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Abstract. Graph edit distance is one of the most flexible mechanisms
for error-tolerant graph matching. Its key advantage is that edit distance
is applicable to unconstrained attributed graphs and can be tailored to
a wide variety of applications by means of specific edit cost functions.
Its computational complexity, however, is exponential in the number of
vertices, which means that edit distance is feasible for small graphs only.
In this paper, we propose two simple, but effective modifications of a
standard edit distance algorithm that allow us to suboptimally compute
edit distance in a faster way. In experiments on real data, we demon-
strate the resulting speedup and show that classification accuracy is
mostly not affected. The suboptimality of our methods mainly results in
larger inter-class distances, while intra-class distances remain low, which
makes the proposed methods very well applicable to distance-based graph
classification.

1 Introduction

Graph matching refers to the process of evaluating the structural similarity of
graphs. The main advantage of a description of patterns by graphs instead of
vectors is that graphs allow for a more powerful representation of structural re-
lations. In the most general case, vertices and edges are labeled with arbitrary
attributes. One of the most flexible error-tolerant graph matching methods ap-
plicable to unconstrained graphs is based on graph edit distance [1]. However, the
error-tolerant nature of edit distance — unlike exact graph matching methods
such as subgraph isomorphism or maximum common subgraph — potentially
allows every vertex of a graph to be mapped to every vertex of another graph.
The time and space complexity of edit distance computation is therefore very
high. Consequently, the edit distance can be computed for graphs of a rather
small size only.

In recent years, a number of methods addressing the high computational com-
plexity of graph edit distance computation have been proposed. A common way
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to make graph matching more efficient is to restrict considerations to special
classes of graphs. Examples include the classes of planar graphs [2], bounded-
valence graphs [3], trees [4], and graphs with unique vertex labels [5]. A number
of graph matching methods based on genetic algorithms have been proposed
[6]. Genetic algorithms offer an efficient way to cope with large search spaces,
but are non-deterministic and suboptimal. If the structural matching problem is
formulated as a vertex labeling problem, relaxation labeling techniques can be
used for graph matching [7]. While in some cases such graph matching methods
may perform efficiently, it seems to be rather difficult to apply them to strongly
distorted data. Recently, a suboptimal edit distance algorithm has been pro-
posed [8] that requires the vertices of graphs to be planarly embedded, which is
satisfied in many, but not all computer vision applications of graph matching. In
[9], the authors propose an edit distance method based on bipartite matching.
The main drawback of their method is that no edge information is used in the
bipartite matching step of the algorithm.

In this paper, we address the issue of efficient edit distance computation in
a different way. We exploit the fact that exact edit distance algorithms typi-
cally explore large areas of the search space that are not relevant for certain
classification tasks. We propose simple variants of a standard edit distance al-
gorithm that make the computation substantially faster, but keep the resulting
suboptimal distances sufficiently accurate.

2 Graph Edit Distance

The key idea of graph edit distance is to define the dissimilarity of two graphs
by the minimal amount of distortion that is needed to transform one graph into
the other. The distortion model is defined by a number of underlying vertex and
edge edit operations. The most common set of graph edit operations consists
of an insertion, a deletion, and a substitution operation on vertices and edges.
Given a source and a target graph, the idea is to remove some vertices and edges
from the source graph, relabel some of the remaining vertices and edges, and
possibly insert some vertices and edges such that eventually the target graph is
obtained. A sequence of edit operations that transform the source graph into the
target graph is called an edit path between source and target graph. Moreover,
cost functions are introduced measuring the strength of the distortion caused
by each edit operation. These cost functions are used to decide whether an edit
path represents weak modifications only or a significant amount of structural
distortion. If there exists an inexpensive edit path between two graphs, these
graphs are considered structurally similar in terms of the underlying edit oper-
ation model and edit cost functions; if no such edit path exists, the graphs are
considered dissimilar. Consequently, the edit distance of two graphs is defined
by the minimum cost edit path between the two graphs [1]. In the following,
we denote a graph by g = (V, E, µ, ν), where V denotes a finite set of vertices,
E ⊆ V ×V a set of directed edges, µ : V → L a vertex labeling function assigning
each vertex an attribute from L, and ν : E → L an edge labeling function. The
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substitution of a vertex u by a vertex v is denoted by u → v, the insertion of u

by ε → u, and the deletion of u by u → ε.
The computation of edit distance is usually carried out by means of a tree

search algorithm. Provided that a few weak conditions are satisfied in the defi-
nition of edit costs, it is sufficient to consider only a finite number of edit paths
to find one with minimum costs. The most widely used method for edit distance
computation is based on the A* algorithm [10]. The A* algorithm is a best-first
algorithm that attempts to retrieve an optimal path from a search tree based on
heuristic information. The idea is to use a search tree to represent the considered
optimization problem in a tree data structure, such that the root node represents
the starting point, inner nodes correspond to partial solutions, and leaf nodes
to complete solutions. A search tree is dynamically constructed at runtime by
iteratively creating successor nodes linked by edges to the currently considered
node. The A* search algorithm is characterized by a heuristic function that es-
timates the expected costs of the best route from the root through the current
node to a leaf node. At each step during tree traversal, the most promising node
— the one with the lowest heuristic cost value — from the set of nodes to be
processed is chosen. Formally, for a node of the search tree p, we use g(p) to
denote the costs of the optimal path from the root node to the current node p

found by A* so far and h(p) to denote the estimated costs from p to a leaf node.
The sum g(p) + h(p) gives the heuristic assessment of node p. If the estimated
costs h(p) are always lower than, or equal to, the real costs, the algorithm is
known to be admissible, that is, an optimal path from the root node to a leaf
node is guaranteed to be found by this procedure [10].

In graph edit distance, unlike exact graph matching algorithms, vertices of
the source graph can potentially be mapped to any vertex of the target graph.
Given two graphs, the A* search tree for edit distance is constructed by con-
sidering vertices of the first graph one after the other. An A* algorithm for the
computation of graph edit distance is given in Alg. 1. Let us assume that the
vertices of the first graph are processed in the order (u1, u2, . . .). All possible edit
operations are constructed simultaneously for each vertex, that is, the removal of
the vertex (line 12) or the substitution of the vertex by any unprocessed vertex
of the second graph (line 11), which produces a number of successor nodes in the
search tree. Note that edit operations on edges are implied by edit operations
on their adjacent vertices. If all vertices of the first graph have been processed,
the remaining vertices of the second graph can be inserted into the graph in a
single step (line 14). The set of partial edit paths OPEN consists of the search
tree nodes to be considered in the next step. The currently most promising node
p of the search tree, or partial edit path, is the one minimizing the A* search
costs g(p)+h(p) (line 5). When a complete edit path is obtained in this way, it is
guaranteed to be an optimal one and is returned as the solution (line 7). In cases
where the edit distance computation takes longer than a predefined threshold,
the corresponding distance is set to infinity.

The function g(p) measuring the costs from the root node to the current node
p is simply set equal to the cost of the partial edit path accumulated so far. In
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Algorithm 1. Computation of graph edit distance by A* algorithm

Input: Non-empty graphs g1 = (V1, E1, µ1, ν1) and g2 = (V2, E2, µ2, ν2),
where V1 = {u1, . . . , u|V1|} and V2 = {v1, . . . , v|V2|}

Output: A minimum-cost edit path from g1 to g2

e.g. pmin = {u1 → v3, u2 → ε, . . . , ε → v6}

1: Initialize OPEN to the empty set
2: For each vertex w ∈ V2, insert the substitution {u1 → w} into OPEN
3: Insert the deletion {u1 → ε} into OPEN
4: loop

5: Remove pmin = arg min
p∈OPEN {g(p) + h(p)} from OPEN

6: if pmin is a complete edit path then

7: Return pmin as the solution
8: else

9: Let pmin = {u1 → vi1 , . . . , uk → vik
}

10: if k < |V1| then

11: For each w ∈ V2 \ {vi1 , . . . , vik
}, insert pmin ∪ {uk+1 → w} into OPEN

12: Insert pmin ∪ {uk+1 → ε} into OPEN
13: else

14: Insert pmin ∪
�

w∈V2\{vi1
,...,vi

k
}{ε → w} into OPEN

15: end if

16: end if

17: end loop

the simplest scenario, the estimated lower bound h(p) of the costs from p to a
leaf node is set to zero for all p. This means that no heuristic information of
the potentially best search direction is used at all, and one actually performs a
breadth-first search. In the remainder of this paper, this method will be referred
to as plain-A*. The other extreme would be to compute for a partial edit path
the actual optimal path to a leaf node, that is, perform a complete edit distance
computation for each node of the search tree. In this case, the function h(p)
is not a lower bound, but the exact value of the optimal costs. Of course, the
computation of such a perfect heuristic is both unreasonable and untractable.

Somewhere in between the two extremes, one can define a function h(p) eval-
uating how many edit operations have to be performed in a complete edit path
at the least [11]. The method we use in this paper is very intuitive and can
be computed efficiently. In the following, assume that a partial edit path at a
position in the search tree is given, and let the number of unprocessed vertices
of the first graph g1 and second graph g2 be n1 and n2, respectively. For an
efficient estimation of the optimal remaining edit operations, we first attempt to
perform as many vertex substitutions as possible, since a substitution is often
less expensive than a deletion followed by an insertion. To this end, we poten-
tially substitute each of the n1 vertices from g1 with any of the n2 vertices from
g2. To obtain a lower bound of the exact edit costs, we accumulate the costs
of the min{n1, n2} least expensive of these vertex substitutions and the costs of
max{0, n1 − n2} vertex deletions or max{0, n2 − n1} vertex insertions. Any of
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the selected substitutions that is more expensive than a deletion followed by an
insertion operation is replaced by the latter. This procedure only considers the
most optimistic way to edit the remaining part of g1 into the remaining part of
g2, and the estimated costs therefore constitute a lower bound of the exact cost.
In the following, we refer to this method as heuristic-A*.

3 Fast Suboptimal Edit Distance Algorithms

The methods described in the previous section find an optimal edit path between
two graphs. Unfortunately, the computational complexity of the edit distance
algorithm, whether or not heuristics are used to govern the tree traversal process,
is exponential in the number of vertices of involved graphs. This means that
the running time and space complexity may be huge even for reasonably small
graphs. In practice we are able to compute the edit distance of graphs typically
containing 12 vertices at most. In this paper, we therefore propose two edit
distance variants that are conceptually very simple, but lead to a significant
speedup of the computation. These methods do not generally return the optimal
edit path, but only a suboptimal one.

3.1 A*-Beamsearch

The first method is based on beam search. Instead of expanding all sucessor
nodes in the search tree, only a fixed number s of nodes to be processed are
kept in the OPEN set at all times. Whenever a new partial edit path is added
to the OPEN set in Alg. 1, only the s partial edit paths p with the lowest
costs g(p) + h(p) are kept, and the remaining partial edit paths in OPEN are
removed. This means that not the full search space is explored, but only those
nodes are expanded that belong to the most promising partial matches. For sim-
ilar graphs, it is clear that edit operations of an optimal path have low costs.
Therefore if only the partial edit paths with lowest costs are considered, we will
obtain an edit path that is nearly optimal, which will result in a suboptimal dis-
tance close to the exact distance. For dissimilar graphs, the suboptimal distance
will remain large. In the following, this method with parameter s is referred to
as plain-A*-beamsearch(s) or heuristic-A*-beamsearch(s), respectively,
depending on whether or not heuristic information is used in the tree search
procedure.

3.2 A*-Pathlength

In the second variant, we exploit an observation from edit distance systems in
practice. If graphs with a rather large number of vertices are given, it may very
well be that a considerable part of an optimal edit path is constructed in the
first few steps of the tree traversal, because most substitutions between similar
graphs have small costs. Whenever the first significantly more expensive edit
operation occurs (in the optimal edit path), this node will prevent the tree search
algorithm from quickly reaching a leaf node and unnecessarily make it expand
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a large part of the search tree. We therefore propose an additional weighting
factor favoring long partial edit paths over shorter ones. Formally, instead of
evaluating g(p) + h(p) in Alg. 1 (line 5), we use

g(p) + h(p)

t|p|
,

with parameter t > 1. The term |p| denotes the number of edit operations in
partial edit path p. We refer to this method as plain-A*-pathlength(t) or
heuristic-A*-pathlength(t), respectively.

4 Experimental Results

The methods we propose for speeding up the computation of graph edit distance
are suboptimal in the sense that only an approximate edit distance value is
obtained. In fact, from the description above it is clear that the approximate
distance value will be equal to, or larger than, the exact distance value, since
the suboptimal methods find an optimal solution in a subspace of the complete
search space. In this section, we measure the speedup of the suboptimal methods
and analyze the accuracy of the suboptimal distance.

To address the classification problems considered in this paper, we apply k-
nearest-neighbor classifiers in conjunction with edit distance. Given a labeled
set of training graphs, an unknown graph is assigned to the class that occurs
most frequently among the k closest graphs (in terms of edit distance) from the
training set. Hence, we assume that graphs belonging to the same class should
be similar. In the experiments, insertion and deletion costs are set to constant
values, and substitution costs are set proportional to the Euclidean distance of
involved labels. To optimize these edit cost parameters, we first determine a set
of parameters that is optimal on a validation set. The validated parameters are
then applied to the independent test set. Note that the parameters are optimized
once for the exact distance and then used throughout all optimal and suboptimal
computations.

We first evaluate the distances on a graph database representing distorted
letter drawings. In this experiment, we consider the 15 capital letters that consist
of straight lines only (A, E, F, . . . ). For each class, a prototype line drawing is
manually constructed. We then apply distortion operators to the prototype line
drawings, resulting in randomly shifted, removed, or added lines. Using this
procedure, we are able to generate arbitrarily large sample sets of drawings with
arbitrarily strong distortions. These drawings are then converted into graphs by
representing ending points of lines by vertices and lines by edges. Each vertex is
labeled with a two-dimensional attribute giving its position. The graph database
used in our experiments consists of a training set, a validation set, and a test
set, each of size 150. The letter graphs consist of 4.6 nodes and 4.4 edges on the
average.

To obtain a visual representation of the accuracy of the suboptimal meth-
ods, we plot for each pair of test and training pattern its exact (horizontal axis)
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Fig. 1. Distance accuracy of plain-A*-beamsearch(t) for t = 1000, 100, 10

and suboptimal (vertical axis) distance value. The respective illustrations are
shown in Fig. 1. For t = 1000, we find that the suboptimal method does not
differ considerably from the exact method in terms of distance. If the subop-
timal method is constrained to t = 100 or t = 10 items in the OPEN list,
however, it often results in larger distances. Additionally evaluating the run-
ning time of the edit distance computation, we observe that the suboptimal
methods (for t = 10, 100) are faster than the exact method by several orders of
magnitude.

The crucial question is whether the larger distances belong to graphs of the
same class or graphs from different classes. In the latter case, the increased inter-
class distance will not negatively affect the classification accuracy. In
Table 1 we give the classification accuracy of three nearest-neighbor classifiers
and the average time it takes to compute a single edit distance. The tradi-
tional edit distance algorithms are denoted by plain-A* and heuristic-A*,
and the suboptimal methods proposed in this paper are referred to as plain-
A*-beamsearch, plain-A*-pathlength, heuristic-A*-beamsearch, and
heuristic-A*-pathlength. It turns out that the speedup of the suboptimal
methods is significant, while the accuracy remains high for most configurations.
The speedup of plain-A*-beamsearch for decreasing parameter is clearly vis-
ible. Concerning the accuracy, suboptimal methods can even be observed to
outperform the two exact methods in some cases. This means that a suboptimal
algorithm may be able to correct misclassifications by assigning higher costs to
pairs of graphs from different classes than the exact algorithm. The suboptimal
method plain-A*-pathlength(1.05) achieves the best classification accuracy
of 86.7% among all methods and is more than 3 times, or 16 times, respec-
tively, faster than the exact methods. Note that the performance of the two
exact methods need not be identical, since in some cases the running time of the
faster heuristic-A* may be below and that of the slower plain-A* above the
predefined timeout threshold.

For a more thorough evaluation of the classification accuracy, we apply the
proposed methods to the problem of image classification. Images are converted
into attributed graphs by segmenting them into regions, eliminating regions that
are irrelevant for classification, and representing the remaining regions by ver-
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Table 1. Letter Database: Classification accuracy and average running time

Method 1-NN 3-NN 5-NN Time (ms)
plain-A* 82.0 80.7 81.3 2200
plain-A*-beamsearch(1000) 82.0 80.7 82.7 620
plain-A*-beamsearch(100) 81.3 79.3 81.3 40
plain-A*-beamsearch(10) 76.7 ◦ 74.7 ◦ 72.0 ◦ 13
plain-A*-pathlength(1.05) 79.3 80.0 86.7 132
plain-A*-pathlength(1.1) 77.3 79.3 82.7 2
heuristic-A* 82.0 80.7 82.7 468
heuristic-A*-beamsearch(100) 82.0 80.7 82.0 18
heuristic-A*-pathlength(1.1) 79.3 82.7 84.0 8

◦ Statistically significantly worse than plain-A* and heuristic-A* (α = 0.05)

Table 2. Image Database: Classification accuracy and average running time

Method 1-NN 3-NN 5-NN Time (ms)
plain-A* 46.3 48.2 44.4 10
plain-A*-beamsearch(10) 46.3 48.2 48.2 8
plain-A*-beamsearch(5) 48.2 50.0 44.4 6
plain-A*-pathlength(1.1) 48.2 50.0 46.3 5
heuristic-A* 46.3 48.2 44.4 20
heuristic-A*-beamsearch(10) 46.3 44.4 48.2 16
heuristic-A*-pathlength(1.1) 50.0 48.2 51.9 15

Table 3. Fingerprint Database: Classification accuracy and average running time

Method 1-NN 3-NN 5-NN Time (ms)
Approximate method [13] 82.6 83.8 84.4 11
plain-A* — — — — 1

plain-A*-beamsearch(50) 87.4 • 87.8 • 87.6 • 167
plain-A*-beamsearch(40) 85.6 • 88.2 • 88.0 • 74
plain-A*-beamsearch(10) 72.0 ◦ 72.8 ◦ 72.4 ◦ 9
plain-A*-pathlength(. . . ) — — — — 1

heuristic-A* — — — — 1

heuristic-A*-beamsearch(50) 87.4 • 87.8 • 87.6 • 218
heuristic-A*-pathlength(. . . ) — — — — 1

◦ Statistically significantly worse than reference method [13] (α = 0.05)
• Statistically significantly better than reference method [13] (α = 0.05)
1 Empty entries indicate computation failure due to lack of memory

tices and the adjacency of regions by edges [12]. Our image database consists of
5 classes (city, countryside, people, snowy, streets) and is split into a training
set, a validation set, and a test set of size 54. On the average, the graphs consist
of 2.8 nodes and 2.5 edges. The nearest-neighbor classification performance and
the running time of the edit distance computation using the exact algorithms
and the proposed suboptimal algorithms are given in Table 2. Note that in this
application heuristic-A* takes significantly longer for the edit distance com-
putation than plain-A*. This means that the computational overhead of the
heuristic evaluation of future costs in the search tree cannot be compensated
for by a faster tree traversal, mostly because the graphs under consideration,
and hence also the constructed search tree, are rather small. Generally, the de-
crease of the running time is not massive, but the accuracy of the suboptimal
methods is at least as high as that of the exact methods. Particularly plain-A*-
pathlength(1.1) outperforms the exact methods plain-A* and heuristic-A*
and is at least twice as fast.
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Finally, we apply the proposed methods to the difficult problem of fingerprint
classification. To this end, we construct graphs from fingerprint images of the
NIST-4 database by extracting characteristic regions in fingerprints and convert-
ing the result into attributed graphs [13]. We use a validation set of size 300 and a
training set and test set both of size 500. On the average, the fingerprint graphs
consist of 5.2 nodes and 8.6 edges. In our experiment, we address the 4-class
problem (classes arch, left loop, right loop, whorl). In Table 3, in addition to the
systems described in this paper, we also give the results of another method [13].
Note that for this dataset, the exact edit distance plain-A* and heuristic-
A* cannot be computed because the search tree grows too large. The results
clearly demonstrate that the classification accuracy of the suboptimal methods,
for moderate running times, is very high.

Summarizing we conclude that although the edit distance computed by the
proposed suboptimal methods is not always close to the exact edit distance, this
problem mainly pertains to pairs of graphs from different classes and therefore
does not negatively affect the classification performance. The suboptimal meth-
ods offer more flexibility in terms of tradeoff between speed and accuracy than
the exact edit distance.

5 Conclusions

One of the main problems of graph edit distance is its exponential computational
complexity, which makes its application feasible for small graphs only. In this
paper, we propose two simple variants of a standard tree search algorithm for
edit distance. The idea is to explore not the full search space, but only a subspace
of promising candidates. The two proposed methods are related to beam search
and to a re-weighting of edit operation costs. With these simple modifications,
it turns out that a significant speedup of the edit distance computation can
be achieved. At the same time, the classification accuracy of the suboptimal
methods remains high on all datasets — and is sometimes even higher than the
one of the exact method. This means that the suboptimality mainly leads to
an increase of inter-class distances, while intra-class distances, which are highly
relevant for classification, are not strongly affected. We provide an experimental
evaluation and demonstrate the usefulness of our methods on semi-artificial line
drawings, on scenery images, and fingerprints.
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