pixels, the computational complexity of our algorithm isO(nL3 +L

4), while existing
algorithms take O(nL4). The new algorithm computes the expansion coefficients of the images in a Fourier-Bessel basis efficiently
using the non-uniform fast Fourier transform. We compare the accuracy and efficiency of the new algorithm with traditional PCA
and existing algorithms for steerable PCA. In particular, for certain parameter values the running time of the new algorithm is 25
times faster.

Index Terms—Steerable PCA, group invariance, non-uniform FFT, denoising.

I. I NTRODUCTION

Principal component analysis (PCA) is widely used in
image analysis and pattern recognition for dimensionality
reduction and denoising. In particular, PCA is often one of
the first steps [1] in the algorithmic pipeline of cryo-electron
microscopy (EM) single particle reconstruction (SPR) [2] to
compress and denoise the acquired 2D projection images in
order to eventually determine the 3D structure of a macro-
molecule. As any planar rotation of any given projection image
is equally likely to appear in the experiment, by either in-
plane rotating the detector or the specimen, it makes sense
to include all possible rotations of the projection images
when performing PCA. The resulting principal components
are tensor products of radial functions and angular Fourier
modes [3], [4], [5], [6], [7]. Beyond cryo-EM, steerable PCA
has many other applications in image analysis and computer
vision [8]. The term “steerable PCA” comes from the fact
that rotating the principal components is achieved by a simple
phase shift of the angular part. The principal components
are invariant to any in-plane rotations of the images, there-
fore finding steerable principal components is equivalent to
finding in-plane rotationally invariant principal components.
Previously, [9], [10] proposed a group theoretical framework
for constructing group invariant features and filters in a Hilbert
space, which is applicable to a wide range of group actions,
such as those corresponding toSO(3) andSU(1, 1) [11], [12].
The representation of finite groups, such as the dihedral groups
D(n), is used for computing the Karhunen-Loéve expansion
of digital images [13]. In this paper, we focus on the action
of the groupO(2) on digital images by in-plane rotating and
possibly reflecting them.

Various efficient algorithms for steerable PCA have been
introduced [14], [6]. However, steerable PCA of modern cryo-
EM datasets that contain hundreds of thousands of large
images poses a computational challenge. Also, it is important
to ensure that the algorithm is numerically accurate when
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the input images are noisy. In order to exploit the special
separation of variables structure of the principal components
in polar coordinates, most algorithms rely on resampling the
images on a polar grid. However, the transformation from
Cartesian to polar is non-unitary, and thus changes the statistics
of the noise. In particular, resampling transforms uncorrelated
white noise to colored noise that may lead to spurious principal
components.

Recently, [7] addressed this issue by incorporating a sam-
pling criterion to the steerable PCA framework and introduced
an algorithm called Fourier-Bessel steerable PCA (FBsPCA).
FBsPCA assumes that the underlying clean images (before
being possibly contaminated with noise) are bandlimited and
essentially compactly supported in a disk. This assumption
holds, for example, for 2D projection images of a 3D molecule
compactly supported in a ball. This assumption implies that
the images can be expanded in an orthogonal basis for the
bandlimited functions, such as the Fourier-Bessel basis. In
FBsPCA, the Fourier-Bessel expansion is truncated into a
finite series using a sampling criterion that was introducedby
Klug and Crowther [15]. The first step of FBsPCA consists
of computing a truncated Fourier-Bessel expansion for each
image. The sampling criterion ensures that the transformation
from the Cartesian grid to the truncated Fourier-Bessel expan-
sion is nearly unitary. Moreover, the covariance matrix built
from the expansion coefficients of the images and all their
possible rotations has a block diagonal structure where the
block size decreases as a function of the angular frequency.
The computational complexity of FBsPCA isO(nL4) for n
images of sizeL×L. Notice that the computational complexity
of traditional PCA isO(nL4 + L6) where the first term
corresponds to forming theL2×L2 covariance matrix and the
second term corresponds to its eigen-decomposition. FBsPCA
is thus more efficient than traditional PCA, and it also leadsto
better denoising as it takes into account also possible rotations
and reflections. These properties make FBsPCA more suitable
than traditional PCA as a tool for 2D analysis of cryo-EM
images [7]. With the enhancement of electron microscope

http://arxiv.org/abs/1412.0781v3


2

detector resolution, a typical image size of a single particle
can easily be over300× 300 pixels. Yet, FBsPCA is still not
efficient enough to analyze a large number of images of large
size (i.e. largen and largeL). The bottleneck for this algorithm
is the first step that computes the Fourier-Bessel expansion
coefficients, whose computational complexity isO(nL4).

In this paper we introduce a fast Fourier-Bessel steerable
PCA (FFBsPCA) that reduces the computational complexity
for FBsPCA by computing the Fourier-Bessel expansion co-
efficients more efficiently. This is achieved by first mapping
the images from their Cartesian grid representation to a polar
grid representation in the reciprocal (Fourier) domain using the
non-uniform fast Fourier transform (NUFFT) [16], [17], [18],
[19]. The radius of the disk is determined by the band limit
of the images. The polar grid representation enables a faster
computation of the Fourier-Bessel expansion coefficients.The
expansion coefficients of the images are efficiently evaluated
by 1D FFT on concentric rings followed by accurate evaluation
of a radial integral with a Gaussian quadrature rule. The overall
complexity of computing the Fourier-Bessel coefficients is
reduced toO(nL3), which serves as the main contribution
of this paper.

We note that the expansion coefficients can be computed
in O(nL2 log(L)) using algorithms for rapid evaluation of
special functions [20] or a fast analysis-based Fourier-Bessel
expansion [21]. However, such “fast” algorithms may only
lead to marginal improvement for two reasons. First, the break
even point for them compared to the direct approach is for
relatively largeL such asL = 256 or larger. Second, forming
the covariance matrix from the expansion coefficients still
requiresO(nL3) operations.

The paper is organized as follows: Section II contains the
mathematical preliminaries of the Fourier-Bessel expansion,
the sampling criterion, and the numerical evaluation of the
expansion coefficients. The computation of the steerable prin-
cipal components is described in Section III. We present
the algorithm and give a detailed computational complexity
analysis in Section IV. Various numerical examples concerning
the computation time of FFBsPCA compared with FBsPCA
and traditional PCA are presented in Section V. In the same
section, we demonstrate the denoising effects on simulated
cryo-EM projection images.

Reproducible research: The FFBsPCA is available in the
SPR toolbox ASPIRE (http://spr.math.princeton.edu/). There
are two main functions:FBCoeff computes the Fourier Bessel
expansion coefficients andsPCAcomputes the steerable PCA
basis and the associated expansion coefficients.

II. FOURIER-BESSELEXPANSION OFBANDLIMITED

IMAGES

All digital images are essentially bandlimited. In our setup,
a digital imageI is obtained by sampling a squared-integrable
bandlimited functionf on a Cartesian grid of sizeL× L,

I(i1, i2) = f(i1∆, i2∆), (1)

for i1, i2 = −
⌈

L−1
2

⌉

, . . . ,
⌊

L−1
2

⌋

, where∆ is the pixel size.

We say thatf has a band limit radiusc if its Fourier
transform

F(f)(ξ1, ξ2) =
∫

R2

f(x, y)e−2πı(xξ1+yξ2) dx dy (2)

satisfies

F(f)(ξ1, ξ2) = 0, for ξ21 + ξ22 > c2. (3)

From the Fourier inversion formula

f(x, y) =

∫

ξ21+ξ22≤c2
F(f)(ξ1, ξ2)e2πı(xξ1+yξ2) dξ1 dξ2. (4)

For pixel size ∆ = 1, the Nyquist-Shannon sampling
theorem implies that the Fourier transform is supported on the
square(−1/2, 1/2]× (−1/2, 1/2]. In many applications, the
support size is effectively smaller due to other experimental
considerations, such as the exponentially decaying envelope
of the contrast transfer function in electron microscopy. We
assume that the band limit radius of all images is0 < c ≤ 1

2 .
The scaled Fourier-Bessel functions are the eigenfunctions of
the Laplacian in a disk of radiusc with Dirichlet boundary
condition and they are given by

ψk,q
c (ξ, θ) =

{

Nk,qJk

(

Rk,q
ξ
c

)

eıkθ, ξ ≤ c,
0, ξ > c,

(5)

where(ξ, θ) are polar coordinates in the Fourier domain (i.e.,
ξ1 = ξ cos θ, ξ2 = ξ sin θ, ξ ≥ 0, andθ ∈ [0, 2π)); Nk,q =
(c
√
π|Jk+1(Rk,q)|)−1 is the normalization factor;Jk is the

Bessel function of the first kind of integer orderk; andRk,q

is theqth root of the Bessel functionJk. For a functionf with
band limit c that is also inL2(R2) ∩ L1(R1),

F(f)(ξ, θ) =
∞
∑

k=−∞

∞
∑

q=1

ak,qψ
k,q
c (ξ, θ), (6)

and the Fourier-Bessel expansion converges pointwise. In
Section II-A, we derive a finite truncation rule for the Fourier-
Bessel expansion in Eq. (6).

A. Sampling criterion

We assume the underlying clean images (before being
possibly contaminated with noise) are essentially compactly
supported in a disk of radiusR. The infinite Fourier-Bessel
expansion as in Eq. (6) is not feasible computationally and
also introduces spurious information from noise. Therefore,
we would like to employ a sampling criterion for selectingk
andq so that Eq. (6) becomes a finite expansion.

With the following convention for the 2D inverse polar
Fourier transform of a functiong(ξ, θ),

F−1(g)(r, φ) =

∫ 2π

0

∫ ∞

0

g(ξ, θ)e2πırξ cos(θ−φ)ξ dξ dθ, (7)

the 2D inverse Fourier transform of the Fourier-Bessel func-
tions, denotedF−1(ψk,q

c ), is given in polar coordinates as

F−1(ψk,q
c )(r, φ) =

2c
√
π(−1)qRk,qJk(2πcr)

ık((2πcr)2 −R2
k,q)

eıkφ. (8)
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The maximum of|F−1(ψk,q
c )(r, φ)| in (8) is obtained near the

ring r =
Rk,q

2πc and F−1(ψk,q
c )(r, φ) vanishes on concentric

rings of radii r =
Rk,q′

2πc with q′ 6= q. The smallest ring
with vanishingF−1(ψk,q

c ) that encircles the maximum of
|F−1(ψk,q

c )| is of radiusr =
Rk,(q+1)

2πc .
Since the images are assumed to be essentially compactly

supported, we should rule out Fourier-Bessel functions for
which the maximum of their inverse Fourier transform resides
outside a disk of radiusR. Notice that if the maximum is
inside the disk, yet the zero after the maximum is outside the
disk, then there is a significant spillover of energy outsidethe
disk. We therefore require the more stringent criterion that the
zero after the maximum is inside the disk, namely

Rk,(q+1)

2πc
≤ R. (9)

The sampling argument gives a finite truncation rule for the
Fourier-Bessel expansion in Eq. (6), that is

Rk,(q+1) ≤ 2πcR. (10)

For eachk, we denote bypk the number of components
satisfying Eq. (10). We also denote byp =

∑kmax

k=−kmax
pk

the total number of components. The positions of Bessel
zeros have been extensively studied, for example, in [22,
p.517-521][23, p.370][24], [25], [26]. Several lower and upper
bounds for Bessel zerosRk,q were proven by Breen in [26],
such as

Rk,q > k +
2

3
|aq−1|3/2, (11)

where aq is the qth zero of the Airy function. Breen also
provided the following upper and lower bounds foraq,
[

3

8
π(4q − 1.4)

]2/3

< |aq| <
[

3

8
π(4q − 0.965)

]2/3

. (12)

Using the lower bound for|aq| and the sampling criterion in
Eq. (10), we have the following inequality fork andpk,

2πcR ≈ Rk,pk+1 > k + πpk −
1.4π

4
. (13)

Breen also obtained

Rk,q < (
k

2
+ q − 0.965

4
)π, (14)

so we get another inequality fork andpk,

2πcR ≈ Rk,pk+1 <

(

k

2
+ pk +

3.035

4

)

π. (15)

Combining Eqs. (13) and (15), we have the following lower
and upper bounds forpk,

2cR− k

2
− 3.035

4
< pk < 2cR− k

π
+

1.4

4
. (16)

The maximum angular frequencykmax occurs whenpk = 1,
and therefore

4cR− 3.517 < kmax < 2πcR− 2.042. (17)

Equation (16) implies that as the angular frequencyk in-
creases, the number of componentspk decreases. Moreover,
using the lower and upper bounds forpk andkmax in Eqs. (16)

and (17), we derive that the total number of selected Fourier-
Bessel basis functions is between8(cR)2 and4π(cR)2. When
c is the largest band limit, i.e.c = 1

2 , the number of
basis functions is between2R2 andπR2, where the latter is
approximately the number of pixels inside the unit disk of
radiusR. Also, wheneverc = O(1) and R = O(L), then
p = O(L2) andkmax = O(L).

Because the bandlimited functionf is assumed to be essen-
tially compactly supported, the infinite expansion in Eq. (6) is
approximated by the finite expansion

Pc,RF(f)(ξ, θ) =
kmax
∑

k=−kmax

pk
∑

q=1

ak,qψ
k,q
c (ξ, θ), (18)

where Pc,R is the orthogonal projection fromL2(Dc) (the
space ofL2 functions supported on a disk of radiusc), to
the space of functions spanned by a finite number of Fourier-
Bessel functions that satisfy (10).

B. Numerical Evaluation of Fourier-Bessel Expansion Co-
efficients

Previously in [7], the evaluation of the expansion co-
efficients ak,q was done by least squares. LetΨ be the
matrix whose entries are evaluations of the Fourier-Bessel
functions at the Cartesian grid points, with rows indexed by
the grid points and columns indexed by angular and radial
frequencies. Finding the coefficient vectora as the solution
to mina ‖Ψa − I‖22 requires the computation ofΨ∗I, which
takesO(pL2) = O(L4) operations, becausep = O(L2). In
generala = (Ψ∗Ψ)−1Ψ∗I, but hereΨ∗Ψ is approximately
the identity matrix, due to the orthogonalilty of the Fourier-
Bessel functions.

We introduce here a method that computes the expansion
coefficients inO(L3) instead ofO(L4). We first evaluate the
Fourier coefficients on a polar grid, which is an instance of a
nonuniform discrete Fourier transform, defined as

F (I)(ξ1, ξ2) =
1

(2R)2

R−1
∑

i1=−R

R−1
∑

i2=−R

I(i1, i2)e
−ı2π(ξ1i1+ξ2i2),

(19)
where−1/2 ≤ ξ1, ξ2 ≤ 1/2. For the polar grid,ξ1(j, l) =
ξj cos(2πl/nθ), ξ2(j, l) = ξj sin(2πl/nθ), j = 1, . . . , nξ,
l = 0, . . . , nθ − 1. The angles are sampled uniformly on each
concentric ring of radiusξj . The radius of each concentric
ring ξj is determined by a Gaussian quadrature rule, and thus
the sample points on each radial line are not equally spaced
(see Fig. 1). The choice ofnξ andnθ depends on the compact
support radiusR and band limitc and is derived later in the
paper.

The expansion coefficients in Eq. (18) are given by

ak,q =

∫ 2π

0

∫ c

0

F(f)(ξ, θ)ψk,q
c (ξ, θ)ξ dξ dθ

=

∫ c

0

Nk,qJk

(

Rk,q
ξ

c

)

ξ dξ

∫ 2π

0

F(f)(ξ, θ)e−ıkθdθ,

(20)

wheref is the bandlimited function whose samples form the
digital imageI. The integral in Eq. (20) can be numerically
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evaluated using discrete samples on a polar Fourier grid. The
angular integration is sped up by 1D FFT on the concentric
circles and it is followed by a numerical evaluation of the
radial integral with a Gaussian quadrature rule. As the samples
on each concentric circle are uniform, the natural quadrature
weight for the angular integral is2πnθ

and the points are taken at
θl =

2πl
nθ

for l = 0, . . . , nθ − 1. The angular integration using
one-dimensional FFT on each concentric ring thus yields

F̂ (I)(ξj , k) =
2π

nθ

nθ−1
∑

l=0

F (I)(ξj , θl)e
−ı 2πkl

nθ . (21)

The radial integral is evaluated using the Gauss-Legendre
quadrature rule [27, Chap. 4], which determines the locations
of nξ points{ξj}nξ

j=1 on the interval[0, c] and the associated
weightsw(ξj). The integral in Eq. (20) is thus approximated
by

ak,q ≈
nξ
∑

j=1

Nk,qJk

(

Rk,q
ξj
c

)

F̂ (I)(ξj , k)ξjw(ξj). (22)

The procedure for numerical evaluation of the Fourier-
Bessel expansion coefficients is illustrated in Fig. 1. In prac-
tice, we have observed that sampling withnξ = 4cR and
nθ = 16cR gives numerical evaluation of the integral in Eq. 20
with high accuracy.

Fig. 1: Pictorial summary of the procedure for computing the
Fourier-Bessel expansion coefficients. The original image(top
left) is resampled on a polar Fourier grid (Eq. (19)) using
NUFFT (top right and bottom right) followed by 1D FFT
(Eq. (21)) on each concentric ring. The evaluation of the radial
integral (Eq. (22)) gives the expansion coefficientsak,q. The
bow-tie phenomenon illustrated in bottom-left was discussed
in [28].

If our signal can be expressed in terms of the truncated
Fourier-Bessel expansion in Eq. (18), the approximation error
in the radial integral comes from the numerical evaluation of
the integrals

G(k, q1, q2) =

∫ c

0

Jk

(

Rk,q1

ξ

c

)

Jk

(

Rk,q2

ξ

c

)

ξdξ, (23)

The approximation error usingnξ discrete samples is

E(k, q1, q2;nξ)

=

∣

∣

∣

∣

∣

∣

nξ
∑

j=1

Jk

(

Rk,q1

ξj
c

)

Jk

(

Rk,q2

ξj
c

)

ξjw(ξj)−G(k, q1, q2)

∣

∣

∣

∣

∣

∣

(24)

Asymptotically, a Bessel function behaves like a decaying
cosine function with frequencyRkq

2π for Rk,qr≫ |k2− 1
4 | [23],

Jk(Rk,qr) ∼
√

2

πRk,qr
cos(Rk,qr −

kπ

2
− π

4
). (25)

For a fixednξ, the largest approximation error occurs when

k = 0 and q1 = q2 = p0, sinceJ0
(

R0,p0

ξ
c

)

is the most
oscillatory function within the band limit. The Nyquist rate of
ξJ2

0

(

R0,p0

ξ
c

)

is 2
2R0,p0

2π ≈ 4cR and we need to sample at

Nyquist rate, or higher. Therefore, we choosenξ = ⌈4cR⌉.
Fig. 2a justifies this choice as the error decays dramatically to
10−17 beforenξ = ⌈4cR⌉.
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Fig. 2: (a) Error, as a function ofnξ, in the numerical
evaluation of the integral inG(0, p0, p0) Eq. (23). (b) Error, as
a function ofnθ, in the evaluation of the integral in Eq. (20).

To choosenθ, we computed the root mean squared error
(RMSE) in evaluating the expansion coefficients for simulated
images composed of white Gaussian noise with variousR
andnθ, while c = 1/2. We oversampled on the radial lines
by nξ = ⌈10cR⌉ and the ground truth is computed via
oversampling in the angular direction bynθ = 60cR. We
observe that whennθ ≥ 16cR, the estimation error becomes
negligible (see Fig. 2b). Notice that Eq. (17) implies that
kmax < 2πcR. The corresponding Nyquist rate is bounded by
4πcR. We therefore sample at a slightly higher ratenθ = 16cR
to ensure numerical accuracy.

Now that we are able to numerically evaluateak,q with
high accuracy, we can study the spectral behavior of the finite
Fourier-Bessel expansion of the images. We definea as the
vector that contains the expansion coefficientsak,q computed
in (22) and useT ∗ to denote the transformation that maps an
image sampled on a Cartesian grid to the finite Fourier-Bessel
expansion coefficients through Eqs. (19), (21) and (22), that
is,

a = T ∗I. (26)

Ideally we would likeT ∗ to be a unitary transformation, that
is, T ∗T = I so that the transformation from the images to
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Fig. 3: Eigenvalues ofT ∗T and Ψ∗Ψ, where T ∗ and Ψ∗

are the truncated Fourier-Bessel transform using numerical
integration and least squares respectively. These are alsothe
spectra of the population covariance matrices of transformed
white noise images. Most eigenvalues are close to 1, indicating
that the truncated Fourier-Bessel transform is almost unitary.
Thus white noise remains approximately white.

the coefficients preserves the noise statistics. Numerically, we
observe that the majority of the eigenvalues ofT ∗T are 1 and
the smallest eigenvalues are also close to 1 (see blue line in
Fig. 3). The transformationT ∗ is close to unitary because it is
a numerical approximation of an expansion in an orthogonal
basis (Fourier-Bessel), and the sampling criterion prevents
aliasing. In Fig. 3, the eigenvalues ofΨ∗Ψ are also plotted
for comparison.T ∗T has fewer eigenvalues that deviate from
1. Although the Fourier-Bessel functions are orthogonal as
continuous functions, their discrete sampled versions arenot
necessarily orthogonal, henceΨ∗Ψ deviates from the identity
matrix. The fact thatT ∗T is closer to the identity than
Ψ∗Ψ implies that the numerical evaluation of the expansion
coefficient vectora asT ∗I is more accurate than estimating
it asΨ∗I.

Computing the polar Fourier transform of an image of size
L × L on a polar grid withnξ × nθ points in Eq. (19) is
implemented efficiently using NUFFT [16], [17], [18], [19],
whose computational complexity isO(L2 logL+nξnθ). Since
nθ = 16cR = O(L) andnξ = 4cR = O(L), nξ×nθ = O(L2)
and the complexity of the discrete polar Fourier transform is
O(L2 logL). The complexity of the 1D FFTs in Eq. (21) is
O(nξnθ lognθ), because there arenξ concentric circles with
nθ samples on each circle. Bothnξ and nθ are of O(L),
so the total complexity of the 1D FFTs is alsoO(L2 logL).
The radial integral using the quadrature rule in Eq. (20) has
computational complexity ofO(L3) using a direct method,
because there areO(L2) basis functions and each radial func-
tion hasO(L) sample points. However, this complexity can
be reduced toO(L2 logL) using a fast Bessel transform [20],
[21]. In summary, the computational complexity for computing
the Fourier-Bessel expansion coefficients of an image of size
L× L is O(L3), or O(L2 logL) using a “fast” transform.

III. SAMPLE COVARIANCE MATRIX

Given a dataset ofn images{Ii}ni=1, we denote byfi the
underlying bandlimited function that corresponds to thei’th
image Ii. Under the action of the groupO(2), the function

fi is transformed tofα,β
i , whereα ∈ [0, 2π) is the counter-

clockwise rotational angle andβ denotes reflection and takes
values in{+,−}. More specifically,fα,+

i (r, φ) = fi(r, φ−α)
and fα,−

i (r, φ) = fi(r, π − (φ − α)). The imagesIα,+i and
Iα,−i are obtained by samplingfα,+

i andfα,−
i respectively.

The Fourier transform offi commutes with the action of
the groupO(2), namely,F(fα,+

i )(ξ, θ) = F(fi)α,+(ξ, θ) =
F(fi)(ξ, θ − α), and F(fα,−

i )(ξ, θ) = F(fi)α,−(ξ, θ) =
F(fi)(ξ, π − (θ − α)). SinceF(fi) is well-approximated by
Pc,RF(fi), the transformation of the images under rotation
and reflection can be easily represented by the transformation
of the truncated expansion coefficients in terms of the Fourier-
Bessel basis. Under counter-clockwise rotation by an angleα,
Pc,RF(fα,+

i ), is given by

Pc,RF(fα,+
i )(ξ, θ) =

∑

k,q

aik,qψ
k,q
c (ξ, θ − α)

=
∑

k,q

aik,qe
−ıkαψk,q

c (ξ, θ). (27)

Therefore the planar rotation introduces a phase shift in the
expansion coefficients. Under rotation and reflection,

Pc,RF(fα,−
i )(ξ, θ) =

∑

k,q

aik,qψ
k,q
c (ξ, π − (θ − α))

=
∑

k,q

aik,qNk,qJk

(

Rk,q
ξ

c

)

eık(π−θ+α)

=
∑

k,q

aik,qNk,q(−1)kJk
(

Rk,q
ξ

c

)

eı(−k)θeıkα

=
∑

k,q

aik,qe
ıkαψ−k,q

c (ξ, θ) =
∑

k,q

ai−k,qe
−ıkαψk,q

c (ξ, θ),

(28)

namely, the expansion coefficientaik,q changes toai−k,qe
−ıkα.

If we augment the collection of the bandlimited functions
{fi}ni=1 by all possible rotations and reflections, the Fourier
transform of the sample meanfmean becomes,

F(fmean)(ξ, θ) =
1

2n

n
∑

i=1

∑

β∈{+,−}

1

2π

∫ 2π

0

F(fα,β
i )(ξ, θ)dα.

(29)
Since fmean is also a bandlimited function that is essen-
tially compactly supported within radiusR, F(fmean) can be
well-approximated byPc,RF(fmean), the finite dimensional
Fourier-Bessel expansion. Using the properties in Eqs. (27)
and (28), we have

Pc,RF(fmean)(ξ, θ) =
1

2n

n
∑

i=1

1

2π

×
∫ 2π

0

kmax
∑

k=−kmax

pk
∑

q=1

[

aik,q + ai−k,q

]

e−ıkαψk,q
c (ξ, θ)dα

=

p0
∑

q=1

(

1

n

n
∑

i=1

ai0,q

)

ψ0,q
c (ξ, θ). (30)

As expected, the sample mean is radially symmetric, because
ψ0,q
c is only a function ofξ but not ofθ.
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The rotationally invariant covariance kernel
C((ξ, θ), (ξ′, θ′)) built from Fourier transformed functions
with all their possible in-plane rotations and reflections is
defined as

C((ξ, θ), (ξ′, θ′)) = 1

4πn

n
∑

i=1

∑

β∈{+,−}
∫ 2π

0

(

F(fα,β
i )(ξ, θ) −F(fmean)(ξ, θ)

)

×
(

F(fα,β
i )(ξ′, θ′)−F(fmean)(ξ′, θ′)

)

dα. (31)

The kernelC can be directly computed from the coefficients
aik,q using the finite expansion in the Fourier-Bessel basis and
therefore it has a finite matrix representation. Subtracting the
mean image is equivalent to subtracting1

n

∑n
j=1 a

j
0,q from the

coefficientsai0,q, while keeping other coefficients unchanged.
Therefore, we first update the zero angular frequency coeffi-
cients byai0,q ← ai0,q − 1

n

∑n
j=1 a

j
0,q, and so the finite matrix

representationC of C is given by

C(k,q),(k′,q′)

=
1

2n

n
∑

i=1

1

2π

∫ 2π

0

(

aik,qa
i
k′,q′ + ai−k,qa

i
−k′,q′

)

e−ı(k−k′)αdα

= δk,k′

1

2n

n
∑

i=1

(

aik,qa
i
k′,q′ + ai−k,qa

i
−k′,q′

)

, (32)

where δk,k′ comes from the integral overα ∈ [0, 2π). The
covariance matrix in Eq. (32) is a block diagonal matrix
because the non-zero entries ofC correspond only tok = k′.
Moreover, it suffices to considerk ≥ 0, becauseC(k,q),(k,q′) =
C(−k,q),(−k,q′). Thus, the covariance matrix can be written as
the direct sumC =

⊕kmax

k=0 C
(k), whereC(k) is by itself a

sample covariance matrix of sizepk × pk,

C
(k)
q,q′ =

1

2n

n
∑

i=1

(

aik,qa
i
k′,q′ + ai−k,qa

i
−k′,q′

)

. (33)

Let us denote byA(k) the matrix of expansion coefficients,
obtained by putting the coefficientsaik,q andai−k,q for all q’s
and all images into a matrix, where the columns are indexed
by image number for bothk and−k and the rows are indexed
by radial indicesq. The coefficient matrix fork 6= 0 is of size
pk × 2n and the covariance matrix fork 6= 0 is,

C(k) =
1

2n
A(k)(A(k))∗, (34)

whereA∗ is the conjugate transpose (A∗
ij = Āji). The case

k = 0 is special because the expansion coefficients satisfy
a0,q = a−0,q, and soA(0) is a matrix of sizep0 × n and

C(0) =
1

n
A(0)(A(0))∗. (35)

The computational complexity for forming the matrixC(k)

is O(np2k). The complexity for eigendecomposition ofC(k)

is O(p3k), since the size of the covariance matrix ispk × pk.
Using the upper and lower bounds forpk in Eq. (16) and
assumingc = O(1) andR = O(L), we get

∑

k p
2
k = O(L3)

and
∑

k p
3
k = O(L4). Therefore, the complexity for forming

the covariance matrixC is O(n
∑

k p
2
k) = O(nL3) and the

complexity of the full eigendecomposition isO(
∑

k p
3
k) =

O(L4). Equations (34) and (35) show that instead of con-
structing the covariance matricesC(k) to compute the principal
components, we can perform singular value decomposition
(SVD) on the coefficient matrixA(k) directly and take the
left singular vectors as the principal components. The com-
putational complexity for full rank SVD onA(k) is O(np2k)
and the total complexity of SVD of all coefficient matrices is
O(n

∑

k p
2
k) = O(nL3).

IV. A LGORITHM AND COMPUTATIONAL COMPLEXITY

The new algorithm introduced in this paper is termed
fast Fourier-Bessel steerable PCA (FFBsPCA). The algorithm
is composed of two steps. In the first step, Fourier-Bessel
expansion coefficients are computed according to Algorithm1.
The input to the algorithm includes an image dataset, the band
limit c, and the compact support radiusR. The second step
(Algorithm 2) takes the Fourier-Bessel expansion coefficients
from Algorithm 1 as input and computes the steerable PCA
radial functions and the expansion coefficients of the images
in the new steerable basis.

Algorithm 1: Fast Fourier-Bessel Expansion
Require: n imagesI1, . . . , In sampled on a Cartesian grid

of sizeL× L with compact support radiusR and band
limit c.

1: (Precomputation) Select(k, q)’s that satisfy the sampling
criterion (10). Fixnξ = 4cR andnθ = 16cR.

2: (Precomputation) Findnξ Gaussian quadrature points
and weights on the interval[0, c] and evaluate
Nk,qJk(Rk,q

ξj
c ), j = 1, . . . , nξ, for all selected(k, q)’s.

3: ComputeF (Ii) (Eq. (19)) on a polar grid of size
nξ × nθ by NUFFT for eachi = 1, . . . , n.

4: For eachF (Ii), computeaik,q using eqs. (21) and (22).

Algorithm 2: Steerable PCA

Require: Fourier-Bessel expansion coefficientsaik,q for n
images and the maximum angular frequencykmax.

1: Compute the coefficient vector of the mean image
amean
0,q = 1

n

∑

j a
j
0,q. Then,ai0,q ← ai0,q − amean

0,q .
2: for k = 0, 1, . . . , kmax do
3: Construct coefficient matrixA(k).
4: Compute the covariance matrixC(k), its eigenvalues

λ
(k)
1 ≥ λ(k)2 · · · ≥ λ

(k)
pk

, and eigenvectors,uk1 , . . . , u
k
pk

;
or perform SVD ofA(k) and take the left singular
vectorsuk1 , . . . , u

k
pk

.
5: Compute the radial eigenvectors as linear

combinations of the normalized Bessel functions by
fk,l(ξ) =

∑

qNk,qJk

(

Rk,q
ξ
c

)

ukl (q).
6: Compute the expansion coefficients of the images in

the new steerable basis bycik,l =
∑

q a
i
k,qu

k
l (q).

7: end for
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The computational complexity for traditional PCA, without
taking into account all rotations and reflections isO(nL4 +
L6). It takes O(nL4) to construct the covariance matrix
and the complexity for eigendecomposition isO(L6). The
complexity of FBsPCA introduced in [7] isO(nL4). The com-
plexity of FFBsPCA isO(nL3 + L4). As a result, FFBsPCA
is faster than FBsPCA for largeL.

The analysis of the computational complexity for FFBsPCA
is as follows. The precomputation that generates all radialbasis
functions isO(L3) because there areO(L2) basis functions,
each of which is sampled overO(L) points. Computing the
Fourier-Bessel expansion coefficientsaik,q in Eqs. (19), (21),
and (22) for all images takesO(nL3) (or O(nL2 logL) with
a fast Bessel transform) as discussed in Section II-B.

The complexity for constructing the covariance matrixC
and computing its full eigendecomposition isO(nL3+L4) as
described in Section III. Another method for computing the
principal components is by SVD of the coefficient matrices.
Full rank SVD on all coefficient matrices requiresO(nL3)
floating point operations (see Section III).

To generate the new steerable basis, we take the linear
combinations of the Fourier-Bessel radial basis as in line 5
of Algorithm 2, which takesO(L4) operations. Computing
the expansion coefficients of the images in the new steerable
radial basis requiresO(nL3) by taking the linear combinations
of the Fourier-Bessel expansion coefficients (see line 6 in Al-
gorithm 2). Therefore, the total computational complexityfor
computing steerable principal components and the associated
expansion coefficients isO(nL3 + L4).

FFBsPCA is easily adapted for parallel computation. The
computation of Fourier-Bessel expansion coefficients in Al-
gorithm 1 can run on multiple workers in parallel, where
each worker is allocated with a subset of the images and
Fourier-Bessel radial basis. Suppose each worker computes
the expansion coefficients of one image at a time, the memory
requirement for FFBsPCA isO(L3) instead ofO(L4) in [7].
Therefore, the memory requirement for the new algorithm
is significantly smaller. In addition, in Algorithm 2, radial
eigenfunctions and steerable PCA expansion coefficients can
also be efficiently computed in parallel for each angular index
k.

V. NUMERICAL EXPERIMENTS

We compare the running times of FFBsPCA, FBsPCA and
traditional PCA, the latter does not include images’ in-plane
rotations for its computation. The algorithms are implemented
in MATLAB on a machine with 12 cores, running at 2.3 GHz.

We first simulatedn = 1000 images with different size of
compact support radiusR, while the band limit is fixed at
c = 1/2. For smallR, since FFBsPCA performs polar Fourier
transformation, it appears slightly slower than FBsPCA. How-
ever whenR increases, FFBsPCA is computationally more
efficient (see Tab. I). WhenR = 240, FFBsPCA becomes
25 times faster than FBsPCA. We also fixed the size of the
image withR = 150 and c = 1/2 and varied the number of
imagesn. Table II shows that the running time for FBsPCA
and FFBsPCA grows linearly withn and FFBsPCA is the

R PCA FBsPCA FFBsPCA
30 41.7 0.9 18.9
60 1460.6 8.0 23.8
90 1.1× 104 31.7 34.5
120 5.0× 10

4 89.6 48.2
150 1.2× 10

5 230.9 96.7
180 – 1.2× 103 111.0
210 – 2.4× 103 139.2
240 – 4.1× 10

3 158.6

TABLE I: Running time for different PCA methods (in sec-
onds),n = 103, c = 1/2, and R varies from 30 to 240.
L = 2R.

n PCA FBsPCA FFBsPCA
1× 103 2005 3.8 1.6
2× 103 2007 7.2 2.6
4× 103 2012 15.1 5.3
8× 10

3 2022 28.6 10.5
1.6× 104 2042 57.9 19.9

TABLE II: Running time for different PCA methods (in
minutes). The number of images varies and each image is
of size300× 300 pixels,R = 150, c = 1/2 andL = 300.

fastest among the three methods. The running time for PCA is
dominated by the eigendcomposition of the covariance matrix.

To show that our new algorithm can handle large datesets
efficiently, we simulated a large dataset with105 images of
size300×300 pixels. The images consist entirely of Gaussian
noise with mean 0 and variance 1. We assume that the compact
support in image domain isR = 150 and the band limit in
Fourier domain isc = 1/2. In Table III, the total running
time is divided into three parts: precomputation, Fourier-Bessel
expansion (Algorithm 1), and steerable PCA (Algorithm 2).
Fourier Bessel expansion took about 138 minutes, during
which 86% of the time was spent on mapping images to polar
Fourier grid, where we used the software package [19] down-
loaded from https://www-user.tu-chemnitz.de/∼potts/nfft/. Nu-
merical evaluation of the angular integration by 1D FFT and
the radial integration by a direct method took6% and2% of
the time respectively. The remaining6% of the time were spent
on saving the coefficients. Steerable PCA took49 minutes,
during which26 minutes were spent on loading Fourier-Bessel
expansion coefficients computed at the previous step.

In our third experiment, we simulatedn = 105 clean
projection images from the reconstructed volume of human
mitochondrial large ribosomal subunit downloaded from the

Steps Time (min)
Precomputation 0.6

Fourier-Bessel Expansion 137.9
Steerable PCA 49.2

Total 187.7

TABLE III: Timing for FFBsPCA on a large dataset withn =
105 images. Each image is of size300× 300 pixels,R = 150
and c = 1/2. We computed the full eigendecomposition in
Algorithm 2.

https://www-user.tu-chemnitz.de/~potts/nfft/
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(a) Clean (b) SNR= 1/30

Fig. 4: Simulated projection images of the human mitochon-
drial large ribosomal subunit. Image size is240× 240 pixels.

electron microscopy data bank [29]. The original volume
in the data bank is of size320 × 320 × 320 voxels. We
preprocessed the volume such that the center of mass is at
the origin and cropped out a volume of size240× 240× 240
voxels that contains the particle. Each projection image is
of size 240 × 240 pixels. We simulated both the vanishing
behavior of the CTF at low frequencies and the blurring effect
by the Gaussian envelope of the CTF. This was done by
convolving the images with the inverse Fourier transform of
min(πλzf2+a, 1) exp(−Bf2) wheref is the frequency,λ is
the wavelength of the electron beam,z is the defocus, anda is
a phase of the CTF introduced by microscope. This stems from
the analytic form of the CTF assin(πλzf2 + a) exp(−Bf2).
For small f , sin(πλzf2 + a) ∼ πλzf2 + a. We chose
λ = 0.0197Å, z = 2.5µm, a = 0.1rad, andB = 100Å

2

for simulation. The images (see Fig. 4a) were then corrupted
by additive white Gaussian noise at SNR= 1/30, with noise
varianceσ2 = 9 (see Fig. 4b).
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(b) Estimatingc

Fig. 5: EstimatingR and c from n = 105 simulated noisy
projection images of human mitochondrial large ribosomal
subunit. Each image is of size240 × 240 pixels. (a) Mean
radial variance of the images. The curve levels off at about
σ2 = 9 whenr ≥ 98. The radius of compact support is chosen
atR = 98. (b) Mean radial power spectrum. The curve levels
off at σ2 = 9 when ξ ≥ 0.195. The band limit is chosen at
c = 0.195.

We estimated the radius of compact support of the particle
in real domain and the band limit in Fourier domain in the
following way. We first subtracted the data mean from each
image. Then we computed the 2D variance map of the dataset
averaged in the angular direction to get a mean radial variance
(see Fig. 5a). At larger, the mean radial variance levels off
at 9, which corresponds to the noise variance. We subtracted
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Fig. 6: FFBsPCA principal radial functions in Fourier domain.
The dataset containsn = 105 simulated human mitochondrial
large ribosomal subunit projection images corrupted by addi-
tive white Gaussian noise with SNR= 1/30. Image size is
240× 240 pixels.R = 98, c = 0.195. Each radial function is
labeled with angular indexk, radial orderl, and eigenvalueλ.

the noise variance from the estimated mean radial variance
and computed the cumulative variance by integrating the mean
radial variance overr with a Jacobian weightrdr. The fraction
of the cumulative variance reaches99.9% at r = 98, and
thereforeR was chosen to be98. In the Fourier domain, we
computed the angular average of the mean 2D power spectrum.
The curve in Fig. 5b also levels off at noise variance whenξ
is large. We used the same method to compute the cumulative
radial power spectrum. The fraction reaches99.9% at ξ =
0.195, therefore the band limit is chosen to bec = 0.195.

The top nine radial eigenfunctions are shown in Fig. 6.
Each radial function is indexed byk and l. k determines the
angular Fourier mode andl is the order of the radial function
within the samek. Taking the tensor product of the radial
functions and their corresponding angular Fourier modes gives
the two dimensional principal components in Fourier domain.
It took 14 minutes in total to get the steerable PCA radial
components and the associated expansion coefficients. In par-
ticular, Fourier-Bessel expansion coefficients were computed
in 11 minutes and the steerable PCA took 3 minutes, during
which about 2 minutes were spent on loading Fourier-Bessel
expansion coefficients.

We computed the traditional PCA on the same dataset in real
image domain (see Fig. 8) and it took 169 minutes. In order
to compare the principal components computed by FFBsPCA
with those computed by traditional PCA, we take the inverse
Fourier transform of the FFBsPCA components. This is equiv-
alent to computing the linear combination ofF−1(ψk,q

c ) given
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λ = 163.8 λ = 163.8 λ = 160.0 λ = 160.0

λ = 158.1 λ = 158.1 λ = 153.9 λ = 153.9

λ = 153.4 λ = 153.4 λ = 153.2 λ = 153.2

λ = 150.3 λ = 150.3 λ = 144.7 λ = 144.7

Fig. 7: FFBsPCA principal components (eigenimages in real
domain) corresponding to Figure 6.

by Eq. (8). Those principal components are shown in Fig. 7.
Some of the top sixteen principal components computed from
traditional PCA and FFBsPCA look very similar, for example,
the first three and the last four principal components (see Fig. 7
and Fig. 8). Because the gap between the eigenvalues of the
traditional PCA is very small for the components in the middle
two rows of Fig. 8, those components become degenerate and
therefore look different from the corresponding components
in Fig. 7.

λ = 168.0 λ = 167.0 λ = 164.7 λ = 162.6

λ = 161.9 λ = 161.3 λ = 158.7 λ = 157.6

λ = 157.1 λ = 156.0 λ = 155.9 λ = 154.9

λ = 154.0 λ = 152.3 λ = 148.5 λ = 147.1

Fig. 8: Traditional PCA principal components in real image
domain for the same dataset used in Figures 6 and 7.

In our simulation, each noisy projection imageI is obtained
by contaminating the clean imageIc with additive white
Gaussian noise of varianceσ2 = 9. Since the transformation

(a) clean (b) noisy (c) PCA (d) FFBsPCA

Fig. 9: Denoising simulated projection images from human
mitochondrial large ribosomal subunit. The columns show
(a) clean projection images, (b) noisy projection images with
SNR= 1/30, (c) denoised projection images using traditional
PCA, and (d) denoised images using FFBsPCA.

T ∗ is nearly unitary, the coefficient matrices can be modeled
approximately asA(k) = A

(k)
c + ǫ(k), where ǫ(k) is white

Gaussian noise with varianceσ2 andA(k)
c is the coefficient

matrix for the clean images. The covariance matrixC(k)

has eigenvaluesλ(k)1 ≥ λ
(k)
2 ≥ · · · ≥ λ

(k)
pk

. In the case
when there is no signal, that isA(k)

c = 0, all eigenvalues
of the covariance matrixC(k) converge toσ2 as n goes
to infinity, while pk is fixed. WhenA(k)

c 6= 0, components
with eigenvalues larger thanσ2 correspond to the underlying
clean signal. In the non-asymptotic regime of a finite number
of images, the eigenvalues of the sample covariance matrix
from white Gaussian noise spread aroundσ2. The empirical
density of eigenvalues can be approximated by the Marčenko-
Pastur distribution with parameterγk, where γ0 = p0

n and
γk = pk

2n for k > 0 and the eigenvalues ofC(k) are
supported on[λ(k)− , λ

(k)
+ ], with λ

(k)
± = σ2(1 ± √γk)2. The

components with eigenvalues larger thanλ(k)+ correspond to
signal information beyond noise level. Therefore, with the
estimated noise variancêσ2, the components with eigenvalues

λ
(k)
l > σ̂2(1 +

√
γk)

2, l = 1, . . . , pk (36)

are selected. Various ways of selecting principal components
from noisy data have been proposed. We refer to [30] for
an automatic procedure for estimating the noise variance and
the number of components beyond the noise level. For the
simulated ribosomal subunit projections images, there are966
steerable principal radial components above the thresholdin
Eq. (36), whereas considerably fewer principal components
(391) with the traditional PCA were selected.

To first order approximation, whenn ≫ pk, the noise
simply shifts all eigenvalues upward byσ2 and this calls
for soft thresholding of the sample covariance eigenvalues:
(λ−σ2)+. To correct for the finite sample effect, we can apply
more sophisticated shrinkage to the eigenvalues, such as the
methods proposed in [31], [32]. Specifically, we applied the
shrinkage method in [31] to the coefficients computed by both
FFBsPCA and PCA. A few examples of denoised images are
shown in Fig. 9. Because we were able to use more principal
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components with FFBsPCA, we recovered finer details of
the clean projection images, comparing the third and fourth
columns in Fig. 9. We also computed the mean squared error

MSE (10−5) PSNR (dB)
noisy PCA FFBsPCA noisy PCA FFBsPCA

Image 1 52.7 1.10 0.77 2.27 19.06 20.63
Image 2 57.9 1.29 0.96 2.41 18.93 20.23
Image 3 55.6 1.17 0.85 3.22 19.99 21.35

TABLE IV: Denoising effects: MSE and PSNR of noisy
images, denoised images using PCA, and denoised images
using FFBsPCA.

(MSE) and Peak SNR (PSNR) to quantify the denoising effects
in Table IV. Comparing with the traditional PCA, FFBsPCA
reduced the MSE by more than25% and increased the PSNR
by over 1.3 dB. This experiment shows that FFBsPCA is an
efficient and effective procedure for denoising large image
datasets.

VI. CONCLUSION

In this paper we presented a fast Fourier-Bessel steerable
PCA method that reduces the computational complexity with
respect to the size of the images so that it can handle larger
images. The complexity of the new algorithm isO(nL3+L4)
compared withO(nL4) of steerable PCA introduced in [7].
The key improvement is through mapping the images to
polar Fourier grid using NUFFT and the evaluation of the
Fourier-Bessel expansion coefficients by angular 1D FFT and
accurate radial integration. FFBsPCA also reduces the memory
requirement for parallel computation because only the radial
part of the Fourier-Bessel basis is needed.

This work has been mostly motivated by its application to
cryo-EM single particle reconstruction. Besides compression
and denoising of the experimental images required for 2D
class averaging [33] and common-line based 3D ab-initio
modeling, FFBsPCA can also be applied in conjunction to
Kam’s approach [34] that requires the covariance matrix of
the 2D images [35]. The method developed here can also
be extended to perform fast principal component analysis of
a set of 3D volumes and their rotations. For this purpose,
the Fourier-Bessel basis is replaced with the spherical-Bessel
basis, and the expansion coefficients can be evaluated by
performing the angular integration using a fast spherical har-
monics transform [36] followed by radial integration.

Finally, we remark that the Fourier-Bessel basis can be
replaced in our framework with other suitable bases, for
example, the 2D prolate spheroidal wave functions (PSWF)
on a disk [37]. The 2D prolates also have a separation of
variables form which makes them convenient for steerable
PCA. A possible advantage of using 2D prolates is that they
are optimal in terms of the size of their support.
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