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Abstract The development of real-time image and video

quality assessment algorithms is an important direction on

which little research has focused. Towards this end, we

present a design of real-time implementable full-reference

image/video quality algorithms that are based on the

Structural SIMilarity (SSIM) index and multi-scale SSIM

(MS-SSIM) index. The proposed algorithms, which modify

SSIM/MS-SSIM to achieve speed of execution, were tested

on the LIVE Image Quality Database and LIVE Video

Quality Database. The experimental results show that the

performance of the new, fast algorithms is commensurate

with that of SSIM and MS-SSIM, but with much lower

computational complexity. Indeed, the proposed Fast MS-

SSIM algorithm is 10 times faster (lower complexity) than

the MS-SSIM algorithm, while the proposed Fast SSIM is

2.68 times faster than SSIM without parallel computing

optimization.

Keywords Real time � Video quality assessment �
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1 Introduction

With the increasing prevalence of digital images and videos,

people live in an era rich in digital visual information.

Effective systems for automatic image quality differentia-

tion are thus urgently needed to help manage the abundance

of available digital visual content. In the field of full-refer-

ence (FR) image and video quality assessment research,

where it is assumed that the algorithm has a reference

(pristine) image available to it, a variety of popular algo-

rithms have been proposed and studied. For instance,

‘‘Yonsei’’ has been recommended by the VQEG group as an

FR quality assessment method in the J.144 document [1],

while the Structural SIMilarity (SSIM) index [2] has been

widely used in many FR image quality assessment appli-

cations. A number of algorithms have been derived from

SSIM: Multi-scale SSIM (MS-SSIM) [3], Percentile Pooling

SSIM (P-SSIM) [3], Complex-Wavelet SSIM (CW-SSIM)

[5], Gradient-based Structural Similarity (G-SSIM) [6], and

Three-Component Weighted SSIM [7]. All these derivative

algorithms aim to improve predictive accuracy of SSIM

relative to human subjectivity, but inevitably increase the

computational complexity.

The surge of mobile applications has created a demand

for low complexity algorithms that can run on handheld

and other mobile devices. Multimedia services, such as

video on demand (VOD) and IPTV are already available on

mobile devices, further necessitating algorithms that have

low complexity. Here we focus on reducing the computa-

tional complexity of the popular SSIM index, and propose

a low complexity version of the algorithm which we call

Fast SSIM. Fast SSIM performs at a level comparable to

SSIM in terms of correlation with human subjectivity, as

measured on the LIVE Image Quality Database. We also

extend the Fast SSIM concept to the Multi-Scale SSIM

index, which has better prediction performance than single

scale SSIM. The resulting Fast MS-SSIM algorithm also

performs commensurate with that of MS-SSIM in terms of

agreement with human subjectivity.
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The rest of this paper is organized as follows. Sec-

tion 2 reviews the SSIM and MS-SSIM indices. In the

following sections, the specific elements of the SSIM

index are considered in light of their computational

complexity, and how they can be optimized to achieve

more efficient performance, thus yielding Fast SSIM.

Section 3 describes the development of the luminance

term of Fast SSIM, while in Sect. 4, the contrast term and

the structural terms of FAST SSIM and Fast MS-SSIM

are elaborated. Section 5 explains how optimization can

be applied to Fast SSIM and Fast MS-SSIM. Experiments

are presented in Sect. 6, and concluding remarks are

offered in Sect. 7.

2 Structural similarity index

We review the SSIM and MS-SSIM indices.

2.1 Single scale structural similarity index

Based on the hypothesis that the HVS is highly adapted for

extracting structural information, the SSIM algorithm

contains three terms that capture different aspects of the

similarity (or lack thereof) between two non-negative sig-

nals x and y: luminance l(x, y), contrast c(x, y), and

structure s(x, y):

lðx; yÞ ¼
2lxly þ C1

l2
x þ l2

y þ C1

ð1Þ

cðx; yÞ ¼ 2rxry þ C2

r2
x þ r2

y þ C2

ð2Þ

sðx; yÞ ¼ rxy þ C3

rxry þ C3

ð3Þ

where C1 = (K1L)2, C2 = (K2L)2, and C3 = C2/2 are small

constants; L is the dynamic range of the pixel values, and

K1 � 1 and K2 � 1 are scalar constants. The constants C1,

C2, and C3 ensure stability when the denominator

approaches zero. Combining the three terms, the common

form of SSIM is:

SSIMðx; yÞ ¼ lðx; yÞ½ � cðx; yÞ½ � sðx; yÞ½ �

¼
2lxly þ C1

� �
2rxy þ C2

� �

l2
x þ l2

y þ C1

� �
r2

x þ r2
y þ C2

� � ð4Þ

The overall SSIM index value between signals x and y is

defined as the average of all the SSIM index values

calculated within a (commonly) 11 9 11 isotropic

Gaussian weighting window passed over the image,

although other ‘‘pooling’’ strategies than averaging exist

[4]. The Gaussian weighting window prevents artifacts

arising from a discontinuous truncation of the local image

patches when computing the local values of the SSIM

index map.

2.2 Multi-scale structural similarity index

The distance between the image and the observer affects

the observer’s perceived image quality. The results of

subjective impressions of quality can vary as the viewing

distance changes. In addition, images are naturally multi-

scale, and both distortions and image features possess

multi-scale attributes. For these reasons, the Multi-scale

SSIM (MS-SSIM) index was developed.

In MS-SSIM, quality assessment is performed on mul-

tiple scales of the reference and the distorted images. Low-

pass filtering and down-sampling are applied iteratively (as

shown in Fig. 1), and elements of the SSIM index are

applied at each scale, indexed from 1 (original image)

through the finest scale M obtained after M - 1 iterations.

At each scale i, the contrast and structure terms are

calculated: cj(x, y) and sj(x, y), respectively. The lumi-

nance term is computed only at scale M and represented as

lM(x, y). The overall quality evaluation is obtained by

combining the measurement over scales:

MS-SSIMðx; yÞ

¼ ½lMðx; yÞ�aM
YM

j¼1

½cjðx; yÞ�bj ½sjðx; yÞ�cj ð5Þ

where typically M = 5, and the exponents rM, bj, cj are

selected such that rM = bj = cj and
PM

j¼1 cj ¼ 1 [3].

3 Luminance term

As noted by Rouse and Hemami [8], the luminance term of

the SSIM index often plays a less significant perceptual

role in predicting visual quality than the other terms. They

proposed eliminating it to reduce complexity. We choose

to preserve the luminance term since images may suffer

from a luminance bias, even if not all image quality dat-

abases explicitly include such distortions. Nevertheless, we

have sought to expend as little computation as possible on

the luminance term.

The luminance term in Fast SSIM utilizes an 8 9 8

square window, and an integral image technique [9] to

compute the luminance similarity between the reference

and test images.

By using the so-called integral image, extraction of the

mean value of the pixels within a square window can be

made quite efficient. As shown in Fig. 2, the value of the

integral image at (x, y) is the sum of the pixels values

above and to the left of (x, y), and including the value at

(x, y).
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Computing the sum over any rectangular area can be

achieved with only two additions and one subtraction. As

shown in Fig. 3, the sum of the pixel values within the

rectangle D can be computed using four array references.

In Fig. 3, there are four pixels marked as 1, 2, 3 and 4 and

their values are defined as V1, V2, V3 and V4, respectively.

The value of the integral image at location 1 (V1) is the sum

of the pixels in rectangle A. The value at location 2 (V2) is

A ? B, at location 3 (V3) is A ? C, and at location 4 (V4)

is A ? B ? C ? D. The sum of the values in region D can

be computed as V4 ? V1 - (V2 ? V3).

Using the integral image [9] and a square window, the

complexity of computing the luminance term is reduced

considerably. Assuming the window size is n 9 n, then to

compute the mean pixel values of this window, the stan-

dard SSIM index algorithm (using a Gaussian weighted

window) requires n2 multiplies and (n2 - 1) additions,

while the proposed Fast SSIM algorithm only requires

three additions and one subtraction. Meanwhile, the com-

putation needed to generate the integral image is

negligible.

Assume we compute the SSIM and Fast SSIM indices

on an image (width = w, height = h) with an n 9 n win-

dow size. To compute an integral image we need (wh-1)

addition operations. The overall reduction in computation

is the product of the computational reduction per window

by the number of windows, where the computational

reduction per window is n2 multiplies ? (n2 - 4) additions

-1 subtraction, while the number of windows is

(w - n ? 1)(h - n ? 1). Hence, applying the integral

image to calculate the SSIM luminance term reduces the

computational complexity dramatically.

4 Contrast and structure terms

Computation of the variance term is the most time-con-

suming part of the SSIM algorithm. In order to lower the

complexity, we substitute the variance with a gradient

value in Fast SSIM. Following Field [10], we note that

while images of real-world scenes vary greatly in their

absolute luma and chroma distributions, the gradient

magnitudes of natural images generally obey heavy tailed

distribution laws. Indeed, some no-reference image quality

assessment algorithms [11], [12] use the gradient image to

assess blur severity. Similarly, the performance of the

gradient-based SSIM index suggests that applying SSIM on

the gradient magnitude may yield slightly higher quality

assessment performance. The gradient is certainly respon-

sive to image variations. Moreover, the gradient magnitude

has low complexity and is amenable to integer-only

implementation.

We generate the gradient image using the Roberts gra-

dient templates depicted in Fig. 4.

Fig. 1 Multi-scale SSIM. L low-pass filtering, 2; down-sampling by 2

Fig. 2 Illustration of integral image

Fig. 3 How to compute sum value over region D in integral image

domain Fig. 4 Roberts gradient templates
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The gradient magnitude is approximated by1

rIj j ¼ max rij j; rjj jf g þ 1=4ð Þmin rij j; rjj jf g ð6Þ

where ri and rj are the Roberts template responses in the

two orthogonal directions. This approximation is based

upon a simple expansion of the gradient.

Assuming the image has dimensions Nx 9 Ny, the con-

trast c(x, y) and structure s(x, y) terms of the Fast SSIM

index algorithm are then defined:

cðx; yÞ ¼
2lGxlGy þ C2

� �

l2
Gx þ l2

Gy þ C2

� � ð7Þ

sðx; yÞ ¼
lGxGy þ C3

� �

lGxlGy þ C3

� � ð8Þ

where C3 = C2/2, and

lGx ¼
1

NxNy

XNx

x¼1

XNy

y¼1

rxðx; yÞj j ð9Þ

lGxGy ¼
1

NxNy

XNx

x¼1

XNy

y¼1

rxðx; yÞj j ryðx; yÞj j ð10Þ

and where |rx| and |ry| are the gradient magnitude values of

the images x and y, estimated using the approximation (6).

The Fast SSIM index between x and y is then:

Fast-SSIMðx; yÞ ¼
2lxly þ C1

� �
2lGxGy þ C2

� �

l2
x þ l2

y þ C1

� �
l2

Gx þ l2
Gy þ C2

� �:

ð11Þ

In MS-SSIM, the contrast and structural terms are

calculated over multiple scales. Therefore, the Fast MS-

SSIM index between signal x and y is defined as:

Fast-MS-SSIMðx; yÞ

¼ ½lMðx; yÞ�aM
YM

j¼1

½cjðx; yÞ�bj ½sjðx; yÞ�cj ð12Þ

where M = 5, and the exponents rM, bj, cj are selected

such that rM = bj = cj and
PM

j¼1 cj ¼ 1:

Another modification is using an integer approximation

to the Gaussian weighting window. In this way, the com-

putation of the contrast and the structure terms uses only

integer operations. Figure 5 shows the window. In addi-

tion, because the contrast and the structure terms are more

important than the luminance term, allowing for a flexible

integer window design can help improve the quality eval-

uation ability of the algorithm without increasing the

computation complexity. The simplifications provide that

all computations are reduced to integer operations, with

square roots eliminated.

The other modification applied to create the Fast MS-

SSIM algorithm is the use of sub-sampling. We suggest

that the contrast and the structure terms need not be com-

puted at the original scale in Fast MS-SSIM. Since humans

are less sensitive to localized higher spatial frequencies,

skipping computation of the contrast and the structure

terms at the finest scale can increase the computation speed

dramatically without lowering performance. The experi-

ment results given in the Sect. 6 support this assumption.

5 Optimization

Optimization is an essential process when implementing an

algorithm for industrial applications, especially for real-time

applications. A natural approach would be to use parallel

computing optimization on the Fast SSIM and MS-SSIM

index algorithms to achieve better performance. In order to

demonstrate the potential performance of an optimized ver-

sion of our proposed algorithm, data-level parallelization and

frame-level parallelization are implemented in this study.

In our fast algorithms, about 80% of the computation is

consumed by the contrast and the structure terms once the

luminance term is simplified. Since most of the operations in

the computation of the contrast and the structure terms in Fast

SSIM and MS-SSIM are integer-only, Fast SSIM and MS-

SSIM are amenable to Single Instruction Multiple Data

(SIMD) optimization. Also, since Fast SSIM and MS-SSIM

do not currently use any dependency between frames, it is

natural to conduct frame-level parallelization. In our imple-

mentation, the computation of (7) and (8) are optimized using

SIMD, while multi-threading is applied at the frame level.

6 Experimental results

The LIVE Image Quality Database [13] and the LIVE

Video Quality Database [14–16] were used in the following

experiment.

1 An accurate truncated expansion approximation learned by author

ACB whilst lecturing at Texas Instruments in the 1990s.

Fig. 5 8 9 8 integer approximation to Gaussian window
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The LIVE Image Quality Database includes difference

mean opinion score (DMOS) subjective scores for each

image and six types of distortions. The distortions include

JPEG2000 compression distortion (227 images), JPEG

compression distortion (233 images), white noise (174

images), Gaussian blur (174 images), and fast-fading

channel noise (174 images).

The LIVE Video Quality Database also includes DMOS

subjective scores for 150 distorted videos created from 10

high-quality reference videos (15 distorted videos per ref-

erence). The database includes four different distortion

types: MPEG-2 compression, H.264 compression, simu-

lated transmission of H.264 compressed bit streams

through error-prone IP networks, and simulated transmis-

sion of H.264 compressed bit streams through error-prone

wireless networks.

6.1 Performance: quality assessment

To provide a quantitative performance evaluation, we

abide by the guidelines on experiments design published by

the Video Quality Experts Group (VQEG) [17]; we use the

Spearman Rank Order Correlation Coefficient (SROCC),

the linear correlation coefficient (LCC) (after non-linear

regression), and the root mean-squared error (RMSE) (after

non-linear regression) as objective measures of algorithm

performance relative to human subjectivity. Higher corre-

lation values between the scores predicted by the tested

algorithm and human DMOS scores indicate that the rat-

ings supplied by the tested algorithm better predict those of

human subjects’.

Following non-linear regression, the LCC and RMSE

between the subjective and the objective scores are cal-

culated as measures of the prediction accuracy of our

proposed algorithms. The non-linearity chosen to fit the

data is a five-parameter logistic function (a logistic func-

tion with an added linear term, and constrained to be

monotonic) given by:

QualityðxÞ ¼ b1logisticðb2; ðx� b3ÞÞ þ b4 þ b5

logisticðs; xÞ ¼ 1

2
� 1

1þ expðsxÞ ð13Þ

The LCC value between two random vectors X and Y is

LCCðX; YÞ ¼
Pn

i¼1 Xi � �Xð Þ Yi � �Yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Xi � �Xð Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Yi � �Yð Þ2
q ð14Þ

where �X and �Y are the means of X and Y, and n is their

lengths. We calculated the LCC between the predicted

quality scores and the DMOS scores.

Prediction monotonicity of IQA algorithms is measured

by the SROCC. The SROCC value between the predicted

scores X and the subjective scores DMOS is

SROCCðX;DMOSÞ ¼ 1� 6
Pn

i¼1 di

nðn2 � 1Þ ð15Þ

where di = xi - DMOSi, and the two variables xi

and DMOSi are the ranks of Xi (the predicted score of

image i) and the DMOS score of image i, respectively.

Table 1 clearly demonstrates that the Fast SSIM algo-

rithm suffers no performance loss in terms of its subjective

quality prediction capability on images. The SROCC, LCC,

and RMSE values of SSIM and Fast SSIM are very close.

The performance numbers on the LIVE Image Quality

Database for Fast MS-SSIM are shown in Table 2. The

modifications in Fast MS-SSIM are the same as the mod-

ification in Fast SSIM, except that we propose to skip the

analysis on the contrast and the structure terms at the finest

scale. Table 2 shows that the SROCC, LCC, and RMSE

values of Fast MS-SSIM and Fast MS-SSIM with sub-

sampling are very close, although slightly lower than MS-

SSIM.

Table 3 and Table 4 are the performance numbers on

the LIVE Video Quality Database using a square window.

In our experiments, using a square window yields better

performance than using the integer Gaussian window,

while the integer Gaussian window has better performance

than the square window on the still image database. Of

course, this is as measured on a single database suggest

possible advantages of allowing flexible window design in

the computation of the various SSIM terms.

From Table 3 and Table 4, the performance gap

between perceptual-based algorithms (SSIM, MS-SSIM,

Fast SSIM, and Fast MS-SSIM) and peak signal-to-noise

Table 1 Experimental result of SSIM and Fast SSIM on LIVE image

quality database

Algorithm SROCC LCC RMSE

PSNR* 0.8755 0.8709 13.4265

SSIM 0.9244 0.9299 8.5045

Fast SSIM (Luminance term optimized
only)

0.9233 0.9413 7.8065

Fast SSIM (Fully optimized) 0.9214 0.9373 8.0554

* The performance numbers for PSNR are from [18]

Table 2 Experimental result of MS-SSIM and MS Fast SSIM on

LIVE image quality database

Algorithm SROCC LCC RMSE

PSNR* 0.8755 0.8709 13.4265

MS-SSIM 0.9429 0.9439 7.6327

Fast MS-SSIM (Luminance term
optimized only)

0.9425 0.9226 8.9153

Fast MS-SSIM (Fully optimized) 0.9409 0. 9369 8.0787

* The performance numbers for PSNR are from [18]
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ratio (PSNR) becomes very obvious, particularly on videos.

Table 3 illustrates that the performance of Fast SSIM is

almost the same as SSIM. Table 4 shows that both MS-

SSIM and Fast MS-SSIM are much better than PSNR as

measured by SROCC and LCC scores. Although the per-

formance of Fast MS-SSIM is a little bit lower than MS-

SSIM, it still has excellent performance. In addition, by

comparing the SROCC and LCC scores of Fast MS-SSIM

and Fast MS-SSIM with sub-sampling (the Fast MS-SSIM

algorithm we proposed), it can be seen that skipping the

higher spatial frequency information has little impact on

performance.

6.2 Performance: speed

The performance numbers on speed were tested on the

768 9 432 progressive video with 250 frames (the format

used in the LIVE Video Quality Database). All experi-

ments were conducted on an Intel Core 2 Duo 2.2 GHz

platform, except the experiment result of the multi-

threading optimization, which was run on an Intel Core 2

Quad Q6600 platform.

Tables 5 and 6 are the performance numbers for exe-

cution speed for each step. In Table 5, we can see the

improvement from SSIM to Fast SSIM is 168% (from 3.42

to 9.17 fps). Thus Fast SSIM is 2.68 times faster than

SSIM. For optimization, Intel SSE2 instructions were

implemented to calculate the mean and the correlation of

the gradient images to demonstrate the improvement on

applying data-level parallelization. As shown in Table 5,

Fast SSIM with SIMD enhances the performance from 9.7

to 16.6 fps. Finally, with multi-threading optimization, Fast

SSIM reaches 57.83 fps on an Intel Core 2 Quad platform,

which qualifies the algorithm for real-time applications.

The performance numbers on speed for Fast MS-SSIM

are shown in Table 6. Table 6 shows that the proposed Fast

MS-SSIM algorithm is close to 10 times faster than MS-

SSIM (from 2.54 to 25.31 fps). With some optimization

skills the algorithm can easily achieve speeds adequate for

real-time application. For instance, in our optimization, we

achieve about 122 fps in a Quad Core machine.

7 Concluding remarks

In this paper we proposed Fast SSIM and Fast MS-SSIM

index algorithms and verified their performance on the

LIVE Image Quality Database and LIVE Video Quality

Database. The experimental results show that the proposed

algorithms not only have competitive performance with

SSIM and MS-SSIM for assessing image quality, but have

much lower computational complexity. The proposed Fast

MS-SSIM algorithm is about 10 times faster than the MS-

Table 3 Experimental result of SSIM and Fast SSIM on LIVE Video

Quality Database

Algorithm SROCC LCC RMSE

PSNR* 0.3684 0.4085 –

SSIM 0.4953 0.5228 9.3573

Fast SSIM (Luminance term optimized
only)

0.4954 0.5176 9.3816

Fast SSIM (Luminance, contrast, and
structure terms optimized)

0.4949 0.5191 9.3825

* The performance numbers for PSNR are from [14]

Table 4 Experimental result of MS-SSIM and MS Fast SSIM on

LIVE Video Quality Database

Algorithm SROCC LCC RMSE

PSNR* 0.3684 0.4085 –

MS-SSIM 0.7593 0.7634 7.0899

Fast MS-SSIM (Luminance term
optimized only)

0.7546 0.7625 7.1025

Fast MS-SSIM (Full-optimized) 0.7049 0.7131 7.6955

Fast MS-SSIM (Full-optimized
?sub-sampling)

0.6991 0.7118 7.7103

Full-optimized here means luminance, contrast, and structure terms

are optimized with fast algorithm

* The performance numbers for PSNR are from [14]

Table 5 Experimental result of Fast SSIM computational speed on

LIVE Video Quality Database

Algorithm Speed (fps)

SSIM 3.42

Fast SSIM (Luminance term optimized only) 5.09

Fast SSIM 9.17

Fast SSIM (SIMD) 16.6

Fast SSIM (SIMD ? multi-threading) 57.83

Table 6 Experimental result of Fast MS-SSIM computational speed

on LIVE Video Quality Database

Algorithm Speed

(fps)

MS-SSIM 2.54

Fast MS-SSIM (Luminance term optimized only) 3.74

Fast MS-SSIM 6.4

Fast MS-SSIM (Proposed algorithm using
sub-sampling)

25.31

Fast MS-SSIM (SIMD ? sub-sampling) 35.34

Fast MS-SSIM (SIMD ? sub-sampling ? multi-
threading)

121.97
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SSIM algorithm yielding close to real-time performance

(25.31 fps) without optimization. Further, the proposed

algorithm achieves real-time performance with simple

optimization.
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