
Fast String Sorting using Order Preserving
Compression

ALEJANDRO LÓPEZ-ORTIZ

University of Waterloo

MEHDI MIRZAZADEH

University of Waterloo

MOHAMMAD ALI SAFARI

Universiy of British Columbia

and

HOSSEIN SHEIKHATTAR

University of Waterloo

We give experimental evidence for the benefits of order preserving compression in sorting algo-
rithms. While in general any algorithm might benefit from compressed data due to reduced paging
requirements, we identified two natural candidates that would further benefit from order preserv-
ing compression, namely string-oriented sorting algorithms and word-RAM algorithms for keys
of bounded length. The word-RAM model has some of the fastest known sorting algorithms in
practice. These algorithms are designed for keys of bounded length, usually 32 or 64 bits, which
limits their direct applicability for strings. One possibility is to use an order preserving compres-
sion scheme, so that a bounded-key-length algorithm can be applied. For the case of standard
algorithms we took what is considered to be the among the fastest non-word RAM string sorting
algorithms, Fast MKQSort, and measured its performance on compressed data. The Fast MKQ-
Sort algorithm of Bentley and Sedgewick is optimized to handle text strings. Our experiments
show that order compression techniques results in savings of approx. 15% over the same algorithm
on non-compressed data. For the word-RAM we modified Andersson’s sorting algorithm to handle
variable length keys. The resulting algorithm is faster than the standard Unix sort by a factor of
1.5x. Lastly we used an order preserving scheme that is within a constant additive term of the
optimal Hu-Tucker but requires linear time rather than O(m log m) where m = |Σ| is the size of
the alphabet.

Categories and Subject Descriptors: E.2 [Data Storage]: Contiguous Representations,Object
Representations; E.4 [Coding and Information Theory]: Data Compaction and Compression;
F.2.0 [Analysis of Algorithms and Problem Complexity]: General; H.3.2 [Information
Storage]: File Organization; H.3.2 [Information Search and Retrieval]: Search process

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Order preserving compression, sorting, word-RAM, unit-cost
RAM

Alejandro López-Ortiz, Mehdi Mirzazadeh and Hossein SheikhAttar are at the David R. Cheriton
School of Computer Science, University of Waterloo, Waterloo, Ont., Canada, N2L 3G1. Email:
{alopez-o, mmirzazadeh,mhsheikhattar}@uwaterloo.ca.
Mohammad Ali Safari is at the Department of Computer Science, University of British Columbia,
201-2366 Main Mall, Vancouver, B.C., Canada, V6T 1Z4. Email: safari@cs.ubc.ca.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 1529-3785/20YY/0700-0111 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY, Pages 111–0??.

112 · López-Ortiz et al.

1. INTRODUCTION

In recent years, the size of corporate data collections has grown rapidly. For ex-
ample, in the mid-1980s, a large text collection was in the order of 500 MBytes.
Today, large text collections are over a thousand times bigger. At the same time,
archival legacy data that used to sit in tape vaults is now held on-line in large
data-warehouses and accessed regularly. Data storage companies such as EMC
have emerged to serve this need for data storage, with market capitalizations that
presently rival that of all but the largest PC manufacturers.

Devising algorithms for these massive data collections requires novel techniques.
Because of this, over the last ten years there has been renewed interest in research
on indexing techniques, string matching algorithms and very large database man-
agement systems among others.

Consider, for example, a corporate setting, such as a bank, with a large collection
of archival data, say, a copy of every bank transaction ever made. Data is stored
in a data warehouse facility and accessed periodically, albeit perhaps somewhat
unfrequently. Storing the data requires a representation that is succinct, amenable
to arbitrary searches and supports efficient random access.

Aside from savings in storage, a no less important advantage of a succinct rep-
resentation of archival data is a resulting improvement in performance of sorting
and searching operations. This improvement is twofold: First, in general almost
any sorting and searching algorithm benefits from operating on smaller keys, as
this leads to a reduced number of page faults as observed by Moura et al. [Moura
et al. 1997]. Second, benefits can be derived from using a word-RAM (unit-cost
RAM) sorting algorithm, such as that of Andersson [Andersson 1994; Andersson
and Nilsson 1998]. This algorithm sorts n w-bits keys on a unit-cost RAM with
word size w in time O(n

√
log n). As one can expect, in general this algorithm can-

not be applied to strings as the key length is substantially larger than the word
size. However if all or most of the keys can be compressed to below the word size
then this algorithm can be applied— with ensuing gains in performance.

There are many well known techniques for compressing data, however most of
them are not order preserving and do not support random access to the data as the
decoding process is inherently sequential [Bell et al. 1990; Knuth 1997]. Hence, it
is important that the compression technique be static as well as order preserving.
This rules out many of the most powerful compression techniques, such as those
based on the Ziv-Lempel method [Ziv and Lempel 1978], which are more attuned to
compression of long text passages in any event (we note, however, that it is possible
to implement certain search operations on Lempel-Ziv encoded text as shown by
Farach et al. and Kärkkäinen et al. [Farach and Thorup 1998; Kärkkäinen and
Ukknonen 1996]). Also, the need to preserve order eliminates many dictionary
techniques such as Huffman codes [Knuth 1997; Antoshenkov 1997].

Hence we consider a special type of static code, namely, order-preserving com-
pression schemes, which are similar to Huffman codes. More precisely, we are given
an alphabet Σ with an associated frequency pi for each symbol si ∈ Σ. The com-
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Sorting using Order Preserving Compression · 113

pression scheme E : Σ → {0, 1}∗ maps each symbol into an element of a set of prefix
free strings over {0, 1}∗. The goal is to minimize the entropy

∑
si∈Σ pi |E(si)| with

the added condition that if si < sj then E(si) < E(sj) in the lexicographic ordering
of {0, 1}∗. This is in contrast to Huffman codes which in general do not preserve
the order of the initial alphabet. Such a scheme is known as order preserving.

Optimal order-preserving compression schemes were introduced by Gilbert and
Moore [Gilbert and Moore 1959] who gave an O(n3) algorithm for computing the
optimal code. This was later improved by Hu and Tucker, who gave a Θ(n log n)
algorithm, which is optimal [Hu 1973]. In this paper we use a linear time encoding
algorithm that approximates the optimal order preserving compression scheme to
within a constant additive term to produce a compressed form of the data. The
savings are of significance when dealing with large alphabets which arise in applica-
tions such as DNA databases and compression on words. We test the actual quality
of the compression scheme on real string data and obtain that the compressed im-
age produced by the linear algorithm is within 0.4% and 5.2% of the optimal, in
the worst case. The experiments suggest that the compression ratio is, in practice,
much better than what is predicted by theory.

Then, using the compressed form we test the performance of the sorting algorithm
against the standard Unix sort in the Sun Solaris OS. Using data from a 1GB world
wide web crawl, we study first the feasability of compressing the keys to obtain 64
bit word length keys. In this case we obtain that only 2% of the keys cannot be
resolved within the first 64 significant bits. This small number of keys are flagged
and resolved in a secondary stage. For this modified version of Andersson’s we
report a factor of 1.5x improvement over the timings reported by Unix sort.

As noted above, an important advantage of order preserving compression schemes
is that they support random access. As such we consider as a likely application
scenario that the data is stored in compressed format. As an example, consider a
database management system (DBMS). Such systems often use sorting as an in-
termediate step in the process of computing a join statement. The DBMS would
benefit from an order preserving compression scheme first by allowing faster ini-
tial loading (copying) of the data into memory and second by executing a sorting
algorithm tuned for compressed data which reduces both processing time and the
amount of paging required by the algorithm itself if the data does not fit in main
memory. The contribution of each of these aspects is highlighted in Tables V and
VI.

The paper is laid out as follows. In Section 2 we introduce the linear time
algorithm for encoding and observe that its approximation term follows from a
theorem of Bayer [Bayer 1975]. In Section 3 we compare the compression ratio
empirically for string data using the Calgary corpus. In Section 4 we compare the
performance of sorting algorithms aided by order preserving data compression.

2. ORDER PRESERVING COMPRESSION

We consider the problem of determining code-words (encoded forms) such that the
compression ratio is as high as possible. Code-words may or may not have the prefix
property. In the prefix property case, the problem reduces to finding an optimum
alphabetic binary tree.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

114 · López-Ortiz et al.

Problem Definition Formally, the problem of finding optimal alphabetic binary
trees can be stated as follows: Given a sequence of n positive weights w1, w2, · · · , wn,
find a binary tree in which all weights appear in the leaves such that

—The weights on the leaves occur in order when traversing the tree from left to
right. Such a tree is called an alphabetic tree.

—The sum
∑

1≤i≤n wili is minimized, where li is the depth (distance from root) of
the ith leave from left. If so, this is an optimal alphabetic tree

If we drop the first condition, the problem becomes the well-known problem of
building Huffman trees, which is known to have the same complexity as sorting.

Previous Work Mumey introduced the idea of finding optimal alphabetic binary
tree in linear time for some special classes of inputs in [Mumey 1992]. One example
is a simple case solvable in O(n) time when the values of the weights in the initial
sequence are all within a term of two. Mumey showed that the region-based method,
described in [Mumey 1992], exhibits linear time performance for a significant variety
of inputs. Linear time solutions were discovered for the following special cases:
when the input sequence of nodes is sorted sequence, bitonic sequence, weights
exponentially separated, and weights within a constant factor, (see [Larmore and
Przytycka 1998]).

Moura et al. considered the benefits of constructing a suffix tree over compressed
text using an order preserving code [Moura et al. 1997]. In their paper they observe
dramatic savings in the construction of a suffix tree over the compressed text.

2.1 A Simple Linear Approximation Algorithm

Here, we present an algorithm which creates a compression dictionary in linear time
on the size of the alphabet and whose compression ratio compares very favourably
to that of optimal algorithms which have Ω(n log n) running time, where n is the
number of symbols or tokens for the compression scheme. For the purposes of
presentation we refer to the symbols or tokens as characters in an alphabet Σ. In
practice these “characters” might well correspond to, for example, entire English
words or commonly occurring three or four letter combinations. In this case the
“alphabet” can have tens of thousands of tokens, and hence the importance of linear
time algorithms for creating the compression scheme.

The idea of the proposed algorithm is to divide the set of weights into two almost
equal size subsets and solve the problem recursively for them. As we show in
section 2.4, this algorithm finds a compression scheme within an additive term of
2 bits of the average code length found by Huffman or Hu-Tucker algorithms.

2.2 Algorithm

Let w1, w2, · · · , wn be the weights of the alphabet characters or word codes to be
compressed in alphabetical order. The procedure Make(i, j) described below, finds
a tree in which tokens with weights wi, wi+1, · · · , wj are in the leaves:
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Sorting using Order Preserving Compression · 115

procedure Make(i, j)

(1) if (i == j) return a tree with one node containing wi.

(2) Find k such that |(wi + wi+1 + ... + wk)− (wk+1 + ... + wj)| is minimum.

(3) Let T1 = Make(i, k) and T2 = Make(k + 1, j)

(4) Return tree T with left subtree T1 and right subtree T2.

In the next two subsections we study (a) the time complexity of the proposed
algorithm and (b) bounds on the quality of the approximation obtained.

2.3 Time Complexity

First observe that, aside from line 2, all other operations take constant time. Hence
so long as line 2 of the algorithm can be performed in logarithmic time, then
the running time T (n) of the algorithm would be given by the recursion T (n) =
T (k)+T (n−k)+O(log k), and hence, T (n) = O(n). Therefore, the critical part of
the algorithm is line 2: how to divide the set of weights into two subsets of almost
the same size in logarithmic time.

Suppose that for every k, the value of ak = bi + wi + wi+1 + · · ·+ wk is given for
all k ≥ i where bi is a given integer to be specified later. Notice that the aj ’s form
an increasing sequence as ai < ai+1 < · · · < aj . Now the expression in line 2 of the
algorithm can be rewritten as follows:

|(wi + wi+1 + ... + wk)− (wk+1 + ... + wj)| = |aj − 2ak + bi|.
So, given the value of ak, for all k, one can easily find the index u for which
|aj − 2au + bi| is minimum using a variation of a one sided binary search, known as
galloping. Define ak :=

∑k
i=1 wk and hence bi = ai−1 =

∑i−1
`=1 w` and modify the

algorithm as follows:

procedure Make(i, j, b)

(1) if (i == j) return a tree with one node containing wi.

(2) let = Minimize(i, j, b, 1).

(3) Let T1 = Make(i, k, b) and T2 = Make(k + 1, j, ak)

(4) Return tree T with left subtree T1 and right subtree T2.

where the minimize procedure is a one sided binary search for the element closest
to zero in the sequence {aj − 2ak − 2b}k. More precisely:

procedure Minimize(i, j, b, g)

(1) if (j − i ≤ 1) return min{|aj − 2ai − 2p|, |aj + 2b|}.
(2) let ` = i + g, u = j − g.

(3) if (aj − 2a` − 2b) > 0 and (aj − 2au − 2b) < 0 then return Minimize(i,j,b,2g).

(4) if (aj − 2a` − 2b) < 0 then return Minimize(`− g/2,`,b,1).

(5) if (aj − 2au − 2b) > 0 then return Minimize(u,u + g/2,b,1).

The total time taken by all calls to Minimize is given by the recursion T (n) =
T (k) + T (n − k) + log k, if k ≤ n/2 and T (n) = T (k) + T (n − k) + log(n − k)
otherwise, where n is the number of elements in the entire range and k is the

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

116 · López-Ortiz et al.

position of the element found in the first call to Make. This recursion has solution
T (n) ≤ 2n− log n− 1 as can easily be verified:

T (n) = T (k) + T (n− k) + log k ≤ 2n− 1− log(n− k)− 1 ≤ 2n− 1− log n

when k ≤ n/2. The case k > n/2 is analogous.
To compute total time, we have that, at initialization time, the algorithm calcu-

lates ak for all k and then makes a call to Make(1, n, 0). The total cost of line 2 is
linear and hence the entire algorithm takes time O(n).

2.4 Approximation bounds

Recall that a binary tree T can be interpreted as representing a coding for symbols
corresponding to its leaves by assigning 0/1 labels to left/right branches, respec-
tively. Given a tree T and a set of weights associated to its leaves, we denote as
E(T), the expected number of bits needed to represent each of these symbols us-
ing codes represented by the tree. More precisely, if T has n leaves with weights
w1, . . . , wn and depths l1, . . . , ln, then

E(T) =
n∑

i=1

wi li
W (T)

,

where W (T) is defined as the total sum of the weights
∑n

i=1 wi. Note that W (T) = 1
for the case of probability frequency distributions.

Theorem 2.1. Let T be the tree generated by our algorithm, and let TOPT be
the optimal static binary order preserving code. Then

E(T) ≤ E(TOPT) + 2.

This fact can be proven directly by careful study of the partition mechanism
depending on how large the central weight wk is. However we observe that a
much more elegant proof can be derived from a rarely cited work by Paul Bayer.
Consider a set of keys k1, . . . , kn, with probabilities p1, . . . , pn for successful searches
and q0, q1, . . . , qn for unsuccessful searches. Let H =

∑n
i=1−pi lg pi +

∑n
i=0−qi lg qi

denote the entropy of the associated probability distribution. Observe that from
Shannon’s source coding theorem [Shannon 1948], we know that H ≤ E(T) for any
tree T .

Definition 2.2. A weight balanced tree is an alphabetic binary search tree con-
structed recursively from the root by minimizing the difference between the weights
of the left and right subtrees.

That is, a weight balanced tree minimizes |W (L) −W (R)| in a similar fashion to
procedure Make above.

Theorem 2.3 [Bayer 1975]. Let SOPT denote the optimal alphabetic binary
search tree, with keys in internal nodes and unsuccessful searches in external nodes.
Let S denote a weight balanced tree on the same keys, then

E(S) ≤ H + 2 ≤ E(SOPT) + 2

With this theorem at hand we can now proceed with the original proof of Theorem
2.1.
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Sorting using Order Preserving Compression · 117

Table I. Comparison of the three algorithms

Alphabet size n Linear / Huffman Hu-Tucker / Huffman Linear / Hu-Tucker

n = 26 (10000 tests) 1.1028 1.0857 1.0519
n = 256 (10000 tests) 1.0277 1.0198 1.0117
n = 1000 (3100 tests) 1.0171 1.0117 1.0065
n = 2000 (1600 tests) 1.0147 1.0100 1.0053
n = 3000 (608 tests) 1.0120 1.0089 1.0038

Proof of Theorem 2.1. We are given a set of symbols si and weights wi with
1 ≤ i ≤ n. Consider the weight balanced alphabetical binary search tree on n − 1
keys with successful search probabilities pi = 0 and unsuccessful search probabil-
ities qi = wi−1. Observe that there is a one-to-one mapping between alphabetic
search trees for this problem and order preserving codes. Moreover the cost of the
corresponding trees coincide. It is not hard to see that the tree constructed by Make
corresponds to the weight balanced tree, and that the optimal alphabetical binary
search tree SOPT and the optimum Hu-Tucker code tree TOPT also correspond to
each other. Hence from Bayer’s theorem we have

E(T) ≤ H + 2 ≤ E(SOPT) + 2 = E(TOPT) + 2

as required.

This shows that in theory the algorithm proposed is fast and has only a small per-
formance penalty in terms of compression over both the optimal encoding method
and the information theoretical lower bound given by the entropy.

3. EXPERIMENTS ON COMPRESSION RATIO

In this section we compare experimentally the performance of the algorithm in
terms of compression against other static compression codes. We compare three
algorithms: Huffman, Hu-Tucker and our algorithm on a number of random fre-
quency distributions. We compared alphabets of size n, for variable n. In the case
of English this corresponds to compression on words, rather than on single char-
acters. Each character was given a random weight between 0 and 100, 000, which
is later normalized. The worst case behavior of our algorithm in comparison with
Hu-Tucker and Huffman algorithms is shown in Table I. For each sample we cal-
culated the expected number of bits required by each algorithm on that frequency
distribution and reported the ratio least favourable among those reported.

We also compared the performance of the proposed linear time algorithm with
Huffman and Hu-Tucker compression using the Calgary corpus, a common bench-
mark in the field of data compression. This is shown in Table II. We report both
the compression ratio of each of the solutions as well as the comparative perfor-
mance of the linear time solution with the other two well known static methods. As
we can see, the penalty on the compression factor of the linear time algorithm over
Huffman, which is not order preserving, or Hu-Tucker, which takes time O(n log n),
is minimal.

It is important to observe that for the data set tested the difference between the
optimal Hu-Tucker and the linear compression code was in all cases below 0.2 bits,
which is much less than the worst case additive term of 2 predicted by Bayer’s
theorem.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

118 · López-Ortiz et al.

Table II. Comparison using the Calgary Corpus
file size (in bits) Huff. Lin. H-T Lin./Huff. Lin./H-T H-T/Huff.

bib.txt 890088 65% 68% 67% 1.0487 1.0140 1.0342
book1.txt 6150168 57% 61% 59% 1.0727 1.0199 1.0518
book2.txt 4886848 60% 63% 62% 1.0475 1.0159 1.0310
paper1.txt 425288 62% 65% 64% 1.0378 1.0075 1.0301
paper2.txt 657592 57% 60% 60% 1.0520 1.0098 1.0418
paper3.txt 372208 58% 61% 60% 1.0421 1.0099 1.0318
paper4.txt 106288 59% 63% 61% 1.0656 1.0321 1.0324
paper5.txt 95632 62% 65% 64% 1.0518 1.0151 1.0361
paper6.txt 304840 63% 66% 64% 1.0495 1.0198 1.0290
progc.txt 316888 65% 68% 66% 1.0463 1.0315 1.0143
progl.txt 573168 59% 63% 61% 1.0637 1.0324 1.0302
progp.txt 395032 61% 64% 63% 1.0583 1.0133 1.0443
trans.txt 749560 69% 72% 70% 1.0436 1.0243 1.0187
news.txt 3016872 65% 67% 67% 1.0403 1.0103 1.0296

geo 819200 70% 72% 71% 1.0173 1.0098 1.0074
obj1 172032 74% 76% 75% 1.0220 1.0149 1.0070
obj2 1974512 78% 80% 80% 1.0280 1.0103 1.0175
pic 4105728 20% 21% 21% 1.0362 1.0116 1.0242

4. STRING SORTING USING A WORD RAM ALGORITHM

In this section we compare the performance of sorting on the compressed text
against the uncompressed form (as in [Moura et al. 1997]) including Bentley and
Sedgewicks’s FastSort [Bentley and Sedgewick 1997] as well as Andersson’s word-
RAM sort [Andersson 1994]. Traditionally word RAM algorithms operate on un-
bounded length keys, such as strings, by using radix/bucket sort variants which
iteratively examine the keys [Andersson and Nilsson 1994]. In contrast our method
uses order preserving compression to first reduce the size of the keys, then sort us-
ing fixed key size word RAM algorithms [Andersson et al. 1995], sorting keys into
buckets. We observed experimentally that this suffices to sort the vast majority of
the strings when sorting 100MB files of web crawled text data. In this case each
of the buckets contained very few elements in practice. We also tested the algo-
rithms on the Calgary corpus, which is a standard benchmark in the field of text
compression.

We consider the use of a word RAM sorting algorithm to create a dictionary of
the words appearing in a given text. The standard word RAM algorithms have as
a requirement that the keys fit within the word size of the RAM machine being
used. Modern computers have word sizes of 32 or 64 bits. In this particular
example we tested Andersson’s 32 bit implementation [Andersson and Nilsson 1998]
of the O(n log log n) algorithm by Andersson et al. [Andersson et al. 1995]. We
also tested the performance of Bentley and Sedgewick’s MKQSort [Bentley and
Sedgewick 1997] running on compressed data using order preserving compression.
The algorithm is a straightforward implementation of the code in [Bentley and
Sedgewick 1997].

Observe that one can use a word RAM algorithm on keys longer than w bits by
initially sorting on the first w bits of the key and then identifying “buckets” where
two or more strings are “tied”, i.e. share the first w bits. The algorithm proceeds
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Sorting using Order Preserving Compression · 119

Table III. Percentage of buckets multiply occupied (Web crawl).

File Size in % words sharing a bucket
tokens Uncompressed Hu-Tucker Linear

alphanumeric 515277 16% 2% 2%
alpha only 373977 21% 3% 3%

recursively on each of these buckets until there are no further ties. This method is
particularly effective if the number of ties is not too large.

To study this effect, we consider two word dictionaries and a text source. One
is collected from a 1 GB crawl of the World Wide Web, the second from all the
unique words appearing in the Calgary corpus and the last one is a more recent 3.3
GB crawl of the World Wide Web. This is motivated by an indexing application
for which sorting a large number of words was required. In principle, the result
is equally applicable to other settings such as sorting of alphanumeric fields in a
database.

In the case of the web crawl we considered two alternative tokenization schemes.
The first one tokenizes on alphanumeric characters while the second ignores num-
bers in favour of words only. Table III shows the number of buckets that have more
than one element after the first pass in the uncompressed and the compressed form
of the text. We report both the figure for the proposed linear algorithm and for
the optimal Hu-Tucker scheme. Observe the dramatic reduction in the number of
buckets that require further processing in the compressed data.

In fact the numbers of ties in the compressed case is sufficiently small that abort-
ing the recursion after the first pass and using a simpler sorting algorithm on the
buckets is a realistic alternative. In comparison, in the uncompressed case the re-
cursion reaches depth three in the worst case before other types of sorting become
a realistic possibility.

In the case of the Calgary corpus, the number of buckets with ties in the uncom-
pressed form of the text ranged from 3% to 8%. After compressing the text the
number of ties, in all cases, rounded to 0.0%. The specific figures for a subset of
the Calgary corpus are shown in Table 4.

Notice that in all cases the performance of the optimal Hu-Tucker algorithm and
the linear algorithm is comparable. We should also emphasize that while the tests
in this paper used compression on alphanumeric characters only, the compression
scheme can be applied to entire words (see for example [Mumey 1992]). In this
case, the size of the code dictionary can range in the thousands of symbols which
makes the savings of a linear time algorithm particularly relevant.

Lastly we considered a series of ten web crawls from Google, each of approxi-
mately 100MB in size (3.3GB in total). In this case we operate under the assump-
tion that the data is stored in the suitable format to the corresponding algorithm.
We posit that it is desirable to store data in compressed format, as this results also
in storage savings while not sacrificing searchability due to the order preserving
nature of the compression. We tokenized and sorted each of these files to create a
dictionary, a common preprocessing step for some indexing algorithms. The tok-
enization was performed on non-alphanumeric characters. For this test we removed
tokens larger than 32 bits from the tokenized file. In practice, these tokens would
be sorted using a second pass, as explained before. We first studied the benefits of

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

120 · López-Ortiz et al.

Table IV. Percentage of buckets multiply occupied
on the text subset of the Calgary Corpus.

File % Percentage words tied
Uncompressed Hu-Tucker Linear

paper1 5% 0% 0%
paper2 4% 0% 0%
paper3 6% 0% 0%
paper4 4% 0% 0%
paper5 3% 0% 0%
paper6 4% 0% 0%
book1 3% 0% 0%
book2 8% 0% 0%
bib 7% 0% 0%

Table V. CPU time (in seconds) as reported by the Unix time utility.

Algorithm Data 1 Data 2 Data 3 Average Variance

QSort 2.41 2.29 2.33 2.33 0.04
QSort on Compressed 2.17 2.18 2.20 2.20 0.05

Andersson 0.80 0.82 0.81 0.81 0.01

Fast Sort 0.88 0.89 0.86 0.88 0.02
Fast Sort on Compressed 0.73 0.75 0.75 0.74 0.02

Binary Search 1.27 1.29 1.26 1.28 0.02
Binary Search on Compressed 1.08 1.09 1.09 1.09 0.02

order preserving compression alone by comparing the time taken to sort the uncom-
pressed and compressed forms of the text. The tokens were sorted using the Unix
sort routine, Unix qsort, Fast MKQSort and Andersson’s sort algorithm [Ander-
sson and Nilsson 1998]. Table V shows a comparison of CPU times among the
different sorting algorithms, while table VI shows the comparison in performance
including I/O time for copying the data into memory. Note that there are observed
gains both in CPU time alone and in CPU plus I/O timings as a result of using the
data compressed form.

We report timings in individual form for the first three crawls as well as the
average sorting time across all 10 files together with the variance. On the data
provided Fast MKQSort is the best possible choice with the compressed variant
being 20% faster than the uncompressed form. These are substantial savings for
such a highly optimized algorithm.

While in this case we focused on key lengths below w bits, the savings from com-
pression can be realized by most other sorting, searching or indexing mechanisms,
both by the reduction of the key length field and by the reduced demands in terms
of space. To emphasize, there are two aspects of order preserving compression
which have a positive impact on performance. The first is that when comparing
two keys byte-per-byte, we are now in fact comparing more than one key at once,
since compressed characters fit at a rate of more than one per byte. Secondly the
orginal data size is reduced. This leads to a decrease in the amount of paging to
external memory, which is often the principal bottleneck for algorithms on large
data collections.
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Sorting using Order Preserving Compression · 121

Table VI. Total system time (in seconds) as reported by the Unix time utility.

Algorithm Data 1 Data 2 Data 3 Average Variance

Unix Sort 5.53 5.40 5.30 5.41 0.07
Unix Sort Compressed 5.43 5.43 5.53 5.42 0.06

QSort 2.78 2.64 2.68 2.69 0.05
QSort on Compressed 2.45 2.47 2.48 2.48 0.05

Andersson 3.63 3.60 3.67 3.61 0.04

Fast Sort 1.24 1.25 1.22 1.24 0.02
Fast Sort on Compressed 1.00 1.04 1.02 1.03 0.02

Binary Search 1.63 1.64 1.62 1.65 0.02
Binary Search on Compressed 1.36 1.38 1.37 1.38 0.02

5. CONCLUSIONS

In this work we study the benefits of order preserving compression for sorting strings
in the word RAM model. First we propose a simple linear approximation algorithm
for optimal order preserving compression, which acts reasonably well in comparison
with optimum algorithms, both in theory and in practice. The approximation is
within a constant additive term of both the optimum scheme and the information
theoretical ideal, i.e. the entropy of the probabilistic distribution associated to the
character frequency. We then test the benefits of this algorithm using the sorting
algorithm of Andersson for the word-RAM as well as Bentley and Sedgewick’s fast
MKQSort. We present experimental data based on a 1GB web crawl, showing that
Fast MKQSort and Andersson on compressed data are more efficient.

Acknowledgements We wish to thank Ian Munro for helpful discussions on this
topic, as well as anonymous referees of an earlier version of this paper for their
helpful comments.

REFERENCES

Andersson, A. 1994. Faster deterministic sorting and searching in linear space. In Proceedings
of the 37th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1996).
135–141.

Andersson, A., Hagerup, T., Nilsson, S., and Raman, R. 1995. Sorting in linear time? In
STOC: ACM Symposium on Theory of Computing (STOC).

Andersson, A. and Nilsson, S. 1994. A new efficient radix sort. In FOCS: IEEE Symposium
on Foundations of Computer Science (FOCS).

Andersson, A. and Nilsson, S. 1998. Implementing radixsort. ACM Journal of Experimental
Algorithms 3, 7.

Antoshenkov, G. 1997. Dictionary-based order-preserving string compression. VLDB Journal:
Very Large Data Bases 6, 1 (Jan.), 26–39. Electronic edition.

Bayer, P. J. 1975. Improved bounds on the costs of optimal and balanced binary search trees.
Master’s thesis. Massachussets Institute of Technology (MIT).

Bell, T. C., Cleary, J. G., and Witten, I. H. 1990. Text Compression. Prentice Hall.

Bentley, J. L. and Sedgewick, R. 1997. Fast algorithms for sorting and searching strings. In
Proceedings of 8th ACM-SIAM Symposium on Discrete Algorithms (SODA’97). 360–369.

Farach, M. and Thorup, M. 1998. String matching in lempel-ziv compressed strings. Algorith-
mica 20, 4, 388–404.

Gilbert, E. N. and Moore, E. F. 1959. Variable-length binary encoding. Bell Systems Technical
Journal 38, 933–968.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

122 · López-Ortiz et al.

Hu, T. C. 1973. A new proof of the T -C algorithm. SIAM Journal on Applied Mathematics 25, 1
(July), 83–94.

Kärkkäinen, J. and Ukknonen, E. 1996. Lempel-ziv parsing and sublinear-size index structures
for string matching. In Proc. of the 3rd South American Workshop on String Processing (WSP
’96). 141–155.

Knuth, D. E. 1997. The Art of Computer Programming : Fundamental Algorithms, Third ed.
Vol. 1. Addison–Wesley. ISBN: 0–201–89683–4.

Larmore, L. L. and Przytycka, T. M. 1998. The optimal alphabetic tree problem revisited.
Journal of Algorithms 28, 1 (July), 1–20.

Moura, E., Navarro, G., and Ziviani, N. 1997. Indexing compressed text. In Proc. of the 4th
South American Workshop on String Processing (WSP’97). Carleton University Press, 95–111.

Mumey, B. M. 1992. Some new results on constructing optimal alphabetic binary trees. Master’s
thesis, University of British Columbia.

Shannon, C. E. 1948. A mathematical theory of communication. Bell Syst. Technical Jrnl. 27,
379–423, 623–656.

Ziv, J. and Lempel, A. 1978. Compression of individual sequences via variable-rate coding. IEEE
Trans. Inform. Theory, Vol.IT-24 5.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

