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FAST STRUCTURED JACOBI-JACOBI TRANSFORMS

JIE SHEN, YINGWEI WANG, AND JIANLIN XIA

Abstract. Jacobi polynomials are frequently used in scientific and engineer-
ing applications, and often times, one needs to use the so-called Jacobi-Jacobi
transforms which are transforms between two Jacobi expansions with different
indices. In this paper, we develop a fast structured algorithm for Jacobi-Jacobi

transforms. The algorithm is based on two main ingredients. (i) Derive ex-
plicit formulas for connection matrices of two Jacobi expansions with arbitrary
indices. In particular, if the indices have integer differences, the connection
matrices are relatively sparse or highly structured. The benefit of simultaneous
promotion or demotion of the indices is shown. (ii) If the indices have non-
integer differences, we explore analytically or numerically a low-rank property
hidden in the connection matrices. Combining these two ingredients, we de-
velop a fast structured Jacobi-Jacobi transform with nearly linear complexity,
after a one-time precomputation with quadratic complexity, between coeffi-
cients of two Jacobi expansions with arbitrary indices. An important byprod-
uct of the fast Jacobi-Jacobi transform is the fast Jacobi transform between
the function values at a set of Chebyshev-Gauss-type points and coefficients
of the Jacobi expansion with arbitrary indices. Ample numerical results are
presented to illustrate the computational efficiency and accuracy of our algo-
rithm.

1. Introduction

Jacobi polynomials have been used in many areas of mathematics and applied
sciences, e.g., approximation theory [15, 16], the resolution of Gibbs’ phenomenon
[13], electrocardiogram data compression [43], and spectral methods for numerical
partial differential equations [8,18,35]. See also [29,44] which include extended lists
of related work.

Many applications of Jacobi polynomials require transforms between the coef-
ficients of Jacobi expansions and the values at Jacobi-Gauss-type points, and/or
between coefficients of Jacobi expansions with different indices. Some examples
are as follows. In spectral/spectral-element methods with triangles or tetrahedrons
[18, 23], one uses the Koornwinder polynomials [21] (often known as Dubiner’s
polynomials in the spectral community [11]) which involve Jacobi polynomials with
varying indices. In solving prolate spheroidal equations with large zonal wave num-
bers [6] which arise, e.g., from Helmholtz equations with large wave numbers, one
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is led to use Jacobi polynomials with very large indices [1]. In dealing with sin-
gular solutions such as corner singularities or fractional PDEs, one often needs to
work with the approximation space spanned by {(1± x)kα} with α ∈ (0, 1), which
requires transformation between Jacobi polynomials with index (0, α) or (α, 0) and
Legendre polynomials [36]. The Jacobi polynomials with index (10, 10) outper-
form those with index (0, 0) (Legendre polynomials) for the approximation to the
truncated standard Gaussian function (see Appendix C in [53]).

Hence, it is highly desirable to develop algorithms which can perform these
transforms as quickly and accurately as possible. Moreover, fast Jacobi-Jacobi
transforms may also be useful for the development of fast spherical harmonic trans-
forms which are of critical importance in many applications [31, 47]. The purpose
of this work is thus to design fast Jacobi-Jacobi transforms.

Let PN be the set of polynomials with degrees less than or equal to N , and let
(α1, β1), (α2, β2) be two pairs of Jacobi indices with αi, βi > −1 (i = 1, 2). For
f ∈ PN , we can expand f(x) in Jacobi expansions with indices (α1, β1) and (α2, β2),
namely:

(1.1) f(x) =
N∑

n=0

f (α1,β1)
n J (α1,β1)

n (x) =
N∑

n=0

f (α2,β2)
n J (α2,β2)

n (x), x ∈ [−1, 1],

where {J (αi,βi)
n }Nn=0 are Jacobi polynomials with indices (αi, βi), i = 1, 2.

By the orthogonal properties of Jacobi polynomials, one can easily determine

the connection matrices K(α1,β1)→(α2,β2) and K(α2,β2)→(α1,β1) such that

(1.2) f (α2,β2) = K(α1,β1)→(α2,β2)f (α1,β1), f (α1,β1) = K(α2,β2)→(α1,β1)f (α2,β2),

where f (αi,βi) = {f (αi,βi)
n }Nn=0, i = 1, 2. However, the connection matrices are full

upper triangular matrices so that a direct Jacobi-Jacobi transform will cost O(N2).
The main question we want to address in this paper is how to quickly and accurately
perform the Jacobi-Jacobi transforms (1.2).

A pioneering work in this direction was done by Alpert and Rokhlin in [2] where
a fast transform between Legendre and Chebyshev coefficients was proposed based
on the fast multipole method (FMM). Another approach to compute the connec-
tion between classical orthogonal polynomials or associated functions is based on
the observation that the corresponding connection matrix K can be represented
as a properly scaled semiseparable eigenvector matrix. Employing a divide-and-
conquer algorithm [10] to compute this eigen-decomposition enables us to perform
the matrix-vector product Kf efficiently for any column vector f . This approach
has been used for the transform between associated Legendre functions [31], Gegen-
bauer polynomials [19,20], and any families of Hermite, Laguerre, and Gegenbauer
polynomials with single parameters [4]. However, there is no efficient extension of
this approach to Jacobi transforms which have two parameters.1

Another important category of methods for a fast Chebyshev-Legendre trans-
form is to use asymptotic expansions [17, 27, 30]. A significant advantage of this
methodology is that it does not require an expensive initialization phase. However,
the approach with asymptotic expansions is somewhat limited to the Legendre case,
and it is generally difficult to extend to Jacobi polynomials with arbitrary indices.
We note that the asymptotic approach was generalized to the Chebyshev-Jacobi

1It was brought to our attention by one of the referees that the authors of [45] developed very
recently a fast polynomial transform based on Toeplitz and Hankel transforms.
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transform in [37], which also yields fast evaluations of Jacobi expansions at Gauss-
Chebyshev nodes.

The main goal of this paper is to develop fast algorithms, with nearly linear
complexity after possibly a one-time nearly quadratic-complexity precomputation
step, for Jacobi-Jacobi transforms with arbitrary Jacobi indices. Explicit formulas
are derived for connection matrices of two Jacobi expansions with arbitrary indices.
We show that, if the indices have integer differences, the connection matrices have
banded forms in the promotion case (from lower indices to higher ones) or are
related to certain highly structured forms in the demotion case. These banded or
structured forms can be used to conveniently perform the Jacobi-Jacobi transforms
in O(N) operations. We also show that, when it needs to promote or demote
both indices α and β, it is more desirable to perform the promotion or demotion
simultaneously for both indices, instead of performing one by one. We show how
the simultaneous promotion/demotion is done and demonstrate the saving in the
cost.

If the indices have non-integer differences such as in the Chebyshev-Legendre
transform and more general cases, the connection matrices are dense. We explore
a more general structure that is data sparse. This is based on a so-called low-
rank property of the connection matrices, i.e., their appropriate off-diagonal blocks
have small (numerical) ranks. This property can be verified either analytically or
numerically. For connection matrices in Chebyshev-Legendre transforms, we can
rigorously show an off-diagonal rank bound by deriving certain expansions of the
relevant generating functions.

A useful feature for matrices with the low-rank property is that they can be ap-
proximated by rank structured matrices such as hierarchically semiseparable (HSS)
forms [9, 50]. The HSS approximations enable us to perform the desired trans-
forms with O(rN) memory and O(rN) flops, where r is the maximum off-diagonal
numerical rank.

The HSS form also has another benefit in the numerical stability. That is, the
numerical errors propagate along a binary tree instead of sequentially. Thus, the
backward error of the matrix-vector multiplication in the transforms is proportional
to log2 N and a low-degree term of r [48]. In contrast, direct dense transforms
may suffer from large numerical errors since the backward stability depends on the
condition number which could be very large in some cases.

In Jacobi-spectral methods, one often needs to transform between the coefficients
of the Jacobi expansion to the values at a given set of collocation points. An im-
portant byproduct of the proposed fast Jacobi-Jacobi transform is a fast algorithm
to perform the Jacobi transform between the function values at a set of Chebyshev-
Gauss-type points and coefficients of the Jacobi expansion with arbitrary indices.
More precisely, let f ∈ PN and {xj ∈ [−1, 1]}Nj=0 be a set of Chebyshev-Gauss-type

points. We need to determine {f (α,β)
n }Nn=0 from {f(xj)}Nj=0 or vice versa through

(1.3) f(xj) =
N∑

n=0

f (α,β)
n J (α,β)

n (xj), 0 ≤ j ≤ N.

To obtain the coefficients of the Jacobi expansion {f (α,β)
n }Nn=0 from the function

values {f(xj)}Nj=0, we proceed in two steps:
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• First, obtain the coefficients {f t
n}Nn=0 of the Chebyshev expansion:

f(x) =

N∑
n=0

f t
nTn(x)

using the Fast Fourier Transform (FFT) in O(N logN) operations.

• Second, use the proposed Jacobi-Jacobi transform to determine {f (α,β)
n }Nn=0

from {f t
n}Nn=0 through the identity

(1.4) f(x) =
N∑

n=0

f t
nTn(x) =

N∑
n=0

f (α,β)
n J (α,β)

n (x), x ∈ [−1, 1].

Conversely, one can determine the function values {f(xj)}Nj=0 from the coefficients

of the Jacobi expansion {f (α,β)
n }Nn=0 by reversing the above steps. Thus, the Jacobi

transforms with arbitrary indices can be performed also in nearly linear complexity.
The remaining sections are organized as follows. In Section 2, we derive explicit

recurrence formulas of the connection matrices for Jacobi-Jacobi transforms with
arbitrary indices, and for Jacobi-Jacobi transforms of indices with integer differ-
ences. In Section 3, we explore the low-rank property of the connection matrices.
We describe the algorithms for the proposed fast structured Jacobi-Jacobi trans-
forms in Section 4, and present several numerical experiments in Section 5. Finally,
we present some conclusions and possible directions for future research in the last
section.

We list below some notation used throughout the paper:

• Pn: the space of polynomials of degree at most n.
• deg(·): the degree of a polynomial.
• δi,j : the Kronecker delta.
• Γ(·): Gamma function defined as Γ(t) =

∫∞
0

xt−1e−xdx.
• 〈·, ·〉ω: the inner product with respect to the weight ω, e.g., 〈f, g〉ω =∫ 1

−1
f(x)g(x)ω(x)dx.

• J
(α,β)
n (x): Jacobi polynomial of degree n with indices j = (α, β).

• Ln(x) = J
(0,0)
n (x): Legendre polynomial of degree n, or equivalently, Jacobi

polynomial of degree n with indices l = (0, 0).

• Tn(x) = cnJ
(−1/2,−1/2)
n (x): Chebyshev polynomial (of the first kind) of de-

gree n, which is proportional to Jacobi polynomial of degree n with indices
t = (−1/2,−1/2) (see (2.14) for details).

• K(α1,β1)→(α2,β2) or Kj1→j2 with j1 = (α1, β1) and j2 = (α2, β2): the con-

nection matrix from {J (α1,β1)
n } to {J (α2,β2)

n }.
• f (α,β): the expansion coefficients of a polynomial f(x) in terms of Jacobi

polynomials {J (α,β)
n }; in particular, f l means the coefficients of the Legendre

expansion and f t means the coefficients of the Chebyshev expansion.

2. Connection coefficients

First, let us recall some basic properties of Jacobi polynomials {J (α,β)
n (x)} asso-

ciated with real indices α, β > −1.
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(1) The three-term recurrence relations for Jacobi polynomials {J (α,β)
n (x)}

read:

J
(α,β)
0 (x) = 1, J

(α,β)
1 (x) =

1

2
(α+ β + 2)x+

1

2
(α− β),

J
(α,β)
n+1 (x) =

(
p(α,β)n x− q(α,β)n

)
J (α,β)
n (x)− r(α,β)n J

(α,β)
n−1 (x), n ≥ 1,(2.1)

where the constants are

p(α,β)n =
(2n+ α+ β + 1)(2n+ α+ β + 2)

2(n+ 1)(n+ α+ β + 1)
,(2.2)

q(α,β)n =
(β2 − α2)(2n+ α+ β + 1)

2(n+ 1)(n+ α+ β + 1)(2n+ α+ β)
,(2.3)

r(α,β)n =
(n+ α)(n+ β)(2n+ α+ β + 2)

(n+ 1)(n+ α+ β + 1)(2n+ α+ β)
.(2.4)

(2) Jacobi polynomials {J (α,β)
n (x)}n=0 are orthogonal with respect to their

weights ω(α,β):

(2.5) 〈J (α,β)
k , J

(α,β)
j 〉ω(α,β) = γ

(α,β)
k δkj ,

where

ω(α,β) = (1− x)α(1 + x)β,(2.6)

γ
(α,β)
k =

2α+β+1Γ(α+ k + 1)Γ(β + k + 1)

(α+ β + 2k + 1)k!Γ(α+ β + k + 1)
.(2.7)

Definition 2.1 (Connection coefficients). Let J1 = {J (α1,β1)
n (x)}Nn=0 and J2 =

{J (α2,β2)
n (x)}Nn=0 with deg(J

(α1,β1)
n ) = deg(J

(α2,β2)
n ) = n be two sequences of Jacobi

polynomials with respect to inner products 〈·, ·〉ω(α1,β1) and 〈·, ·〉ω(α2,β2) , respec-

tively. (The weight functions are defined following (2.6).) Then each J
(α1,β1)
j ∈ J1

can be represented as a linear combination of the polynomials {J (α2,β2)
i }ji=0 ⊂ J2,

i.e.,

J
(α1,β1)
j =

j∑
i=0

κ
j1→j2
i,j J

(α2,β2)
i , j = 0, 1, . . . , N,

where j1 = (α1, β1) and j2 = (α2, β2). Here, the polynomials in J1 (and J2) are
called source (and target) polynomials, and the following matrix is called the matrix
of connection coefficients or connection matrix of degree N from J1 to J2:

Kj1→j2 =
(
κ
j1→j2
i,j

)N
i,j=0

∈ R
(N+1)×(N+1).

The following lemma then immediately follows.

Lemma 2.2. The connection matrix Kj1→j2 defined in Definition 2.1 is given by

κ
j1→j2
i,j =

〈J (α1,β1)
i , J

(α2,β2)
j 〉ω(α2,β2)

〈J (α2,β2)
i , J

(α2,β2)
i 〉ω(α2,β2)

=
〈J (α2,β2)

i , J
(α1,β1)
j 〉ω(α2,β2)

γ
(α2,β2)
i

.

Remark 1. By the orthogonality, we observe that for i > j, κ
j1→j2
i,j = 0, which

means that Kj1→j2 is an upper triangular matrix.
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With the matrix Kj1→j2 in hand, we can handle the so-called connection prob-
lem, i.e., given any polynomial expressed in the basis of one set of orthogonal poly-
nomials, to compute the coefficients with respect to a different set of orthogonal
polynomials. This can be rigorously stated as follows.

Lemma 2.3. Let f(x) ∈ PN , and J1,J2 be the Jacobi polynomial sets given in
Definition 2.1. Consider two expansions of f(x) as follows:

(2.8) f(x) =

N∑
n=0

f j1
n J (α1,β1)

n (x) =

N∑
n=0

f j2
n J (α2,β2)

n (x).

Then the matrix Kj1→j2 given in Lemma 2.2 leads to the transform between two

column vectors f j1 = (f
j1
n )Nn=0 and f j2 = (f

j2
n )Nn=0, i.e., f

j2 = Kj1→j2f j1 .

Determining these connection coefficients has been studied extensively as a theo-
retical problem [5,22,25,26,28,32,41,42]. Below we focus on two special cases that
are useful in our algorithms, namely, recurrence formulas of Jacobi-Jacobi trans-
forms with arbitrary indices, and explicit formulas of Jacobi-Jacobi transforms with
indices that have integer differences.

Generally speaking, computing the entries of the connection matrix K defined in
Lemma 2.3 explicitly and then applying it to a vector both require O(N2) storage
and O(N2) operations. In order to obtain fast transforms, we proceed with the
following strategies:

• For the transforms between any two Jacobi expansions with indices close
to each other, we find that the connection matrix K enjoys the low-rank
property and thus can be approximated by a rank structured matrix. The
rank structured approximation can be quickly applied to a vector in linear
complexity.

• For the problem between Jacobi polynomials with integer differences, we
find that either the matrix itself can be written as the product of banded
matrices, or the off-diagonal blocks of the matrix are low-rank, which im-
plies that the Jacobi-Jacobi transforms can be done in linear complexity.

2.1. Jacobi-Jacobi transforms with arbitrary indices. In this subsection, we
consider the transform between the coefficients of two Jacobi expansions with differ-
ent indices, which is a generalization of the forward and backward Chebyshev-Jacobi
transforms (FCJT and BCJT) in (1.4).

Consider two Jacobi expansions for any f(x) ∈ PN shown in (2.8). The connec-

tion matrices Kj1→j2 and Kj2→j1 satisfy the following relations:

(2.9) f j1 = Kj2→j1f j2 , f j2 = Kj1→j2f j1 .

Note that explicit formulae for the connection matrices are available (cf. Lemma
7.1.1 in [3]). However, the formulae involve the generalized hypergeometric function
which is not easy to deal with. On the other hand, there are also explicit formulae
for the connection matrices with the same second index (cf. Theorem 7.1.3 in [3]),
but it is not easy to extend it to the general case. Therefore, we shall derive re-
currence relations for the general connection matrices using the recurrence relation
(2.1) and the orthogonal property (2.5).

Note that some recurrence relations for the connection matrices have been de-
rived in [33]. Since the recurrence relations are frequently used in what follows, we
provide them and their proofs below for the reader’s convenience and completeness.
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Theorem 2.4 (Recurrence formulas for Jacobi-Jacobi transform). The non-zero

entries of Kj2→j1 and Kj1→j2 in (2.9) can be generated recursively as follows:

κ
j2→j1
i,j+1 = ε

j2→j1
1 κ

j2→j1
i,j−1 + ε

j2→j1
2 κ

j2→j1
i−1,j + ε

j2→j1
3 κ

j2→j1
i,j + ε

j2→j1
4 κ

j2→j1
i+1,j , j ≥ i,

κ
j1→j2
i,j+1 = ε

j1→j2
1 κ

j1→j2
i,j−1 + ε

j1→j2
2 κ

j1→j2
i−1,j + ε

j1→j2
3 κ

j1→j2
i,j + ε

j1→j2
4 κ

j1→j2
i+1,j , j ≥ i,

where the coefficients {εjm→jm̂
k }k=1,2,3,4 with (m, m̂) = (1, 2) or (2, 1) are given by

ε
jm→jm̂
1 = −rmj , ε

jm→jm̂
2 =

{
0, i = 0,
πm̂
2 (i)pmj , i ≥ 1,

ε
jm→jm̂
3 = πm̂

3 (i)pmj − qmj , ε
jm→jm̂
4 = πm̂

4 (i)pmj ,

with the parameters {pj , qj , rj} given in (2.2)–(2.4), and

πm
2 (k) =

2k(k + αm + βm)

(2k + αm + βm − 1)(2k + αm + βm)
,

πm
3 (k) =

β2
m − α2

m

(2k + αm + βm)(2k + αm + βm + 2)
,

πm
4 (k) =

2(k + αm + 1)(k + βm + 1)

(2k + αm + βm + 2)(2k + αm + βm + 3)
,

for m = 1, 2 and k = 0, 1, 2, . . . .
Moreover, the starting points of the above recurrence formulas are

κ
j2→j1
0,0 = 1, κ

j2→j1
0,1 =

(β1 − α1)(α2 + β2 + 2)

2(α1 + β1 + 2)
− β2 − α2

2
,

κ
j2→j1
1,0 = 0, κ

j2→j1
1,1 =

α2 + β2 + 2

α1 + β1 + 2
,

κ
j1→j2
0,0 = 1, κ

j1→j2
0,1 =

(α1 + β1 + 2)(β2 − α2)

2(α2 + β2 + 2)
− β1 − α1

2
,

κ
j1→j2
1,0 = 0, κ

j1→j2
1,1 =

α1 + β1 + 2

α2 + β2 + 2
.

Proof. To simplify notation in this proof, denote

Jm
n := J (αm,βm)

n (x), ωm := (1 + x)αm(1− x)βm , γm
n := γαm,βm

n ,

pmn := pαm,βm
n , qmn := qαm,βm

n , rmn := rαm,βm
n ,

where n = 0, 1, 2, . . . and m = 1, 2. The entries of the matrices Kj2→j1 =(
κ
j2→j1
i,j

)N
i,j=0

and Kj1→j2 =
(
κ
j1→j2
i,j

)N
i,j=0

are

(2.10) κ
j2→j1
i,j =

〈J1
i , J

2
j 〉ω1

‖J1
i ‖2ω1

, κ
j1→j2
i,j =

〈J2
i , J

1
j 〉ω2

‖J2
i ‖2ω2

,

respectively.

We focus on {κj2→j1
i,j }Ni,j=0 first. Denote κ̃

j2→j1
i,j = 〈J1

i , J
2
j 〉ω1 . Note that the

relation between κ
j2→j1
i,j and κ̃

j2→j1
i,j is

(2.11) κ̃
j2→j1
i,j = ‖J1

i ‖2ω1κ
j2→j1
i,j .
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Then for j ≥ i ≥ 1,

κ̃
j2→j1
i,j+1 = 〈J1

i , J
2
j+1〉ω1

= 〈J1
i , (p

2
jx− q2j )J

2
j − r2jJ

2
j−1〉ω1

= 〈xJ1
i , p

2
jJ

2
j 〉ω1 − 〈J1

i , q
2
jJ

2
j 〉ω1 − 〈J1

i , r
2
jJ

2
j−1〉ω1

=
p2j
p1i

[
〈J1

i+1, J
2
j 〉ω1+q1i 〈J1

i , J
2
j 〉ω1+r1i 〈J1

i−1, J
2
j 〉ω1

]
−q2j 〈J1

i , J
2
j 〉ω1 − r2j 〈J1

i , J
2
j−1〉ω1

=
1

p1i

[
p2j κ̃

j2→j1
i+1,j + (p2jq

1
i − p1i q

2
j )κ̃

j2→j1
i,j + p2jr

1
i κ̃

j2→j1
i−1,j

]
− r2j κ̃

j2→j1
i,j−1 .

It follows that

(2.12) κ
j2→j1
i,j+1 =

p2jγ
1
i+1

p1i γ
1
i

κ
j2→j1
i+1,j +

p2jq
1
i − p1i q

2
j

p1i
κ
j2→j1
i,j +

p2jr
1
i γ

1
i−1

p1i γ
1
i

κ
j2→j1
i−1,j − r2jκ

j2→j1
i,j−1 .

Recall that x =
2J1

1−(α1−β1)
α1+β1+2 . For i = 0, the formula becomes

(2.13)

κ
j2→j1
0,j+1 =

2p2jγ
1
1

(α1 + β1 + 2)γ1
0

κ
j2→j1
1,j+1 −

(
p2j(α1 − β1)

α1 + β1 + 2
+ q2j

)
κ
j2→j1
0,j − r2jκ

j2→j1
0,j−1 , j ≥ 1.

Besides, for {κj1→j2
i,j }Ni,j=0, we just need to interchange the indices 1 and 2 in (2.12)–

(2.13). �

Remark 2. Thanks to the symmetry property of Jacobi polynomials

J (α,β)
n (−x) = (−1)nJ (β,α)

n (x),

the Jacobi polynomial J
(α,α)
n (x) (up to a constant, referred to as the Gegenbauer

or ultra-spherical polynomial) is an odd function for odd n and an even function
for even n. Therefore, for the Chebyshev-Jacobi transforms shown in (1.4), we have

κ
t→(α,α)
ij = κ

(α,α)→t
ij = 0 for odd i+ j.

Note that the Chebyshev polynomials and Jacobi polynomials with indices t =
(−1/2,−1/2) are proportional to each other, i.e.,

(2.14) Tn(x) ≡
Γ(1/2)Γ(n+ 1)

Γ(n+ 1/2)
J (−1/2,−1/2)
n (x) ∀n = 0, 1, . . . .

Hence, we can derive, as a special case of Theorem 2.4, the recurrence relation for
the connection matrices between Chebyshev and Jacobi expansions.

Now let us consider the Legendre polynomials Ln(x) ≡ J
(0,0)
n (x) as a special case

of Jacobi polynomials with indices l = (0, 0).

Corollary 2.5 (Recurrence formulas for Chebyshev-Legendre transforms). The
non-zero entries of the connection coefficients of the backward and forward Cheby-
shev-Legendre transforms, i.e., Kl→t = (κl→t

i,j ) and Kt→l = (κt→l
i,j ) can be obtained

recursively by

κl→t
i,j =

2

ciπ
κ̃l→t
i,j , κt→l

i,j = (i+ 1/2)κ̃t→l
i,j ,
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where c0 = 2, ci = 1 for i ≥ 1 and

κ̃l→t
i,j+1 =

2j + 1

2j + 2

(
κ̃l→t
i+1,j + κ̃l→t

i−1,j

)
− j

j + 1
κ̃l→t
i,j−1,

κ̃t→l
i,j+1 =

2i+ 2

2i+ 1
κ̃t→l
i+1,j +

2i

2i+ 1
κ̃t→l
i−1,j − κ̃t→l

i,j−1.

In particular, for Chebyshev-Legendre transforms, explicit formulas are given
in [2].

Lemma 2.6 (Explicit formulas for Chebyshev-Legendre transforms). The explicit
formula for the entries of backward and forward Chebyshev-Legendre transforms,
i.e., Kl→t = (κl→t

i,j ) and Kt→l = (κt→l
i,j ), respectively, are given by the following:

κl→t
i,j =

⎧⎨
⎩

1
π

[
Λ
(
j
2

)]2
if 0 = i ≤ j < n and j is even,

2
πΛ
(
j−i
2

)
Λ
(
j+i
2

)
if 0 < i ≤ j < n and i+ j is even,

0 otherwise,

κt→l
i,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if i = j = 0,
1
2

√
π

Λ(i) if 0 < i = j < n,
−j(i+1/2)

(j+i+1)(j−i)Λ
(
j−i−2

2

)
Λ
(
j+i−1

2

)
if 0 ≤ i < j < n and i+ j is even,

0 otherwise,

where the function Λ(·) is defined as

(2.15) Λ(z) =
Γ(z + 1/2)

Γ(z + 1)
.

Remark 3. The explicit formula for the entries of connection coefficients between
Gegenbauer polynomials, which are Jacobi polynomials with indices α = β, can be
found in [20]. Since it is costly to numerically evaluate the function Λ(·) defined
above, the recurrence formulas given in Corollary 2.5 and Theorem 2.4 are usually
employed to generate the corresponding connection coefficients (see, for instance,
[34]). On the other hand, the explicit formulas given in Lemma 2.6 are useful in

analyzing the low-rank property hidden in the matrices Kl→t and Kt→l in Section
3.2.

2.2. Jacobi-Jacobi transforms for indices with integer differences. In this
subsection, we consider the connection coefficients between the following Jacobi
expansions with indices of integer differences:

f(x) =

N∑
n=0

f (α,β)
n J (α,β)

n (x) =

N∑
n=0

f (α+1,β)
n J (α+1,β)

n (x)

=
N∑

n=0

f (α,β+1)
n J (α,β+1)

n (x) =
N∑

n=0

f (α+1,β+1)
n J (α+1,β+1)

n (x).

For simplicity, let us denote four cases of Jacobi indices with integer differences as
follows:

u00 = (α, β), u10 = (α+ 1, β), u01 = (α, β + 1), u11 = (α+ 1, β + 1).

Then the column vectors of the expansion coefficients above are

fu00 = (f (α,β)
n )Nn=0, fu10 = (f (α+1,β)

n )Nn=0,

fu01 = (f (α,β+1)
n )Nn=0, fu11 = (f (α+1,β+1)

n )Nn=0.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1752 J. SHEN, Y. WANG, AND J. XIA

First, let us consider the promotion case, i.e., from coefficients of lower indices
to those of higher ones.

Lemma 2.7 (Promotion relation [40]). The Jacobi polynomials with n ≥ 0 satisfy

(1− x)J (α+1,β)
n (x) = ξ

(α,β,n)
1 J (α,β)

n (x)− ξ
(α,β,n)
0 J

(α,β)
n+1 (x),

(1 + x)J (α,β+1)
n (x) = ξ

(α,β,n)
2 J (α,β)

n (x) + ξ
(α,β,n)
0 J

(α,β)
n+1 (x),

where

ξ
(α,β,n)
0 =

2(n+ 1)

2n+ α+ β + 2
, ξ

(α,β,n)
1 =

2(n+ α+ 1)

2n+ α+ β + 2
, ξ

(α,β,n)
2 =

2(n+ β + 1)

2n+ α+ β + 2
.

Note that all of the coefficients ξ
(α,β,n)
0 , ξ

(α,β,n)
1 , ξ

(α,β,n)
0 , are x-independent,

allowing us to compute these connection coefficients explicitly.

Theorem 2.8. The promotion coefficients Ku00→u10 and Ku00→u01 in fu01 =
Ku00→u10fu00 and fu11 = Ku00→u01fu00 , respectively, are bidiagonal matrices as
follows:

Ku00→u10 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μ(α,β,0) ν
(α,β,0)
1

μ(α,β,1) ν
(α,β,1)
1

. . .
. . .

. . . ν
(α,β,N−1)
1

μ(α,β,N)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(N+1)×(N+1)

,

Ku00→u01 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μ(α,β,0) ν
(α,β,0)
2

μ(α,β,1) ν
(α,β,1)
2

. . .
. . .

. . . ν
(α,β,N−1)
2

μ(α,β,N)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(N+1)×(N+1)

,

where

μ(α,β,i) =
α+ β + i+ 1

α+ β + 2i+ 1
, ν

(α,β,i)
1 = − β + i+ 1

α+ β + 2i+ 3
, ν

(α,β,i)
2 =

α+ i+ 1

α+ β + 2i+ 3
.

Proof. Similar to the procedure in the proof of Theorem 2.4, we have

κu00→u10
i,j =

〈J (α+1,β)
i , J

(α,β)
j 〉ω(α+1,β)

‖Jα+1,β
i ‖2

ω(α+1,β)

=
〈(1− x)J

(α+1,β)
i , J

(α,β)
j 〉ω(α,β)

γα+1,β
i

=
〈ξ(α,β,i)1 J

(α,β)
i − ξ

(α,β,i)
0 J

(α,β)
i+1 , J

(α,β)
j 〉ω(α,β)

γα+1,β
i

=
γ
(α,β)
i ξ

(α,β,i)
1

γ
(α+1,β)
i

δi,j −
γ
(α,β)
i+1 ξ

(α,β,i)
0

γ
(α+1,β)
i

δi+1,j := μ(α,β,i)δi,j + ν
(α,β,i)
1 δi+1,j .

Also, it is easy to see that

κu00→u01
i,j =

γ
(α,β)
i ξ

(α,β,i)
2

γ
(α,β+1)
i

δi,j +
γ
(α,β)
i+1 ξ

(α,β,i)
0

γ
(α,β+1)
i

δi+1,j := μ(α,β,i)δi,j + ν
(α,β,i)
2 δi+1,j .

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FAST STRUCTURED JACOBI-JACOBI TRANSFORMS 1753

Finally, the parameters μ(α,β,i), ν
(α,β,i)
1 , and ν

(α,β,i)
2 can be easily computed thanks

to the definitions of {γ(α,β)
i } in (2.7) and {ξ(α,β,n)j } in Lemma 2.7. �

The result above implies that the flops to promote an index by one is about 3N .
Next, we consider promoting both indices (α, β) simultaneously.

Lemma 2.9 (Simultaneous promotion). The relation between {J (α+1,β+1)
n }n=0 and

{J (α,β)
n }n=0 is

(1− x)(1+ x)J (α+1,β+1)
n (x) = λα,β,n

1 J (α,β)
n (x) +λα,β,n

2 J
(α,β)
n+1 (x)+λ

(α,β,n)
3 J

(α,β)
n+2 (x),

where

λ
(α,β,n)
1 =

4(n+ α+ 1)(n+ β + 1)

(2n+ α+ β + 2)(2n+ α+ β + 3)
,

λ
(α,β,n)
2 =

4(n+ 1)(α− β)

(2n+ α+ β + 2)(2n+ α+ β + 4)
,

λ
(α,β,n)
3 = − 4(n+ 1)(n+ 2)

(2n+ α+ β + 3)(2n+ α+ β + 4)
.

Proof. Applying Lemma 2.7 twice leads to

(1 + x)(1− x)J (α+1,β+1)
n = (1 + x)

(
ξ
(α,β+1,n)
1 J (α,β+1)

n − ξ
(α,β+1,n)
0 J

(α,β+1)
n+1

)
= ξ

(α,β+1,n)
1 ξ

(α,β,n)
2 J (α,β)

n +
(
ξ
(α,β+1,n)
1 ξ

(α,β,n)
0 − ξ

(α,β+1,n)
0 ξ

(α,β,n+1)
2

)
J
(α,β)
n+1

− ξ
(α,β+1,n)
0 ξ

(α,β,n+1)
0 J

(α,β)
n+2 .

It implies that

λ
(α,β,n)
1 = ξ

(α,β+1,n)
1 ξ

(α,β,n)
2 ,

λ
(α,β,n)
2 = ξ

(α,β+1,n)
1 ξ

(α,β,n)
0 − ξ

(α,β+1,n)
0 ξ

(α,β,n+1)
2 ,

λ
(α,β,n)
3 = −ξ

(α,β+1,n)
0 ξ

(α,β,n+1)
0 .

By algebraic computations, we can get the expressions for the parameters λ
(α,β,n)
1 ,

λ
(α,β,n)
2 , and λ

(α,β,n)
3 . �

Theorem 2.10. The promotion coefficient matrix Ku00→u11 in the transform
fu11 = Ku00→u11fu00 is a banded upper triangular matrix with upper bandwidth
2 of the form

Ku00→u11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ̃
(α,β,0)
1 λ̃

(α,β,0)
2 λ̃

(α,β,0)
3

λ̃
(α,β,1)
1 λ̃

(α,β,1)
2

. . .

. . .
. . . λ̃

(α,β,N−2)
3

. . . λ̃
(α,β,N−1)
2

λ̃
(α,β,N)
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(N+1)×(N+1)

,
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where the entries are

λ̃
(α,β,i)
1 =

(α+ β + i+ 1)(α+ β + i+ 2)

(α+ β + 2i+ 1)(α+ β + 2i+ 2)
,

λ̃
(α,β,i)
2 =

(α− β)(α+ β + i+ 2)

(α+ β + 2i+ 2)(α+ β + 2i+ 4)
,

λ̃
(α,β,i)
3 = − (α+ i+ 2)(β + i+ 2)

(α+ β + 2i+ 4)(α+ β + 2i+ 5)
.

Proof. Let us denote Ku00→u11 = (κu00→u11
i,j ). Then it is easy to see that

κu00→u11
i,j =

〈J (α+1,β+1)
i , J

(α,β)
j 〉ω(α+1,β+1)

‖J (α+1,β+1)
i ‖2

ω(α+1,β+1)

=
〈(1− x)(1 + x)J

(α+1,β+1)
i , J

(α,β)
j 〉ω(α,β)

γ
(α+1,β+1)
i

=
〈λ(α,β,i)

1 J
(α,β)
i + λ

(α,β,i)
2 J

(α,β)
i+1 + λ

(α,β,i)
3 J

(α,β)
i+2 , J

(α,β,i)
j 〉ω(α,β)

γ
(α+1,β+1)
i

=
γ
(α,β)
i λ

(α,β,i)
1

γ
(α+1,β+1)
i

δi,j +
γ
(α,β)
i+1 λ

(α,β,i)
2

γ
(α+1,β+1)
i

δi+1,j +
γ
(α,β)
i+2 λ

(α,β,i)
3

γ
(α+1,β+1)
i

δi+2,j

:= λ̃
(α,β,i)
1 δi,j + λ̃

(α,β,i)
2 δi+1,j + λ̃

(α,β,i)
3 δi+2,j ,

where the parameters λ̃
(α,β,i)
1 , λ̃

(α,β,i)
2 , and λ̃

(α,β,i)
3 can be calculated easily. �

Remark 4. In many cases, we may need the promotion transform from f (α,β) to

f (α+m,β+m), where m is a positive integer. If we promote the indices α and β
separately, then the total cost is about 6mN flops. However, if we promote them
simultaneously, then the total cost is about 5mN .

Now, let us consider the demotion case, i.e., from coefficients of higher indices
to those of lower ones. There are two strategies. One is to treat the demotion coef-
ficient matrices as inverses of appropriate promotion coefficient matrices. Another
is to explicitly write the structured forms of the corresponding matrices.

Lemma 2.11 (Demotion relation [40]). The Jacobi polynomials satisfy

J (α+1,β)
n (x) =

n∑
j=0

κ
(α+1,β)→(α,β)
nj J

(α,β)
j (x),

J (α,β+1)
n (x) =

n∑
j=0

κ
(α,β+1)→(α,β)
nj J

(α,β)
j (x),

where

κ
(α+1,β)→(α,β)
nj =

Γ(n+ β + 1)

Γ(n+ α+ β + 2)
· (2j + α+ β + 1)Γ(j + α+ β + 1)

Γ(j + β + 1)
,

κ
(α,β+1)→(α,β)
nj = (−1)n+j Γ(n+ α+ 1)

Γ(n+ α+ β + 2)
· (2j + α+ β + 1)Γ(j + α+ β + 1)

Γ(j + α+ 1)
.
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Corollary 2.12. The matrices Ku10→u00 and Ku01→u00 are upper triangular ma-
trices with their upper triangular parts given by those of ρ1η

T
1 and ρ2η

T
2 , respec-

tively, where

ρ1=

(
(2i+ α+ β + 1)Γ(i+ α+ β + 1)

Γ(i+ β + 1)

)N
i=0

, η1=

(
Γ(i+ β + 1)

Γ(i+ α+ β + 2)

)N
i=0

,

ρ2=

(
(−1)i

(2i+α+β+1)Γ(i+α+β+1)

Γ(i+ α+ 1)

)N
i=0

, η2=

(
(−1)i

Γ(i+ α+ 1)

Γ(i+ α+ β + 2)

)N
i=0

.

To compute the entries in the vectors ρ1,ρ2,η1,η2 accurately and efficiently, we
should not evaluate the Gamma function Γ(·) repeatedly. Instead, we could make
use of the recurrence relations. For example, for the vector ρ1 = (ρj)

N
i=0, we have

ρ0 =
Γ(α+ β + 2)

Γ(β + 1)
, ρi+1 =

(2i+ α+ β + 3)(i+ α+ β + 1)

(2i+ α+ β + 1)(i+ β + 1)
ρi, i = 0, . . . , N−1.

We can compute ρ2,η1,η2 in a similar manner.

Remark 5. Since Ku10→u00 and Ku01→u00 correspond to the upper triangular parts
of two rank-1 matrices, they are the so-called semiseparable matrices and are highly
structured. Simple HSS representations can be analytically written down for these
matrices. The demotion case can also be considered in another way. That is,
we can treat Ku10→u00 and Ku01→u00 as inverses of the bidiagonal promotion
coefficient matrices Ku00→u10 and Ku00→u01 , respectively. Thus, the matrix-vector
multiplication involves bidiagonal solution. In either case, the computational cost
for demoting from fα+mα,β+mβ to fα,β is then no more than 3(mα +mβ)N flops,
for integers mα and mβ .

3. Low-rank property of the connection matrices

In this section, we show that the Jacobi-Jacobi connection matrices given in Sec-
tion 2.1 enjoy a low-rank property, which allows us to construct HSS representations
or approximations for the matrices. The HSS forms are data sparse in the sense
that the dense off-diagonal blocks are in compressed low-rank format. This helps to
significantly reduce the algorithmic complexity and storage, and yields structured
Jacobi-Jacobi transforms that are both efficient and stable. The matrices in Sec-
tion 2.2 are banded or have small off-diagonal ranks. The related transforms can
be conveniently done. The matrices can also be considered as special HSS forms.

Thus, we focus on the connection matrices in Section 2.1 for Jacobi-Jacobi trans-
forms with arbitrary indices. We show that the maximum off-diagonal numerical
ranks of those matrices grow polylogarithmically by numerical verification in Sec-
tion 3.1 and by theoretical analysis in Section 3.2.

3.1. Low-rank property of Jacobi-Jacobi connection matrices: Numeri-
cal verification. In order to gain some intuition, let us present the results of a
few numerical experiments on the off-diagonal numerical ranks of the connection
matrices K. Each matrix is hierarchically partitioned into lmax levels of HSS blocks
[51], which are block rows or columns excluding the diagonal blocks. (See Figure
2 for an illustration.) At levels l = 0, 1, . . . , lmax (from the root to the leaf levels),
the HSS block rows have row sizes Nl and maximum numerical rank rl. For con-
venience, suppose the partition is uniform and Nl ≈ N/2l. We will see that when
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l decreases and Nl roughly doubles, rl only increases slightly. Here rl is said to be
a rank pattern with respect to l in [50].

We consider (α, β) in two square regions:

• Ω1 = [−1, 0]2 with center t = (−1/2,−1/2), which corresponds to the
Chebyshev-Jacobi case;

• Ω2 = [α∗−1/2, α∗+1/2]×[β∗−1/2, β∗+1/2] with j∗ := (α∗, β∗) = (3
√
3, π).

In Figure 1, we show the rank patterns rl (versus Nl) for the HSS block rows
at level l of the HSS partition, where the relative tolerance for computing the
numerical ranks is τ = 10−8, and Nlmax

= 20. Some randomly chosen points j in
the regions are used for the tests. For comparison purposes, we also plot reference
lines for O(logNl) and O(log logNl). We can observe the following:

(1) In all of the three cases, the numerical ranks rl for HSS blocks at level l
increase very slowly, in fact, much slower thanO(logNl). Instead, it roughly
follows the pattern of O(log logNl) initially in our computation, although
not yet analytically justified. The numerical ranks stop to increase when
Nl is sufficiently large.

(2) The numerical rank patterns rl related to two sets of indices (α, β) and
(α∗, β∗) appear to depend only on their relative locations, by the compari-
son of the results from Ω1 in Figure 1(c-d) and Ω2 in Figure 1(e-f).

3.2. Low-rank property of Chebyshev-Legendre connection matrices: The-
oretical analysis. We then focus on the Chebyshev-Legendre case and show the
low-rank property analytically. The following result is well known and its variations
are frequently used in the FMM (see, e.g., [14]). Here, we make it slightly more
precise for our case.

Lemma 3.1. For a given tolerance ε > 0, suppose the entries of an m× n matrix
A satisfy the following:

(3.1) Aij =
r∑

k=1

fk(i)gk(j) + bi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n,

where r < min(m,n), |bi,j | ≤ ε, and {fk}rk=1 and {gk}rk=1 are continuous functions
defined on [1,m] and [1, n], respectively. That is, Aij is defined by a function with a
separable approximation. Then the numerical rank of A with respect to the tolerance
ε
√
mn is bounded by r.

Proof. The proof is relatively obvious. Equation (3.1) means that A can be written
as

A = FGT +B,

where

F = (fj(i))m×r, G = (gj(i))n×r, B = (bi,j)m×n.

Clearly,

||B||2 ≤
√
mn||B||max ≤ ε

√
mn,

where ‖B‖max is the largest entry of the matrix |B|. Thus, the numerical rank of
A with respect to the tolerance ε

√
mn is at most r. �

Let us then consider some useful properties of the function Λ(z) defined in (2.15).
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Figure 1. Numerical ranks rl of the HSS block rows (of row sizes
Nl) at level l of the hierarchical partition of the (a-b) Chebyshev-
Legendre, (c-d) Chebyshev-Jacobi, and (e-f) Jacobi-Jacobi connec-
tion matrices, where randomly selected indices j = (α, β) ∈ Ω1 and
j = (α, β) ∈ Ω2 are used for the solid lines in (c-d) and (e-f),
respectively.
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• Λ(z) decreases with respect to z and is bounded, i.e., for any z ≥ 1,

(3.2) Λ(z + 1) ≤ Λ(z) ≤ Λ(1) = Γ

(
3

2

)
=

√
π

2
.

• It can be shown that for integer z,

(3.3) lim
z→∞

Λ(z) = 0.

• Λ(z) has an asymptotic expansion in the following form for any z ≥ 1
[12, 46]:

(3.4) Λ(z) =
n−1∑
m=0

amz−(m+1/2) + Ên(z),

where

(3.5) am = (−1)m
Γ(m+ 1/2)

Γ(m+ 1)Γ(1/2)
B(1/2)

m

(
1

2

)
, Ên(z) = O(z−(n+1/2)),

with B
(μ)
m (x) being the generalized Bernoulli polynomials [29].

• The first order approximation to Λ(z) is

(3.6) Λ(z) = z−1/2 +O(z−3/2),

as z → ∞. It implies that for any given 0 < ε < 1, there exists an integer

(3.7) Ñε = O(ε−2),

such that

(3.8) |Λ(z)| < ε for any z > Ñε.

The following lemma shows the asymptotic behavior of am for sufficiently large
m.

Lemma 3.2. The coefficients {am} in (3.4) satisfy

|am| = O(mm−1(2πe)−m) as m → ∞.

Proof. We observe from (3.2) that, for m ≥ 1,

(3.9)
Γ(m+ 1/2)

Γ(m+ 1)Γ(1/2)
=

Λ(m)

Γ(1/2)
≤

√
π/2√
π

=
1

2
.

In addition, the first order approximation to the B
(1/2)
m (1/2) is [24]

B(1/2)
m (1/2) =

2(m!)

m1/2(2π)mΓ(1/2)

[
cos
(π
2
(3−m)

)
+O(m−1)

]
.

By Stirling’s formula, we have

(3.10)

∣∣∣∣B(1/2)
m

(
1

2

)∣∣∣∣ = O

(
mm

(2πe)m

)
.

One can easily draw the conclusion from (3.9) and (3.10). �

Remark 6. The function Λ(z) can be computed efficiently in the following way:

• For z < 15, one can compute Λ(z) directly using the Γ function.
• For z ≥ 15, one can compute Λ(z) via the approximate expansion Λ(z) ≈∑5

m=0 amz−m−1/2, where the coefficients {am}5m=0 for z in different inter-
vals are given in double precision in the Appendix of [2].
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Lemma 3.3 ([7]). The function z−θ with θ > 0, z ∈ [1, R] can be approximated by
a sum of exponentials with r terms, i.e.,

z−θ =

r∑
i=1

si exp(−tiz) + Er,[1,R](z),

where {si}ri=1 and {ti}ri=1 are non-negative real numbers independent of z, and the
error bound is given by

(3.11) |Er,[1,R](z)| ≤ 23+θ exp

(
− π2r

log(8R)

)
.

Moreover, for the same coefficients {sk}rk=1 and {tk}rk=1, the error bound for z ∈
[1,∞) is

(3.12) |Er,[1,∞)(z)| = max
{
|Er,[1,R](z)|, R−θ

}
.

Next, we consider the approximation of Λ(z) by exponential sums.

Lemma 3.4. The function Λ(z) defined in (2.15) can be approximated by an r
term sum of exponentials with respect to a tolerance ε:

(3.13) Λ(z) =
r∑

k=1

wke
−vkz + Er,[2,N ](z),

∣∣Er,[2,N ](z)
∣∣ < ε,

where {wk}rk=1 and {vk}rk=1 are non-negative real numbers independent of z, and
for 2 ≤ z ≤ N ,

(3.14) r = O

(
log2

1

ε
log log

1

ε
logN

)
.

Moreover, the r term approximation in (3.13) can be extended from z ∈ [2, N ] to
z ∈ [2,∞) with the error bound

(3.15)
∣∣Er,[2,∞)(z)

∣∣ < max{ε,Λ(N)}.
Besides,

∣∣Er,[2,∞)(z)
∣∣ < ε with

(3.16) r = r̃ε := O

(
log3

1

ε
log log

1

ε

)
.

Proof. By setting θ = m+ 1/2 in Lemma 3.3, we have for z ∈ [2, N ],

(3.17) z−(m+1/2) =

rm∑
i=1

sm,ie
−tm,iz + Erm,[2,N ](z),

where we use the subscript m in rm, sm,i, Erm,[2,N ] to indicate the dependence on
m, and the error bound is

(3.18) |Erm,[2,N ](z)| ≤ |Erm,[1,N ](z)| ≤ 2m+7/2 exp

(
− π2rm
log(8N)

)
.

By (3.4),

Λ(z) =

n−1∑
m=0

am

(
rm∑
i=1

sm,ie
−tm,iz + Erm,[2,N ](z)

)
+ Ên(z)

=

n−1∑
m=0

rm∑
i=1

amsm,ie
−tm,iz +

n−1∑
m=0

amErm,[2,N ](z) + Ên(z).
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Thus, Λ(z) can be rewritten in the form of (3.13) with

Er,[2,N ](z) =

n−1∑
m=0

amErm,[2,N ](z) + Ên(z),

r =

n−1∑
m=0

rm.(3.19)

We choose n and r so that |Er,[2,N ](z)| < ε in (3.13) holds for any z ≥ 2.
According to (3.5), we can choose n so that

|Ên(z)| ≤ |Ên(2)| = O(2−(n+1/2)).

That is,

(3.20) n = O

(
log

1

ε

)
.

According to (3.18), we can choose rm so that

|am|2m+7/2 exp

(
− π2rm
log(8N)

)
= O
( ε
n

)
.

That is,

rm = O
(
logN(log |am|+ log

n

ε
+m)
)
= O

(
logN(log |am|+ log

1

ε
+ log n+m)

)

= O

(
logN(log |am|+ log

1

ε
+ n)

)
.

For sufficiently large m, the estimate in Lemma 3.2 yields

(3.21) rm = O

(
(log

1

ε
+ n logn) logN

)
.

For m that is not very large, a smaller estimate rm = O((log(1/ε) + n) logN) is
obtained since n is the dominate term as compared with log |am|.

Combining (3.19), (3.20), and (3.21), we have

r =

n−1∑
m=0

O

(
(log

1

ε
+ n logn) logN

)
= O

(
log2

1

ε
log log

1

ε
logN

)
.

Thus, by choosing r in (3.19) to be (3.14), we can ensure that (3.13) holds.
Moreover, by (3.4), (3.12), and the non-negativity of

∑r
i=1 wke

−vkz, we can
conclude (3.15).

Finally, from (3.6) and Ñε defined in (3.7)–(3.8), if we replace N in (3.14) and

(3.15) by Ñε, we can obtain
∣∣Er,[2,∞)(z)

∣∣ < ε with the estimate of r in (3.16). �

We are now ready to present the following theorem regarding the Chebyshev-
Legendre connection matrices.
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Theorem 3.5. The off-diagonal blocks of the backward and forward Chebyshev-
Legendre transform matrices Kl→t = (κl→t

i,j ) and Kt→l = (κt→l
i,j ) are of low nu-

merical ranks. More precisely, for a given tolerance ε, the numerical ranks of the
HSS blocks are

r = O

(
log6

1

ε
log2(log

1

ε
)

)
with respect to the tolerance 1

2Nε.

A1
(1)

A1
(2)

A2
(2)

(a) 1-level partition (b) 2-level partition

Figure 2. Two levels of partition of A := Kl→t, where the block
rows without the diagonal subblocks are HSS blocks, as marked in
blue color.

Proof. Since Kl→t is the inverse of Kt→l, we only need to show the off-diagonal
numerical rank bounds for one of them, and the same bounds also apply to the other
case. We focus on A := Kl→t. Note that A is upper triangular. We partition A as
in Figure 2 following different levels of hierarchical partition. The HSS block rows

at level l are denoted by A(l)
m , m = 1, 2, . . . , 2l − 1. For convenience, assume each

A(l)
m has row size Nl. We study the numerical ranks of all the blocks A(l)

m .

According to Lemma 2.6, each entry of A(l)
m has the form

(A(l)
m )ij = κl→t

(m−1)Nl+i, mNl+j ,

i = 1, 2, . . . , Nl, j = 1, 2, . . . , (2l −m)Nl,

and (A(l)
m )ij can be generated by a scalar multiple of the following function:

φl,m(x, y) = Λ

(
1

2
(Nl + y − x)

)
Λ

(
1

2
((2m− 1)Nl + y + x)

)
,(3.22)

(x, y) ∈ Θl,m ∪ Ωl,m ⊂ R
2,

where

Θl,m := [1, Nl]× [1, 3], Ωl,m := [1, Nl]× [4, (2l −m)Nl].

Here, (A(l)
m )ij = 1

πφl,m(i, j) if i = 1, and (A(l)
m )ij = 2

πφl,m(i, j) if i > 1. The
difference in the scalar for generating the first row does not impact the study of the
rank structure.

Besides, the points (i, j) ∈ Θl,m correspond to the first three columns in the

block (A(l)
m )ij , the rank of which is at most 3. We will focus on the numerical rank

of the A(l)
m from the fourth column to the Nth column, where the indices (i, j) are

located in the the subdomain Ωl,m.
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Furthermore, we define Ω̃l,1 = [1, Nl]× [4, 2N ]. It is easy to see that

Ωl,2l ⊂ · · · ⊂ Ωl,m+1 ⊂ Ωl,m ⊂ · · · ⊂ Ωl,1 ⊂ Ω̃l,1.

For fixed l, on each domain Ωl,m, we consider the following two functions:

V −
m (x, y) =

1

2
(Nl + y − x), V +

m (x, y) =
1

2
((2m− 1)Nl + y + x) ∀(x, y) ∈ Ωl,m.

It implies that φl,m(x, y) = Λ(V −
m (x, y))Λ(V +

m (x, y)) ∀(x, y) ∈ Ωl,m.

(1) For any (x, y) ∈ Ωl,m, we can find x′
− = x, y′− = y such that (x′

−, y
′
−) ∈ Ωl,1

and

(3.23) V −
m (x, y) = V −

1 (x′
−, y

′
−).

(2) For any (x, y) ∈ Ωl,m, we can find x′
+ = x, y′+ = 2(m− 1)Nl + y such that

(x′
+, y

′
+) ∈ Ω̃l,1 and

(3.24) V +
m (x, y) = V +

1 (x′
+, y

′
+).

This indicates that we can consider the case m = 1 first. That is, we con-
sider the approximation of Λ(V −

1 (x, y)) on Ωl,1 and Λ(V +
1 (x, y)) on Ω̃l,1 by sum of

exponentials.
It is easy to know that

2 ≤ V −
1 (x, y) ≤ 1

2
(N − 1), (x, y) ∈ Ωl,1,(3.25)

1

2
(Nl + 5) ≤ V +

1 (x, y) ≤ 1

2
(N +Nl), (x, y) ∈ Ω̃l,1.(3.26)

For sufficiently large N , we have min
{
1
2 (N − 1), 12 (N +Nl)

}
> Ñε for ε in (3.7).

Setting z = V ±
1 (x, y) in Lemma 3.4 leads to the following approximations:

Λ
(
V −
1 (x, y)

)
= F−

l (x, y) + Er−,[2,∞),(3.27)

Λ
(
V +
1 (x, y)

)
= F+

l (x, y) + Er+,[2,∞),(3.28)

where

F−
l (x, y) =

r−∑
k=1

w−
k e

− 1
2v

−
k Nle

1
2 v

−
k xe−

1
2v

−
k y,(3.29)

F+
l (x, y) =

r+∑
k=1

w+
k e

− 1
2v

+
k Nle−

1
2 v

+
k xe−

1
2 v

+
k y,(3.30)

and the superscripts − and + are added to the constants in (3.13) to distinguish
the two cases. Moreover, for a given tolerance ε, by (3.16), we can choose r± such
that

(3.31) r± = O

(
log3

1

ε
log log

1

ε

)
, max

{
Er−,[2,∞), Er+,[2,∞)

}
≤ ε.

It follows that

φl,1(x, y) = Λ
(
V −
1 (x, y)

)
Λ
(
V +
1 (x, y)

)
=
(
F−

l (x, y) + Er−,[2,∞)

) (
F+

l (x, y) + Er+,[2,∞),
)

=

r∑
k=1

w̃k,le
ṽ
(1)
k,lxeṽ

(2)
k,ly + Ẽr,(3.32)
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where the coefficients w̃k,l, ṽ
(1)
k,l , ṽ

(2)
k,l are obtained from the coefficients in (3.29)–

(3.30), and

r = r−r+ = O

(
log6

1

ε
log2(log

1

ε
)

)
,(3.33)

|Ẽr| ≤ max
{
Er−,[2,∞), Er+,[2,∞)

}
max
{
Λ
(
V −
1 (x, y)

)
,Λ
(
V +
1 (x, y)

)}
(3.34)

≤ εΛ(1) =

√
π

2
ε < ε.

We are done for the case with m = 1.
For the case with m ≥ 2, by the relation (3.23), we know that the approximation

(3.27) and (3.29) still hold for Λ(V −
m (x, y)) ∀(x, y) ∈ Ωl,m, with the same estimates

of r−l and the approximation error in (3.31). Besides, due to (3.24), (3.28), and
(3.30), the function Λ(V +

m (x, y)) ∀(x, y) ∈ Ωl,m, can be approximated by

Λ(V +
m (x, y)) = Λ(V +

1 (x, 2(m− 1)Nl + y))(3.35)

=

r+∑
k=1

w+
k e

− 1
2v

+
k (2m−1)Nle−

1
2 v

+
k xe−

1
2 v

+
k y + Er+,[2,∞),

where r+ is still given in (3.31). The estimates of r± and approximation errors then
do no depend on m. Thus, the rank estimate shown in (3.33) and error estimate
shown in (3.34) hold for any m ≥ 1.

Therefore, the function φl,m(x, y) that generates A(l)
m has a separable approxi-

mation as in (3.32) with the error bounded by ε. According to Lemma 3.1, the

numerical rank of the HSS block A(l)
m is then r with respect to the tolerance

ε
√
Nl(N −Nl) ≤ 1

2Nε. �

The result above rigorously establishes the low-rank property for the transform
matrices of the Chebyshev-Legendre case. The rank bound may be grossly overes-
timated since the numerical tests indicate much smaller ranks. For more general
Chebyshev-Jacobi and Jacobi-Jacobi cases, it is difficult to rigorously prove their
low-rank property due to the lack of explicit generating functions for the connection
matrices. However, we showed numerically in Figure 1(c-f) that they also enjoy the
low-rank property.

The detailed HSS matrix-vector multiplication algorithm can be found in [9,48].
Since the upper bound of the numerical HSS rank is a constant for a fixed tolerance
ε, we can conclude that the computational cost of HSS matrix-vector multiplication
is linear O(N).

4. Fast structured Jacobi-Jacobi transforms

In this section, we present our fast structured Jacobi-Jacobi transforms (FSJJT)
and fast structured Jacobi transforms (FSJT). The studies of the low-rank in the
previous section mean that HSS representations or approximations can be computed
for the connection matrices.

For the case where the differences in the indices are integers, the connection
matrices are banded or highly structured with analytical HSS forms. When the
differences in the indices are not integers, a one-time HSS construction is needed.
There are two popular ways to construct such an HSS form: direct block compres-
sion [51] and randomized sampling [52]. If the maximum off-diagonal numerical
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rank is r, the constructions cost O(rN2) flops. For cases like in Theorem 3.5, r
is a constant for a fixed tolerance ε. Here, since our main purpose is to compute
Jacobi-Jacobi transforms, to ensure stability, we spend a one-time cost in the pre-
computation stage to construct the HSS approximation based on the method in
[51]. The method uses rank-revealing factorizations to compress the off-diagonal
blocks, which is known to usually yield nearly optimal low-rank approximations.
The resulting HSS form can be used to compute matrix-vector multiplications with
superior efficiency and stability. The cost to multiply the HSS form and a vector
is O(rN).

4.1. Fast structured Jacobi-Jacobi transforms (FSJJT). We consider the

following forward FSJJT: f (α2,β2) = Kj1→j2f (α1,β1), where j1 = (α1, β1), j2 =
(α2, β2). Let mα = α2−α1, mβ = β2−β1 be the difference parameters. Depending
on mα and mβ, our algorithm works as follows:

• Both mα and mβ are positive integers. We can quickly perform the integer
promotion with linear cost based on Theorem 2.8. The algorithm has two
steps:
(1) Initialization. Compute the vectors as in Theorem 2.8 that define

the bidiagonal matrices

K(α1+i,β1)→(α1+i+1,β), K(α2,β1+i)→(α2,β1+i+1).

(2) Multiplication. Promote the index from α1 to α2 while fixing β1 via
bidiagonal multiplication:

f (α2,β1) =

mα−1∏
i=0

K(α1+i,β1)→(α1+i+1,β1)f (α1,β1).

Promote the index from β1 to β2 while fixing α2 via bidiagonal multi-
plication:

f (α2,β2) =

mβ−1∏
i=0

K(α2,β1+i)→(α2,β1+i+1)f (α2,β1).

The total cost is about 3(mα+mβ)N flops. This can be further reduced
when simultaneous promotion as in Theorem 2.10 is used.

• Both mα and mβ are integers, with one or both negative.
(1) Initialization. Following Remark 5, get the HSS representations

based on Corollary 2.12 (for multiplications), or the bidiagonal ma-
trices based on Theorem 2.8 (for solutions).

(2) Multiplication. Then perform the transform via fast HSS matrix-
vector multiplications or bidiagonal solutions.
The total cost is O((mα +mβ)N) flops.

• mα, mβ ∈ (−1, 1).

(1) Initialization. Compute an HSS approximation to Kj1→j2 via direct
or randomized HSS construction in a precomputation.

(2) Multiplication. Then perform fast HSS matrix-vector multiplica-
tions for the corresponding transform.
After the one-time HSS construction, the multiplication cost is at most
O(rN), where r is the maximum numerical rank of the HSS blocks.
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• Other cases. For a general difference parameter, we can split it into the
sum of an integer and a number in (−1, 1). This can then be handled by
combining the procedures above.

4.2. Fast structured Jacobi transforms (FSJT). We now consider the fast
structured Jacobi transform (FSJT) between function values f0 at Chebyshev-

Gauss-type points and expansion coefficients f (α,β) of Jacobi polynomials with any
indices α, β:

(4.1) f0
DCT←→ f t

FSCJT←→ f (α,β),

where f t is the vector of Chebyshev expansion coefficients as mentioned at the end
of Section 1. DCT means discrete cosine transform which can be done in O(logN)
operations, and FSCJT denotes the fast structured Chebyshev-Jacobi transform
which is a special case of FSJJT. The algorithm also has two steps:

(1) Initialization. Given the function values f0, perform the forward Cheby-
shev transform to obtain the expansion coefficients f t, and compute an HSS
representation/approximation for Chebyshev-Jacobi transform.

(2) Multiplication. Perform the forward FSCJT f (α,β) = Kt→(α,β)f t using
fast HSS matrix-vector multiplications.

Some additional remarks are in order.

• The initialization stage of the above algorithms has O((mα +mβ)N) com-
plexity if mα and mβ are integers. Otherwise, a one-time precomputation
(HSS construction) of cost O(rN2) is used.

• According to Remark 4, for the integer parameters mα and mβ satisfying,
say, mα ≤ mβ, we should first promote the indices α, β simultaneously, and

then promote the index β, i.e., f (α,β) → f (α+mα,β+mα) → f (α+mα,β+mβ).
• Our method works for more general Jacobi transforms than the method by
Hale and Townsend in [17] for the Chebyshev-Legendre transform (see also
[37] for the Chebyshev-Jacobi transform) based on an asymptotic formula.
For the special case of Chebyshev-Legendre transform, the method in [17]
costsO(N log2 N/ log logN), and our method costsO(N) after the one-time
HSS construction.

• In the direct Jacobi transform (1.1), the matrix J (α,β) = (J
(α,β)
n (xj))

N−1
n,j=0

generally does not have the low-rank property. However, by employing
the Chebyshev transform as the intermediate step as in (4.1), we can take

advantage of the low-rank property of the connection matrices Kt→(α,β)

and K(α,β)→t, and obtain FSJT together with FFT.
• HSS multiplication has superior stability, as shown in [48, 49]. In fact, the
backward error only depends on log2 N and a low-degree term of r. In
comparison, in standard dense matrix-vector multiplication, the backward
error depends on the condition number of the matrix.

5. Numerical experiments

We now present some numerical experiments to illustrate the efficiency and ac-
curacy of our fast structured transforms. When HSS constructions are needed for
a matrix A in the tests, a relative tolerance τ = 10−12 is used, and the finest level
HSS block row size is about 40.
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First, let us start with the Chebyshev-Legendre transform. We test these meth-
ods:

• FSCLT: our proposed fast structured Chebyshev-Legendre transform;
• CLTAF: the O(N log2 N/ log logN) complexity method in [17] (which can
apply in this special case);

• Direct: the direct Chebyshev-Legendre transform.

In FSCLT, a connection matrix K is approximated by an HSS form in a precom-
putation stage.

We perform the forward and backward Chebyshev-Legendre transforms with
the three methods. The flop counts are given in Figure 3, together with reference
lines for O(N2), O(N log2 N/ log logN), and O(N). The results roughly follow the
estimates. When N increases, both FSCLT and CLTAF are much faster than Direct.
Besides, FSCLT also has a significant advantage over CLTAF for large N , and both
methods achieve comparable accuracies. See Table 1.
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Figure 3. Flops of Chebyshev-Legendre transforms.

Table 1. Accuracies of FSCLT and CLTAF for Chebyshev-
Legendre transforms of random vectors.

N
Kt→l Kl→t

FSCLT CLTAF FSCLT CLTAF
160 6.1466e-14 1.5815e-14 4.3208e-14 2.1671e-14
320 2.7861e-13 3.1610e-14 3.0375e-13 1.5178e-13
640 2.2266e-13 2.7652e-14 3.0139e-13 8.5224e-13
1280 1.7845e-13 5.3438e-14 5.7378e-13 7.1993e-13
2560 2.2830e-13 9.9047e-14 1.5104e-12 1.3362e-11
5120 4.1844e-13 1.1875e-13 1.2649e-12 1.3817e-11

Our proposed FSCLT also applies to more general Jacobi-Jacobi transforms than
CLTAF. For example, we show the numerical results for the Chebyshev-Jacobi trans-

form with (α, β) = (−
√
2
2 , π

4 ) in Figure 4(a-b) and the Jacobi-Jacobi transform be-

tween (α1, β1) = (2, 1) and (α2, β2) = (3
√
3, π) in Figure 4(c-d). We can observe

that the costs of our proposed fast structured transforms are nearly linear in N .
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Figure 4. Flops of (a-b) Chebyshev-Jacobi transforms and (c-d)
Jacobi-Jacobi transforms.

Next, we demonstrate the benefit of numerical stability of the fast transform
method. For relatively large α and/or β, a straightforward Jacobi transform based
on the explicit evaluation of the connection matrices as in Lemma 2.2 may have

numerical stability issues due to the large values of J
(α,β)
n (±1) as n increases. On

the other hand, our structured transform has nice stability as mentioned before.
To illustrate this, we perform a forward transform followed by a backward one as

in K(α2,β2)→(α1,β1)K(α1,β1)→(α2,β2)f (α1,β1), and measure the error

‖K(α2,β2)→(α1,β1)K(α1,β1)→(α2,β2)f (α1,β1) − f (α1,β1)‖
‖f (α1,β1)‖

,

where the norm is the Jacobi weighted norm

(5.1) ‖f (α,β)‖ =

√√√√ N∑
n=0

(f
(α,β)
k )2γ

(α,β)
k ,

with γ
(α,β)
k defined in (2.7).

Since we are usually interested in Jacobi transforms of functions with certain

smoothness, i.e., with decaying Jacobi coefficients, we take random vectors f (α,β)

and scale their entries so that they decay like: n−1, n−1.5, n−6.5, or exp(−36n/N).
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Figure 5. Stability test for (a-b) Chebyshev-Legendre trans-

forms, (c-d) Chebyshev-Jacobi transforms with (α, β) = (−
√
2
2 , π

4 ),

and (e-f) Chebyshev-Jacobi transforms with (α, β) = (10
√
3, 10π).

We perform three different transforms (i) Chebyshev-Legendre transform ((α, β) =

(0, 0)); (ii) Chebyshev-Jacobi transform with small indices ((α, β) = (−
√
2
2 , π

4 ));

(iii) Chebyshev-Jacobi transform with large indices ((α, β) = (10
√
3, 10π)). As

discussed in Section 4.1, the case (iii) can be split into two steps: the first one

is the Chebyshev-Jacobi transform with indices (ᾱ, β̄) = (10
√
3 − 17, 10π − 31) ≈
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(0.32, 0.42), and the second one is the Jacobi-Jacobi transform with integer differ-
ences (mα = 17, mβ = 31) between (α, β) and (ᾱ, β̄).

The results are shown in Figure 5. Nice accuracies are observed. For some cases,
the errors only slightly increase with the matrix size. This indicates the stability
of our fast structured transform, even with respect to relatively large α and/or β.

6. Concluding remarks

In this paper, we developed efficient and robust algorithms for Jacobi-Jacobi
transforms with arbitrary indices. To achieve this, we derived explicit formulas
for the connection matrices between two Jacobi polynomials with different indices,
and then showed that these matrices have the low-rank property. After a one-time
precomputation with quadratic complexity, the Jacobi-Jacobi transforms can be
accomplished in nearly linear complexity, which is verified either analytically or
numerically.

An important byproduct of the proposed fast Jacobi-Jacobi transform is a fast al-
gorithm to perform the transform between the function values at a set of Chebyshev-
Gauss-type points and coefficients of the Jacobi expansion with arbitrary indices.
Numerical results indicate that our algorithm achieves the desired complexity, and
is numerically stable for Jacobi transforms with relatively large indices.

It is apparent that the main techniques and strategies developed in this paper
can be applied to many other situations. Indeed, we are currently working on the
following situations:

• The strategy of fast structured Jacobi-Jacobi transforms can be used to
develop fast transforms between the family of generalized Laguerre polyno-
mials.

• Amore difficult problem is to construct a fast spherical harmonic transform.
Many attempts have been made in this regard [31, 38, 39, 47], but they are
still not fully satisfactory. The main difficulty, as compared with the Jacobi
case, is that the spherical harmonic expansion involves associated Legendre
polynomials with a full range of indices, rather than a fixed index. It
is hopeful that, by exploring the relations between associated Legendre
polynomials and Chebyshev polynomials, one can construct a robust and
fast structured spherical harmonic transform.
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